Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 437: 115893, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35085591

RESUMO

Background Oxidative stress and inflammation play important roles in the development of diabetes. Metformin (MET) is considered as the first-line therapy for patients with type 2 diabetes (T2D). Hypothalamic paraventricular nucleus (PVN) and hypothalamic arcuate nucleus (ARC) are vital in obesity and diabetes. However, there have been few studies on the effects of MET on inflammatory reaction and oxidative stress in the PVN and ARC of T2D diabetic rats. Methods Male Sprague-Dawley (SD) rats were fed with high-fat diet (HFD), and intraperitoneally injected with low-dose streptozotocin (STZ, 30 mg/kg) at 6th week to induce T2D diabetes. After injection of STZ, they were fed with HFD continually. Starting from the 8th week of HFD feeding, T2D rats received intragastrical administration of MET (150 mg/kg/day) in addition to the HFD for another 8 weeks. At the end of the 15th week, the rats were anaesthetized to record the sympathetic nerve activity and collect blood and tissue samples. Results In comparison with control rats, T2D diabetic rats had higher levels of pro-inflammatory cytokines (PICs) and excessive oxidative stress in the PVN and ARC, accompanied with more activated astrocytes. The renal sympathetic nerve activity (RSNA) and the plasma norepinephrine (NE) increased in T2D diabetic rats. The expression of tyrosine hydroxylase (TH) increased and the expression of 67-kDa isoform of glutamate decarboxylase (GAD67) decreased in T2D diabetic rats. Supplementation of MET decreased blood glucose, suppressed RSNA, decreased PICs (TNF-α, IL-1ß and IL-6) in PVN and ARC, attenuated oxidative stress and activation of astrocytes in ARC and PVN of T2D diabetic rats, as well as restored the balance of neurotransmitter synthetase. The number of Fra-LI (chronic neuronal excitation marker) positive neurons in the ARC and PVN of T2D diabetic rats increased. Chronic supplementation of MET also decreased the number of Fra-LI positive neurons in the ARC and PVN of T2D diabetic rats. Conclusion These findings suggest that the PVN and ARC participate in the beneficial effects of MET in T2D diabetic rats, which is possibly mediated via down-regulating of inflammatory molecules, attenuating oxidative stress and restoring the balance of neurotransmitter synthetase by MET in the PVN and ARC.


Assuntos
Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Glicemia/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Masculino , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo
2.
J Cardiovasc Pharmacol ; 77(2): 170-181, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33538532

RESUMO

ABSTRACT: Oxidative stress, the renin-angiotensin system (RAS), and inflammation are some of the mechanisms involved in the pathogenesis of hypertension. The aim of this study is to examine the protective effect of the chronic administration of astaxanthin, which is extracted from the shell of crabs and shrimps, into hypothalamic paraventricular nucleus (PVN) in spontaneously hypertensive rats. Animals were randomly assigned to 2 groups and treated with bilateral PVN infusion of astaxanthin or vehicle (artificial cerebrospinal fluid) through osmotic minipumps (Alzet Osmotic Pumps, Model 2004, 0.25 µL/h) for 4 weeks. Spontaneously hypertensive rats had higher mean arterial pressure and plasma level of norepinephrine and proinflammatory cytokine; higher PVN levels of reactive oxygen species, NOX2, NOX4, IL-1ß, IL-6, ACE, and AT1-R; and lower PVN levels of IL-10 and Cu/Zn SOD, Mn SOD, ACE2, and Mas receptors than Wistar-Kyoto rats. Our data showed that chronic administration of astaxanthin into PVN attenuated the overexpression of reactive oxygen species, NOX2, NOX4, inflammatory cytokines, and components of RAS within the PVN and suppressed hypertension. The present results revealed that astaxanthin played a role in the brain. Our findings demonstrated that astaxanthin had protective effect on hypertension by improving the balance between inflammatory cytokines and components of RAS.


Assuntos
Anti-Inflamatórios/administração & dosagem , Anti-Hipertensivos/administração & dosagem , Pressão Arterial/efeitos dos fármacos , Citocinas/metabolismo , Hipertensão/tratamento farmacológico , Mediadores da Inflamação/metabolismo , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Sistema Renina-Angiotensina/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Infusões Parenterais , Masculino , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Fatores de Tempo , Xantofilas/administração & dosagem
3.
Neuroendocrinology ; 110(11-12): 899-913, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31671427

RESUMO

BACKGROUND: Inflammation and oxidative stress play important roles in energy imbalance and its complications. Recent research indicates that hypothalamic inflammation may contribute to the pathogenesis of metabolic syndrome and cardiac dysfunction, but the mechanisms remain unclear. We hypothesized that suppression of the proinflammatory IKKß/NF-κB pathway in the hypothalamus can improve energy balance and cardiac function in type 2 diabetic (T2D) rats. METHODS: Normal and T2D rats received bilateral hypothalamic arcuate nucleus (ARC) infusions of the IKKß inhibitor SC-514 or vehicle via osmotic minipump. Metabolic phenotyping, immunohistochemical analyses, and biochemical analyses were used to investigate the outcomes of inhibition of the hypothalamic IKKß. Echocardiography and glucometer were used for measuring cardiac function and blood glucose, respectively. Blood samples were collected for the evaluation of circulating proinflammatory cytokines. Heart was harvested for cardiac morphology evaluations. The ARC was harvested and analyzed for IKKß, NF-κB, proinflammatory cytokines, reactive oxygen species (ROS), and NAD(P)H (gp91phox, p47phox) oxidase activity levels and neuropeptides. RESULTS: Compared with normal rats, T2D rats were characterized by hyperglycemia, hyperinsulinemia, glucose intolerance, cardiac dysfunction, as well as higher ARC levels of IKKß, NF-κB, proinflammatory cytokines, ROS, gp91phox, and p47phox. ARC infusion of the IKKß inhibitor SC-514 attenuated all these changes in T2D rats, but not in normal rats. CONCLUSIONS: Our results indicate that the hypothalamic IKKß/NF-κB pathway plays a key role in modulating energy imbalance and cardiac dysfunction, suggesting its potential therapeutic role during type 2 diabetes mellitus.


Assuntos
Núcleo Arqueado do Hipotálamo , Diabetes Mellitus Tipo 2 , Cardiomiopatias Diabéticas , Quinase I-kappa B/metabolismo , NF-kappa B/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais , Animais , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/imunologia , Núcleo Arqueado do Hipotálamo/metabolismo , Glicemia/metabolismo , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/imunologia , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/fisiopatologia , Modelos Animais de Doenças , Ecocardiografia , Quinase I-kappa B/antagonistas & inibidores , Inflamação/imunologia , Inflamação/metabolismo , Masculino , Inibidores de Proteínas Quinases/administração & dosagem , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Tiofenos/farmacologia
4.
Toxicol Appl Pharmacol ; 305: 93-102, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27292124

RESUMO

Previous findings from our laboratory and others indicate that the main therapeutic effect of angiotensin II type 1 receptor (AT1-R) antagonists is to decrease blood pressure and exert anti-inflammatory effects in the cardiovascular system. In this study, we determined whether AT1-R antagonist telmisartan within the hypothalamic paraventricular nucleus (PVN) attenuates hypertension and hypothalamic inflammation via both the TLR4/MyD88/NF-κB signaling pathway and peroxisome proliferator-activated receptor-γ (PPAR-γ) in the PVN in hypertensive rats. Spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto (WKY) rats were treated for 4weeks through bilateral PVN infusion with the AT1-R antagonist telmisartan (TEL, 10µg/h), or losartan (LOS, 20µg/h), or the PPAR-γ antagonist GW9662 (GW, 100µg/h), or vehicle via osmotic minipump. Mean arterial pressure (MAP) was recorded by a tail-cuff occlusion method. PVN tissue and blood were collected for the measurement of AT1-R, PPAR-γ, pro-inflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-6), inducible nitric oxide synthase (iNOS), TLR4, MyD88, nuclear factor-kappa B (NF-κB) activity and plasma norepinephrine (NE), respectively. Hypertensive rats exhibited significantly higher level of AT1-R and lower level of PPAR-γ in the PVN. PVN treatment with TEL attenuated MAP, improved cardiac hypertrophy, reduced TNF-α, IL-1ß, IL-6, iNOS levels, and plasma NE in SHR but not in WKY rats. These results were associated with reduced TLR4, MyD88 and NF-κB levels and increased PPAR-γ level in the PVN of hypertensive rats. Our findings suggest that TLR4/MyD88/NF-κB signaling and PPAR-γ within the PVN are involved in the beneficial effects of telmisartan in hypertension.


Assuntos
Anti-Hipertensivos/farmacologia , Benzimidazóis/farmacologia , Benzoatos/farmacologia , Hipertensão/metabolismo , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Animais , Pressão Arterial/efeitos dos fármacos , Cardiomegalia/sangue , Cardiomegalia/metabolismo , Citocinas/sangue , Citocinas/genética , Citocinas/metabolismo , Hipertensão/sangue , Masculino , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Norepinefrina/sangue , PPAR gama/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Transdução de Sinais/efeitos dos fármacos , Telmisartan , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
5.
J Pharm Pharm Sci ; 19(2): 181-7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27518168

RESUMO

PURPOSE: Absolute bioavailability (F) is calculated as the ratio of the area under the plasma drug concentration-time curve (AUC) between extravascular administration and intravenous injection. However, as distribution of a drug after intravenous administration does not reach an equilibrium in the body during the distribution phase, the plasma drug concentration at this phase does not reflect the total amount of drug in the body. The goal of this paper was to analyze the insufficiencies of the method for calculating on absolute bioavailability and to propose a modification to improve the calculation. METHODS: Literature reporting absolute bioavailability published during 1983-2014 was searched for ten drug candidates. Plasma drug concentrations representing the amount of drug in the body were then calculated at each time point during the distribution phase according to the plasma drug concentration-time relationship during the elimination phase. RESULTS: The AUC values based on the distribution equilibrium drug concentrations following intravenous injection were 75%±11% of the actually measured drug concentrations in the literature. The absolute bioavailability values in the literature were 76%±12% of the actual bioavailability based on the AUCs from distribution-equilibrium drug concentrations. CONCLUSIONS: The present method underestimates the absolute drug bioavailability and should be modified to represent the data more accurately. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.


Assuntos
Preparações Farmacêuticas/sangue , Preparações Farmacêuticas/metabolismo , Disponibilidade Biológica , Vias de Administração de Medicamentos , Humanos , Preparações Farmacêuticas/administração & dosagem
6.
BMC Musculoskelet Disord ; 15: 253, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-25059987

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is a chronic systemic inflammatory disease mediated by T cells. The aim of the present study was to investigate the therapeutic efficacy of synthetic peptides (HP-R1, HP-R2 and HP-R3), derived from the sequence of 65-kD mycobacterial heat shock protein (HSP), in the treatment of RA using adjuvant-induced arthritis (AA) animal model. METHODS: AA was induced by a single intradermal injection Freund's complete adjuvant in male Lewis rats. At the first clinical sign of disease, rats were administered nasally by micropipette of peptides or phosphate buffer saline (PBS). Disease progression was monitored by measurement of body weight, arthritis score and paw swelling. The changes of histopathology were assessed by hematoxylin eosin staining. The serum levels of tumor necrosis factor (TNF) - alpha and interleukin (IL)-4 were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS: The peptides efficiently inhibited the footpad swelling and arthritic symptoms in AA rats. The synthetic peptides displayed significantly less inflammatory cellular infiltration and synovium hyperplasia than model controls. This effect was associated with a suppression of pro-inflammatory cytokine TNF-alpha production and an increase of anti-inflammatory cytokine IL-4 production after peptides treatment. CONCLUSIONS: These results suggest that the synthetic peptides derived from HSP65 induce highly effective protection against AA, which is mediated in part by down-regulation of inflammatory cytokines, and support the view that the synthetic peptides is a potential therapy for RA that may help to diminish both joint inflammation and destruction.


Assuntos
Anti-Inflamatórios/administração & dosagem , Artrite Experimental/prevenção & controle , Proteínas de Bactérias/administração & dosagem , Chaperonina 60/administração & dosagem , Fragmentos de Peptídeos/administração & dosagem , Administração Intranasal , Animais , Anti-Inflamatórios/síntese química , Artrite Experimental/sangue , Artrite Experimental/induzido quimicamente , Artrite Experimental/patologia , Biomarcadores/sangue , Mediadores da Inflamação/sangue , Interleucina-4/sangue , Articulações/efeitos dos fármacos , Articulações/patologia , Masculino , Fragmentos de Peptídeos/síntese química , Ratos Endogâmicos Lew , Fatores de Tempo , Fator de Necrose Tumoral alfa/sangue
7.
Food Funct ; 15(9): 5088-5102, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38666497

RESUMO

Diets rich in taurine can increase the production of taurine-conjugated bile acids, which are known to exert antihypertensive effects. Despite their benefits to the heart, kidney and arteries, their role in the central nervous system during the antihypertensive process remains unclear. Since hypothalamic paraventricular nucleus (PVN) plays a key role in blood pressure regulation, we aimed to investigate the function of bile acids in the PVN. The concentration of bile acids in the PVN of spontaneously hypertensive rats (SHRs) and normotensive Wistar-Kyoto rats (WKY) fed with normal chow was measured using LC-MS/MS, which identified taurocholic acid (TCA) as the most down-regulated bile acid. To fully understand the mechanism of TCA's functions in the PVN, bi-lateral PVN micro-infusion of TCA was carried out. TCA treatment in the PVN led to a significant reduction in the blood pressure of SHRs, with decreased plasma levels of norepinephrine and improved morphology of cardiomyocytes. It also decreased the number of c-fos+ neurons, reduced the inflammatory response, and suppressed oxidative stress in the PVN of the SHRs. Most importantly, the TGR5 receptors in neurons and microglia were activated. PVN infusion of SBI-115, a TGR5 specific antagonist, was able to counteract with TCA in the blood pressure regulation of SHRs. In conclusion, TCA supplementation in the PVN of SHRs can activate TGR5 in neurons and microglia, reduce the inflammatory response and oxidative stress, suppress activated neurons, and attenuate hypertension.


Assuntos
Hipertensão , Núcleo Hipotalâmico Paraventricular , Receptores Acoplados a Proteínas G , Ácido Taurocólico , Animais , Masculino , Ratos , Anti-Hipertensivos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética
8.
J Immunol ; 187(9): 4809-17, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21940680

RESUMO

Hemorrhagic shock (HS) due to major trauma and surgery predisposes the host to the development of systemic inflammatory response syndrome (SIRS), including acute lung injury (ALI), through activating and exaggerating the innate immune response. IL-1ß is a crucial proinflammatory cytokine that contributes to the development of SIRS and ALI. Lung endothelial cells (EC) are one important source of IL-1ß, and the production of active IL-1ß is controlled by the inflammasome. In this study, we addressed the mechanism underlying HS activation of the inflammasome in lung EC. We show that high mobility group box 1 acting through TLR4, and a synergistic collaboration with TLR2 and receptor for advanced glycation end products signaling, mediates HS-induced activation of EC NAD(P)H oxidase. In turn, reactive oxygen species derived from NAD(P)H oxidase promote the association of thioredoxin-interacting protein with the nucleotide-binding oligomerization domain-like receptor protein NLRP3 and subsequently induce inflammasome activation and IL-1ß secretion from the EC. We also show that neutrophil-derived reactive oxygen species play a role in enhancing EC NAD(P)H oxidase activation and therefore an amplified inflammasome activation in response to HS. The present study explores a novel mechanism underlying HS activation of EC inflammasome and thus presents a potential therapeutic target for SIRS and ALI induced after HS.


Assuntos
Proteínas de Transporte/metabolismo , Endotélio Vascular/imunologia , Endotélio Vascular/patologia , Inflamassomos/imunologia , Pulmão/patologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/patologia , Choque Hemorrágico/imunologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Endotélio Vascular/metabolismo , Proteína HMGB1/fisiologia , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Mucosa Respiratória/metabolismo , Choque Hemorrágico/metabolismo , Choque Hemorrágico/patologia
9.
Proc Natl Acad Sci U S A ; 106(1): 226-31, 2009 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-19114657

RESUMO

Hypertension places a major burden on individual and public health, but the genetic basis of this complex disorder is poorly understood. We conducted a genome-wide association study of systolic and diastolic blood pressure (SBP and DBP) in Amish subjects and found strong association signals with common variants in a serine/threonine kinase gene, STK39. We confirmed this association in an independent Amish and 4 non-Amish Caucasian samples including the Diabetes Genetics Initiative, Framingham Heart Study, GenNet, and Hutterites (meta-analysis combining all studies: n = 7,125, P < 10(-6)). The higher BP-associated alleles have frequencies > 0.09 and were associated with increases of 3.3/1.3 mm Hg in SBP/DBP, respectively, in the Amish subjects and with smaller but consistent effects across the non-Amish studies. Cell-based functional studies showed that STK39 interacts with WNK kinases and cation-chloride cotransporters, mutations in which cause monogenic forms of BP dysregulation. We demonstrate that in vivo, STK39 is expressed in the distal nephron, where it may interact with these proteins. Although none of the associated SNPs alter protein structure, we identified and experimentally confirmed a highly conserved intronic element with allele-specific in vitro transcription activity as a functional candidate for this association. Thus, variants in STK39 may influence BP by increasing STK39 expression and consequently altering renal Na(+) excretion, thus unifying rare and common BP-regulating alleles in the same physiological pathway.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Hipertensão/genética , Proteínas Serina-Treonina Quinases/genética , Pressão Sanguínea/genética , Diástole , Frequência do Gene , Predisposição Genética para Doença/etnologia , Predisposição Genética para Doença/genética , Humanos , Hipertensão/etnologia , Néfrons/química , Polimorfismo de Nucleotídeo Único , Ligação Proteica , Proteínas Serina-Treonina Quinases/análise , Sódio/urina , Simportadores de Cloreto de Sódio , Sístole , População Branca/etnologia , População Branca/genética
10.
Artigo em Inglês | MEDLINE | ID: mdl-21792360

RESUMO

Buyang Huanwu Decoction (BYHWD) is a well-known Chinese medicine formula. Recent studies have reported that BYHWD can be used to treat ischemic heart disease. This study investigated the potential mechanism underlying the roles of BYHWD in alleviating the myocardial ischemia induced by isoproterenol (ISO) in rats. Different doses of BYHWD (25.68, 12.84 and 6.42 g kg(-1)) were lavaged to rats, respectively. Then the expression of the cluster of differentiation 40 (CD40) in the mononuclear cells was measured using flow cytometry, and the expressions of CD40 and its ligand (CD40L) in myocardial tissues were determined by western blotting. The serum biochemical values of superoxide dismutase (SOD) activity, the malondialdehyde (MDA) level and the free fatty acid (FFA) content were measured. The results showed that the SOD activities of BYHWD groups were significantly higher than that of the ISO group, while the MDA levels and FFA contents of all BYHWD groups were lower than that of the ISO group. BYHWD could decrease the expression of CD40 in the mononuclear cells and the CD40 and CD40L expressions in myocardial tissues. Our data suggest that the roles of BYHWD are not only related to its antioxidative action and regulation of lipid metabolisms, but also to the inhibition of inflammatory pathway by the decreased CD40 and CD40L expressions in rats with myocardial ischemia.

11.
Artigo em Inglês | MEDLINE | ID: mdl-19204010

RESUMO

Many clinical studies have reported that Buyang Huanwu Decoction (BYHWD) has a protective effect on ischemic heart disease (IHD). In the present study, the protective effect of BYHWD on myocardial ischemia was investigated. Different doses of BYHWD and Compound Danshen Dropping Pills (CDDP) were lavaged to rats, respectively, isoproterenol (ISO) was intraperitoneally injected in to all animals to induce myocardial ischemia except the control group. Electrocardiogram (ECG) of each animal was recorded; activities of lactate dehydrogenase (LDH), creatine kinase (CK) and aspartate aminotransferase (AST) in serum were detected. As the results of ECG showed, pre-treatment with BYHWD inhibited ischemic myocardial injury, and the activities of LDH, CK and AST were lower than those in the myocardial ischemia model group, which suggests that BYHWD rescues the myocardium from ischemia status. To research the potential mechanism, the level of nitric oxide (NO), nitric oxide syntheses (NOS) and inducible nitric oxide syntheses (iNOS), the expression of iNOS and ligand of cluster of differentiation 40 (CD40L) were detected. The results revealed that BYHWD significantly decreased the level of NO, NOS and iNOS in serum. Moreover, BYHWD decreased the expression of iNOS and CD40L in myocardial tissues. These results indicate that the protective effect of BYHWD on myocardial ischemia and mechanism are associated with inhibition of iNOS and CD40L expression.

12.
Cell Biosci ; 11(1): 213, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34920761

RESUMO

BACKGROUND: Long non-coding RNAs (lncRNAs) have been the focus of ongoing research in a diversity of cellular processes. LncRNAs are abundant in mammalian testis, but their biological function remains poorly known. RESULTS: Here, we established an antisense oligonucleotides (ASOs)-based targeting approach that can efficiently knock down lncRNA in living mouse testis. We cloned the full-length transcript of lncRNA Tsx (testis-specific X-linked) and defined its testicular localization pattern. Microinjection of ASOs through seminiferous tubules in vivo significantly lowered the Tsx levels in both nucleus and cytoplasm. This effect lasted no less than 10 days, conducive to the generation and maintenance of phenotype. Importantly, ASOs performed better in depleting the nuclear Tsx and sustained longer effect than small interfering RNAs (siRNAs). In addition to the observation of an elevated number of apoptotic germ cells upon ASOs injection, which recapitulates the documented description of Tsx knockout, we also found a specific loss of meiotic spermatocytes despite overall no impact on meiosis and male fertility. CONCLUSIONS: Our study detailed the characterization of Tsx and illustrates ASOs as an advantageous tool to functionally interrogate lncRNAs in spermatogenesis.

13.
Gut Microbes ; 13(1): 1-24, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33382364

RESUMO

Exercise (Ex) has long been recognized to produce beneficial effects on hypertension (HTN). This coupled with evidence of gut dysbiosis and an impaired gut-brain axis led us to hypothesize that reshaping of gut microbiota and improvement in impaired gut-brain axis would, in part, be associated with beneficial influence of exercise. Male spontaneously hypertensive rats (SHR) and Wistar Kyoto (WKY) rats were randomized into sedentary, trained, and detrained groups. Trained rats underwent moderate-intensity exercise for 12 weeks, whereas, detrained groups underwent 8 weeks of moderate-intensity exercise followed by 4 weeks of detraining. Fecal microbiota, gut pathology, intestinal inflammation, and permeability, brain microglia and neuroinflammation were analyzed. We observed that exercise training resulted in a persistent decrease in systolic blood pressure in the SHR. This was associated with increase in microbial α diversity, altered ß diversity, and enrichment of beneficial bacterial genera. Furthermore, decrease in the number of activated microglia, neuroinflammation in the hypothalamic paraventricular nucleus, improved gut pathology, inflammation, and permeability were also observed in the SHR following exercise. Interestingly, short-term detraining did not abolish these exercise-mediated improvements. Finally, fecal microbiota transplantation from exercised SHR into sedentary SHR resulted in attenuated SBP and an improved gut-brain axis. These observations support our concept that an impaired gut-brain axis is linked to HTN and exercise ameliorates this impairment to induce antihypertensive effects.


Assuntos
Eixo Encéfalo-Intestino/fisiologia , Microbioma Gastrointestinal/fisiologia , Hipertensão/terapia , Condicionamento Físico Animal/fisiologia , Animais , Pressão Sanguínea , Cardiomegalia/prevenção & controle , Transplante de Microbiota Fecal , Microbioma Gastrointestinal/genética , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/patologia , Hipertensão/patologia , Inflamação/prevenção & controle , Masculino , Microglia/metabolismo , Núcleo Hipotalâmico Paraventricular/patologia , Permeabilidade , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Sistema Nervoso Simpático/patologia
14.
Am J Hypertens ; 34(8): 840-850, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-33856436

RESUMO

BACKGROUND: N-Methyl-d-aspartate receptor (NMDAR) in the hypothalamic paraventricular nucleus (PVN) plays critical roles in regulating sympathetic outflow. Studies showed that acute application of the antagonists of NMDAR or its subunits would reduce sympathetic nerve discharges. However, little is known about the effect of long-term management of NMDAR in hypertensive animals. METHODS: PEAQX, the specific antagonist of NMDAR subunit 2A (GluN2A) was injected into both sides of the PVN of two-kidney, one-clip (2K1C) renal hypertensive rats and control (normotensive rats) for 3 weeks. RESULTS: Three weeks of PEAQX infusion significantly reduced the blood pressure of the 2K1C rats. It managed to resume the balance between excitatory and inhibitory neural transmitters, reduce the level of proinflammatory cytokines and reactive oxygen species in the PVN, and reduce the level of norepinephrine in plasma of the 2K1C rats. PEAQX administration also largely reduced the transcription and translation levels of GluN2A and changed the expression levels of NMDAR subunits 1 and 2B (GluN1 and GluN2B). In addition, NMDAR was known to function through activating the extracellular regulated protein kinases (ERK) or phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathways. In our study, we found that in the PVN of 2K1C rats treated with PEAQX, the phosphorylation levels of mitogen-activated protein kinase kinase (MEK), ERK1/2, and cAMP-response element-binding protein (CREB) significantly reduced, while the phosphorylation level of PI3K did not change significantly. CONCLUSIONS: Chronic blockade of GluN2A alleviates hypertension through suppression of MEK/ERK/CREB pathway.


Assuntos
Hipertensão , Núcleo Hipotalâmico Paraventricular , Receptores de N-Metil-D-Aspartato , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Hipertensão/prevenção & controle , Sistema de Sinalização das MAP Quinases , Núcleo Hipotalâmico Paraventricular/metabolismo , Ratos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores
15.
Cardiovasc Toxicol ; 21(4): 286-300, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33165770

RESUMO

Hypertension, as one of the major risk factors for cardiovascular disease, significantly affects human health. Prostaglandin E2 (PGE2) and the E3-class prostanoid (EP3) receptor have previously been demonstrated to modulate blood pressure and hemodynamics in various animal models of hypertension. The PGE2-evoked pressor and biochemical responses can be blocked with the EP3 receptor antagonist, L-798106 (N-[(5-bromo-2methoxyphenyl)sulfonyl]-3-[2-(2-naphthalenylmethyl) phenyl]-2-propenamide). In the hypothalamic paraventricular nucleus (PVN), sympathetic excitation can be introduced by PGE2, which can activate EP3 receptors located in the PVN. In such a case, the central knockdown of EP3 receptor can be considered as a potential therapeutic modality for hypertension management. The present study examined the efficacy of the PVN infusion of L-798106, by performing experiments on spontaneously hypertensive rats (SHRs) and normotensive Wistar-Kyoto rats (WKYs). The rats were administered with chronic bilateral PVN infusion of L-798106 (10 µg/day) or the vehicle for 28 days. The results indicated that the SHRs had a higher mean arterial pressure (MAP), an increased Fra-like (Fra-LI) activity in the PVN, as well as a higher expression of gp91phox, mitogen-activated protein kinase (MAPK), and proinflammatory cytokines in the PVN compared with the WKYs. Additionally, the expression of Cu/Zn-SOD in the PVN of the SHRs was reduced compared with the WKYs. The bilateral PVN infusion of L-798106 significantly reduced MAP, as well as plasma norepinephrine (NE) levels in the SHRs. It also inhibited Fra-LI activity and reduced the expression of gp91phox, proinflammatory cytokines, and MAPK, whereas it increased the expression of Cu/Zn-SOD in the PVN of SHRs. In addition, L-798106 restored the balance of the neurotransmitters in the PVN. On the whole, the findings of the present study demonstrate that the PVN blockade of EP3 receptor can ameliorate hypertension and cardiac hypertrophy partially by attenuating ROS and proinflammatory cytokines, and modulating neurotransmitters in the PVN.


Assuntos
Anti-Hipertensivos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Hipertensão/prevenção & controle , Mediadores da Inflamação/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Antagonistas de Prostaglandina/farmacologia , Receptores de Prostaglandina E Subtipo EP3/antagonistas & inibidores , Sulfonamidas/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatologia , Cardiomegalia/prevenção & controle , Modelos Animais de Doenças , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Masculino , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Espécies Reativas de Oxigênio/metabolismo , Receptores de Prostaglandina E Subtipo EP3/metabolismo , Transdução de Sinais
16.
Neurosci Bull ; 36(4): 385-395, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31641986

RESUMO

Toll-like receptor 4 (TLR4) and cellular Src (c-Src) are closely associated with inflammatory cytokines and oxidative stress in hypertension, so we designed this study to explore the exact role of c-Src in the mechanism of action of the TLR4 signaling pathway in salt-induced hypertension. Salt-sensitive rats were given a high salt diet for 10 weeks to induce hypertension. This resulted in higher levels of TLR4, activated c-Src, pro-inflammatory cytokines, oxidative stress, and arterial pressure. Infusion of a TLR4 blocker into the hypothalamic paraventricular nucleus (PVN) decreased the activated c-Src, while microinjection of a c-Src inhibitor attenuated the PVN levels of nuclear factor-kappa B, pro-inflammatory cytokines, and oxidative stress. Our findings suggest that a long-term high-salt diet increases TLR4 expression in the PVN and this promotes the activation of c-Src, which upregulates the expression of pro-inflammatory cytokines and results in the overproduction of reactive oxygen species. Therefore, inhibiting central c-Src activity may be a new target for treating hypertension.


Assuntos
Citocinas , Genes src , Hipertensão , Estresse Oxidativo , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Receptor 4 Toll-Like/antagonistas & inibidores , Animais , Citocinas/metabolismo , Hipertensão/induzido quimicamente , Hipertensão/tratamento farmacológico , Ratos , Transdução de Sinais , Cloreto de Sódio , Receptor 4 Toll-Like/metabolismo
17.
Brain Res ; 1743: 146903, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32445716

RESUMO

We emulated instances of open traumatic brain injuries (TBI) in a maritime disaster. New Zealand rabbit animal models were used to evaluate the pathophysiological changes in open TBI with and without the influence of artificial seawater. New Zealand rabbits were randomly divided into 3 groups. Control group consisted of only normal animals. Animals in TBI and TBI + Seawater groups underwent craniotomy with dura mater incised and brain tissue exposed to free-fall impact. Afterward, only TBI + Seawater group received on-site artificial seawater infusion. Brain water content (BWC) and permeability of blood-brain barrier (BBB) were assessed. Reactive oxygen species levels were measured. Western blotting and immunofluorescence were employed to detect: apoptosis-related factors Caspase-3, Bax and Bcl-2; angiogenesis-related factors CD31 and CD34; astrogliosis-related factor glial fibrillary acidic protein (GFAP); potential neuron injury indicator neuron-specific enolase (NSE). Hematoxylin & eosin, Masson-trichrome and Nissl stainings were performed for pathological observations. Comparing to Control group, TBI group manifested abnormal neuronal morphology; increased BWC; compromised BBB integrity; increased ROS, Bax, CD31, CD34, Caspase-3 and GFAP expressions; decreased Bcl-2 and NSE expression. Seawater immersion caused all changes, except BWC, to become more significant. Seawater immersion worsens the damage inflicted to brain tissue by open TBI. It aggravates hypoxia in brain tissue, upregulates ROS expression, increases neuron sensitivity to apoptosis-inducing factors, and promotes angiogenesis as well as astrogliosis.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Água do Mar/efeitos adversos , Animais , Modelos Animais de Doenças , Imersão , Coelhos
18.
Front Neurosci ; 13: 1138, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31708733

RESUMO

Exercise training (ExT) is beneficial for cardiovascular health, yet the central mechanism by which aerobic ExT attenuates the hypertensive responses remains unclear. Activation of pro-inflammatory cytokines (PICs) in the hypothalamic paraventricular nucleus (PVN) is important for the sympathoexcitation and hypertensive response. We thus hypothesized that aerobic ExT can decrease the blood pressure of hypertensive rats by reducing the levels of PICs through TLR4/MyD88/NF-κB signaling within the PVN. To examine this hypothesis, two-kidney-one-clip (2K1C) renovascular hypertensive rats were assigned to two groups: sedentary or exercise training and examined for 8 weeks. At the same time, bilateral PVN infusion of vehicle or TAK242, a TLR4 inhibitor, was performed on both groups. As a result, the systolic blood pressure (SBP), renal sympathetic nerve activity (RSNA) and plasma levels of norepinephrine (NE), epinephrine (EPI) were found significantly increased in 2K1C hypertensive rats. These rats also had higher levels of Fra-like activity, NF-κB p65 activity, TLR4, MyD88, IL-1ß and TNF-α in the PVN than SHAM rats. Eight weeks of ExT attenuated the RSNA and SBP, repressed the NF-κB p65 activity, and reduced the increase of plasma levels of NE, EPI, and the expression of Fra-like, TLR4, MyD88, IL-1ß and TNF-α in the PVN of 2K1C rats. These findings are highly similar to the results in 2K1C rats with bilateral PVN infusions of TLR4 inhibitor (TAK242). This suggests that 8 weeks of aerobic ExT may decrease blood pressure in hypertensive rats by reducing the PICs activation through TLR4/MyD88/NF-κB signaling within the PVN, and thus delays the progression of 2K1C renovascular hypertension.

19.
Cardiovasc Toxicol ; 19(5): 451-464, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31037602

RESUMO

Carbon monoxide (CO) presents anti-inflammatory and antioxidant activities as a new gaseous neuromessenger produced by heme oxygenase-1 (HO-1) in the body. High salt-induced hypertension is relevant to the levels of pro-inflammatory cytokines (PICs) and oxidative stress in the hypothalamic paraventricular nucleus (PVN). We explored whether CO in PVN can attenuate high salt-induced hypertension by regulating PICs or oxidative stress. Male Dahl Salt-Sensitive rats were fed high-salt (8% NaCl) or normal-salt (0.3% NaCl) diet for 4 weeks. CORM-2, ZnPP IX, or vehicle was microinjected into bilateral PVN for 6 weeks. High-salt diet increased the levels of MAP, plasma norepinephrine (NE), reactive oxygen species (ROS), and the expressions of COX2, IL-1ß, IL-6, NOX2, and NOX4 significantly in PVN (p < 0.05), but decreased the expressions of HO-1 and Cu/Zn-SOD in PVN (p < 0.05). Salt increased sympathetic activity as measured by circulating norepinephrine, and increased the ratio of basal RSNA to max RSNA, in part by decreasing max RSNA. PVN microinjection of CORM-2 decreased the levels of MAP, NE, RSNA, ROS and the expressions of COX2, IL-1ß, IL-6, NOX2, NOX4 significantly in PVN of hypertensive rat (p < 0.05), but increased the expressions of HO-1 and Cu/Zn-SOD significantly (p < 0.05), which were all opposite to the effects of ZnPP IX microinjected in PVN (p < 0.05). We concluded that exogenous or endogenous CO attenuates high salt-induced hypertension by regulating PICs and oxidative stress in PVN.


Assuntos
Anti-Inflamatórios/farmacologia , Anti-Hipertensivos/farmacologia , Antioxidantes/farmacologia , Pressão Arterial/efeitos dos fármacos , Monóxido de Carbono/farmacologia , Citocinas/metabolismo , Hipertensão/prevenção & controle , Mediadores da Inflamação/metabolismo , Compostos Organometálicos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Animais , Anti-Inflamatórios/metabolismo , Anti-Hipertensivos/metabolismo , Antioxidantes/metabolismo , Monóxido de Carbono/metabolismo , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Heme Oxigenase (Desciclizante)/metabolismo , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Masculino , Compostos Organometálicos/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Ratos Endogâmicos Dahl , Cloreto de Sódio na Dieta
20.
Phytomedicine ; 52: 216-224, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30599901

RESUMO

BACKGROUND: Berberine (BBR), a Chinese traditional herbal medicine, has many pharmacologic benefits such as anti-inflammation and anti-oxidation. It is widely used in clinical treatment of cardiovascular diseases such as hypertension. However, the mechanism of how BBR attenuates hypertension through affecting central neural system is not clear. PURPOSE: This study was designed to determine whether chronic infusion of BBR into the hypothalamic paraventricular nucleus (PVN) attenuates hypertension and sympathoexcitation via the ROS/Erk1/2/iNOS pathway. METHODS: Two-kidney, one-clip (2K1C) renovascular hypertensive rats were randomly assigned and treated with bilateral PVN infusion of BBR (2µg/h) or vehicle (artificial cerebrospinal fluid) via osmotic minipumps for 28 days. RESULTS: 2K1C rats showed higher mean arterial pressure (MAP) and PVN Fra-like activity, plasma levels of norepinephrine (NE), PVN levels of NOX2, NOX4, Erk1/2 and iNOS, and lower PVN levels of copper/zinc superoxide dismutase (Cu/Zn-SOD). Chronic infusion of BBR reduced MAP, PVN Fra-like activity and plasma levels of NE, reduced NOX2, NOX4, Erk1/2, iNOS and induced Cu/Zn-SOD in the PVN. CONCLUSIONS: These results suggest that BBR attenuates hypertension and sympathoexcitation via the ROS/Erk1/2/iNOS pathway in 2K1C renovascular hypertensive rats.


Assuntos
Berberina/farmacologia , Hipertensão/tratamento farmacológico , Sistema de Sinalização das MAP Quinases , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Animais , Pressão Arterial , Masculino , NADPH Oxidase 2/metabolismo , NADPH Oxidase 4/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Norepinefrina/sangue , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA