Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 183(4): 1117-1133.e19, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33096019

RESUMO

Re-activation and clonal expansion of tumor-specific antigen (TSA)-reactive T cells are critical to the success of checkpoint blockade and adoptive transfer of tumor-infiltrating lymphocyte (TIL)-based therapies. There are no reliable markers to specifically identify the repertoire of TSA-reactive T cells due to their heterogeneous composition. We introduce FucoID as a general platform to detect endogenous antigen-specific T cells for studying their biology. Through this interaction-dependent labeling approach, intratumoral TSA-reactive CD4+, CD8+ T cells, and TSA-suppressive CD4+ T cells can be detected and separated from bystander T cells based on their cell-surface enzymatic fucosyl-biotinylation. Compared to bystander TILs, TSA-reactive TILs possess a distinct T cell receptor (TCR) repertoire and unique gene features. Although exhibiting a dysfunctional phenotype, TSA-reactive CD8+ TILs possess substantial capabilities of proliferation and tumor-specific killing. Featuring genetic manipulation-free procedures and a quick turnover cycle, FucoID should have the potential of accelerating the pace of personalized cancer treatment.


Assuntos
Antígenos de Neoplasias/metabolismo , Comunicação Celular , Fucose/metabolismo , Linfócitos T/imunologia , Linfócitos T/patologia , Adulto , Sequência de Aminoácidos , Animais , Biomarcadores Tumorais/metabolismo , Biotinilação , Efeito Espectador/imunologia , Linfócitos T CD8-Positivos/imunologia , Membrana Celular/metabolismo , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Feminino , Fucosiltransferases/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Helicobacter pylori/enzimologia , Humanos , Imunidade , Linfócitos do Interstício Tumoral/imunologia , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos Endogâmicos C57BL , Peptídeos/química , Fenótipo , Receptor de Morte Celular Programada 1/metabolismo , Baço/metabolismo
2.
Small ; 20(24): e2311180, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38174602

RESUMO

The practical application of the room-temperature sodium-sulfur (RT Na-S) batteries is currently limited by low reversible capacity and serious capacity decay due to the sluggish reaction kinetics and shuttle effect. It is necessary to design a suitable sulfur host integrated with electrocatalysts to realize effective chemisorption and catalysis of sodium polysulfides (NaPSs). Herein, under the guidance of theoretical calculation, the Mott-Schottky heterojunction with a built-in electric field composed of iron (Fe) and iron disulfide (FeS2) components anchored on a porous carbon matrix (Fe/FeS2-PC) is designed and prepared. The enhanced chemisorption effect of Fe, the fast electrocatalytic effect of FeS2, and the fast transfer effect of the built-in electric field within the Fe/FeS2 heterojunction in the cathode of RT Na-S batteries work together to effectively improve the electrochemical performance. As a result, the Fe/FeS2-PC@S cathode exhibits high reversible capacity (815 mAh g-1 after 150 cycles at 0.2 A g-1) and excellent stability (516 mAh g-1 after 600 cycles at 5 A g-1, with only 0.07% decay per cycle). The design of the Fe/FeS2 heterojunction electrocatalyst provides a new strategy for the development of highly stable RT Na-S batteries.

3.
Nat Methods ; 18(1): 107-113, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33288959

RESUMO

Expansion microscopy (ExM) allows super-resolution imaging on conventional fluorescence microscopes, but has been limited to proteins and nucleic acids. Here we develop click-ExM, which integrates click labeling into ExM to enable a 'one-stop-shop' method for nanoscale imaging of various types of biomolecule. By click labeling with biotin and staining with fluorescently labeled streptavidin, a large range of biomolecules can be imaged by the standard ExM procedure normally used for proteins. Using 18 clickable labels, we demonstrate click-ExM on lipids, glycans, proteins, DNA, RNA and small molecules. We demonstrate that click-ExM is applicable in cell culture systems and for tissue imaging. We further show that click-ExM is compatible with signal-amplification techniques and two-color imaging. Click-ExM thus provides a convenient and versatile method for super-resolution imaging, which may be routinely used for cell and tissue samples.


Assuntos
Encéfalo/metabolismo , Química Click , Imageamento Tridimensional/métodos , Substâncias Macromoleculares/análise , Microscopia de Fluorescência/métodos , Miócitos Cardíacos/metabolismo , Animais , DNA/análise , Células HeLa , Humanos , Lipídeos/análise , Camundongos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Polissacarídeos/análise , Proteínas/análise , RNA/análise , Ratos , Ratos Sprague-Dawley
4.
Mol Phylogenet Evol ; 190: 107966, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37981264

RESUMO

Although numerous studies have been conducted on hybrid speciation, our understanding of this process remains limited. Through an 18-year systematic investigation of all taxa of Populus on the Qinghai-Tibet Plateau, we discovered three new taxa with clear characteristics of sect. Leucoides. Further evidence was gathered from morphology, whole-genome bioinformatics, biogeography, and breeding to demonstrate synthetically that they all originated from distant hybridization between sect. Leucoides and sect. Tacamahaca. P. gonggaensis originated from the hybridization of P. lasiocarpa with P. cathayana, P. butuoensis from the hybridization of P. wilsonii with P. szechuanica, and P. dafengensis from the hybridization of P. lasiocarpa with P. szechuanica. Due to heterosis, the three hybrid taxa possess greater ecological adaptability than their ancestral species. We propose a hybrid speciation process model that incorporates orthogonal, reverse, and backcrossing events. This model can adequately explain some crucial evolutionary concerns, such as the nuclear-cytoplasmic conflict on phylogeny and the extinction of ancestral species within the distribution range of hybrid species.


Assuntos
Populus , Filogenia , Populus/genética , Evolução Biológica , Hibridização Genética , Hibridização de Ácido Nucleico
5.
Mol Phylogenet Evol ; 196: 108072, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38615706

RESUMO

While the diversity of species formation is broadly acknowledged, significant debate exists regarding the universal nature of hybrid species formation. Through an 18-year comprehensive study of all Populus species on the Qinghai-Tibet Plateau, 23 previously recorded species and 8 new species were identified. Based on morphological characteristics, these can be classified into three groups: species in section Leucoides, species with large leaves, and species with small leaves in section Tacamahaca. By conducting whole-genome re-sequencing of 150 genotypes from these 31 species, 2.28 million single nucleotide polymorphisms (SNPs) were identified. Phylogenetic analysis utilizing these SNPs not only revealed a highly intricate evolutionary network within the large-leaf species of section Tacamahaca but also confirmed that a new species, P. curviserrata, naturally hybridized with P. cathayana, P. szechuanica, and P. ciliata, resulting in 11 hybrid species. These findings indicate the widespread occurrence of hybrid species formation within this genus, with hybridization serving as a key evolutionary mechanism for Populus on the plateau. A novel hypothesis, "Hybrid Species Exterminating Their Ancestral Species (HSEAS)," is introduced to explain the mechanisms of hybrid species formation at three different scales: the entire plateau, the southeastern mountain region, and individual river valleys.


Assuntos
Especiação Genética , Hibridização Genética , Filogenia , Polimorfismo de Nucleotídeo Único , Populus , Populus/genética , Populus/classificação , Tibet
6.
Oral Dis ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937974

RESUMO

OBJECTIVES: Current scales for Pemphigus vulgaris (PV) do not adequately represent the clinical variability of oral lesions. This study aimed to develop an independent scale, the Pemphigus Oral Lesions Area Index (POLAI), for assessment of oral PV exclusively, and compare POLAI, Pemphigus Disease Area Index (PDAI), Autoimmune Bullous Skin Disorder Intensity Score (ABSIS) and Oral Disease Severity Score (ODSS) regarding inter- and intra-observer reliability and validity. MATERIALS AND METHODS: Retrospective cohort included 209 sets of digital-photographs. Additional clinical cohort included 32 PV patients. All visits were assessed by four clinicians using the PDAI, ABSIS, ODSS and POLAI, and were rated by three specialists using the Physician's Global Assessment (PGA). RESULTS: The intraclass correlation coefficient showed the inter-observer reliability with 0.89 and 0.86 for PDAI, 0.87 for ABSIS, 0.93 for ODSS, 0.96 for POLAI, and 0.97 and 0.96 for PGA. Intra-observer agreements showed excellent reliability for all 4 scores. Highest correlation was observed between PGA and POLAI (correlation coefficients were 0.96). The mean time taken to complete each scale was within 1.5 min. CONCLUSION: POLAI is valid for the assessment of oral PV with superior inter- and intra-observer reliability to PDAI, ABSIS and ODSS, and is feasible in clinic.

7.
Dentomaxillofac Radiol ; 53(5): 271-280, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38814810

RESUMO

Cystic lesions of the gnathic bones present challenges in differential diagnosis. In recent years, artificial intelligence (AI) represented by deep learning (DL) has rapidly developed and emerged in the field of dental and maxillofacial radiology (DMFR). Dental radiography provides a rich resource for the study of diagnostic analysis methods for cystic lesions of the jaws and has attracted many researchers. The aim of the current study was to investigate the diagnostic performance of DL for cystic lesions of the jaws. Online searches were done on Google Scholar, PubMed, and IEEE Xplore databases, up to September 2023, with subsequent manual screening for confirmation. The initial search yielded 1862 titles, and 44 studies were ultimately included. All studies used DL methods or tools for the identification of a variable number of maxillofacial cysts. The performance of algorithms with different models varies. Although most of the reviewed studies demonstrated that DL methods have better discriminative performance than clinicians, further development is still needed before routine clinical implementation due to several challenges and limitations such as lack of model interpretability, multicentre data validation, etc. Considering the current limitations and challenges, future studies for the differential diagnosis of cystic lesions of the jaws should follow actual clinical diagnostic scenarios to coordinate study design and enhance the impact of AI in the diagnosis of oral and maxillofacial diseases.


Assuntos
Aprendizado Profundo , Cistos Maxilomandibulares , Humanos , Cistos Maxilomandibulares/diagnóstico por imagem , Diagnóstico Diferencial , Doenças Maxilomandibulares/diagnóstico por imagem
8.
J Med Virol ; 95(9): e29098, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37707416

RESUMO

In China, the emergence of a nationally widespread epidemic infection of severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) has appeared within a month since December 7, 2022. To evaluate the risk factors for suffering from coronavirus disease 2019 (COVID-19) pneumonia due to infection with SARS-CoV-2 in different kinds of interstitial lung disease (ILD) patients with diverse immunizations, we conducted this retrospective study on 525 patients with ILDs who underwent regular follow-up in our ILD clinic. Among them, 128 ILD patients (24.4%) suffered from COVID-19 pneumonia after SARS-CoV-2 infection. Patients were older with a male predominance in the pneumonia group than in the nonpneumonia group (65.0 ± 10.0 years vs. 56.4 ± 11.7 years, p < 0.001, 55.5% vs. 39.5%, p = 0.002, respectively). Connective tissue disease-associated ILD (CTD-ILD) (25%), idiopathic pulmonary fibrosis (23.4%), and interstitial pneumonia with autoimmune features (21.1%) were the main pre-existing ILDs in the pneumonia group. In Cox multivariable analysis, only male sex and corticosteroid use were risk factors for COVID-19 pneumonia after infection. Two or three doses of vaccination were a protective factor for pre-existing ILD patients suffering from COVID-19 pneumonia. More than two doses of vaccination were strongly recommended for pre-existing ILD patients, particularly for males who were administered corticosteroids.


Assuntos
COVID-19 , Doenças Pulmonares Intersticiais , Pneumonia , Feminino , Humanos , Masculino , COVID-19/complicações , COVID-19/epidemiologia , População do Leste Asiático , Doenças Pulmonares Intersticiais/complicações , Doenças Pulmonares Intersticiais/epidemiologia , Pandemias , Estudos Retrospectivos , Fatores de Risco , SARS-CoV-2 , Pessoa de Meia-Idade , Idoso
9.
Osteoporos Int ; 34(11): 1937-1949, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37526672

RESUMO

PURPOSE: There has been a persistent claim that dairy products contain calcium-leaching proteins, although the soundness of such a claim has been challenged. A meta-analysis of randomized controlled trials (RCTs) on the effects of milk-derived protein supplementation on bone health indices in adults was performed to reconcile the controversy surrounding the potential skeletal safety concerns of proteins of dairy origin. METHODS: The PubMed and Web of Science databases were searched for relevant RCTs. A random-effects model was used to generate pooled effect sizes and 95% confidence intervals. RESULTS: Milk-derived protein supplementation did not significantly affect whole-body BMD (n = 7 RCTs) and BMD at the lumbar spine (n = 10), hip (n = 8), femoral neck (n = 9), trochanter (n = 5), intertrochanter (n = 2), and ultradistal radius (n = 2). The concentrations of bone formation markers (bone-specific alkaline phosphatase [n = 11], osteocalcin [n = 6], procollagen type 1 amino-terminal propeptide [n = 5]), bone resorption markers (N-terminal telopeptide of type 1 collagen [n = 7], C-terminal telopeptide of type 1 collagen [n = 7], deoxypyridinoline [n = 4]), and parathyroid hormone (n = 7) were not significantly affected. However, increased insulin-like growth factor-1 (IGF-1) concentrations (n = 13) were observed. Reduced IGF-1 concentrations were observed when soy protein was used as a comparator, and increased IGF-1 concentrations were observed when carbohydrate was used. CONCLUSION: Our findings do not support the claim that proteins of dairy origin are detrimental to bone health.

10.
Ann Bot ; 132(1): 121-132, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37279964

RESUMO

BACKGROUND AND AIMS: Plants can respond to drought by changing their relative investments in the biomass and morphology of each organ. The aims of this study were to quantify the relative contribution of changes in morphology vs. allocation and determine how they affect each other. These results should help us understand the mechanisms that plants use to respond to drought events. METHODS: In a glasshouse experiment, we applied a drought treatment (well-watered vs. drought) at early and late stages of plant growth, leading to four treatment combinations (well-watered in both early and late periods, WW; drought in the early period and well-watered in the late period, DW; well-watered in the early period and drought in the late period, WD; drought in both early and late periods, DD). We used the variance partitioning method to compare the contribution of organ (leaf and root) biomass allocation and morphology to the leaf area ratio, root length ratio and root area ratio, for the rhizomatous grass Leymus chinensis (Trin.) Tzvelev. KEY RESULTS: Compared with the continuously well-watered treatment, the leaf area ratio, root length ratio and root area ratio showed increasing trends under various drought treatments. The contribution of leaf mass allocation to leaf area ratio differed among the drought treatments and was 2.1- to 5.3-fold greater than leaf morphology, and the contribution of root mass allocation to root length ratio was ~2-fold greater than that of root morphology. In contrast, root morphology contributed more to the root area ratio than biomass allocation under drought in both the early and late periods. There was a negative correlation between the ratio of leaf mass fraction to root mass fraction and the ratio of specific leaf area to specific root length (or specific root area). CONCLUSIONS: This study suggested that organ biomass allocation drove a larger proportion of variation than morphological traits for the absorption of resources in this rhizomatous grass. These findings should help us understand the adaptive mechanisms of plants when they are confronted with drought stress.


Assuntos
Secas , Água , Fenótipo , Rizoma , Folhas de Planta/anatomia & histologia , Poaceae , Biomassa
11.
Angew Chem Int Ed Engl ; 62(17): e202300500, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36852467

RESUMO

Self-renewal and differentiation of embryonic stem cells (ESCs) are influenced by protein O-linked ß-N-acetylglucosamine (O-GlcNAc) modification, but the underlying mechanism remains incompletely understood. Herein, we report the identification of 979 O-GlcNAcylated proteins and 1340 modification sites in mouse ESCs (mESCs) by using a chemoproteomics method. In addition to OCT4 and SOX2, the third core pluripotency transcription factor (PTF) NANOG was found to be modified and functionally regulated by O-GlcNAc. Upon differentiation along the neuronal lineage, the O-GlcNAc stoichiometry at 123 sites of 83 proteins-several of which were PTFs-was found to decline. Transcriptomic profiling reveals 2456 differentially expressed genes responsive to OGT inhibition during differentiation, of which 901 are target genes of core PTFs. By acting on the core PTF network, suppression of O-GlcNAcylation upregulates neuron-related genes, thus contributing to mESC fate determination.


Assuntos
Células-Tronco Embrionárias Murinas , Transcriptoma , Animais , Camundongos , Acetilglucosamina/metabolismo , Diferenciação Celular , Células-Tronco Embrionárias , Regulação da Expressão Gênica , Células-Tronco Embrionárias Murinas/metabolismo , Linhagem da Célula
12.
Biochem Biophys Res Commun ; 632: 122-128, 2022 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-36208489

RESUMO

Myocardial infarction is still a leading cause of morbidity and mortality worldwide, but its pathogenesis has not been fully understood. In the study, we attempted to explore the effects of E3 ligase tripartite motif 16 (TRIM16) on myocardial ischemia-reperfusion (MI/R) injury in vivo and in vitro, and the underlying mechanisms. We identified that TRIM16 was indeed a potent regulator during MI/R progression in murine models and surprisingly showed a negative correlation with the concentrations of cardiac pro-inflammatory cytokines. Adenoviral vectors encoding GFP or TRIM16 (Ad-TRIM16) were subjected to mice through direct injection into the left ventricular (LV). We found that Ad-TRIM16 significantly reduced the infarct size, and improved the cardiac function and structure compared with the Ad-GFP mice after MI/R operation. More studies indicated that TRIM16 over-expression strongly meliorated nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome and associated inflammatory response in hearts of MI/R-induced mice, which were validated in hypoxia/reoxygenation (H/R)-exposed primary cardiomyocytes in vitro. In particular, MI/R operation led to cardiac pyroptosis by increasing the cleavage of Caspase-1 and Gasdermin D (GSDMD), while being considerably abrogated upon TRIM16 over-expression. Mechanistically, TRIM16 interacted with NLRP3 and promoted the K48-linked polyubiquitination of NLRP3, ultimately promoted its degradation. Together, we identified TRIM16 as a novel E3 ubiquitin ligase for NLRP3, which played an essential role in modulating its expression, and subsequently influenced inflammatory response and pyroptosis in MI/R murine model, confirming that TRIM16 may be a potential therapeutic target for myocardial infarction.


Assuntos
Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Animais , Camundongos , Caspase 1/metabolismo , Citocinas/metabolismo , Inflamassomos/metabolismo , Inflamação/patologia , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nucleotídeos/metabolismo , Piroptose , Ubiquitina-Proteína Ligases/metabolismo , Proteínas com Motivo Tripartido/metabolismo
13.
Pharm Res ; 39(10): 2353-2365, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35449344

RESUMO

Oral administration is the most preferred route for drug administration in clinic. However, due to unsatisfactory physicochemical properties of drugs and various physiological barriers, the oral bioavailability of most poorly water-soluble and macromolecules drugs is low and the therapeutic effect is unsatisfactory. Ionic liquids (ILs), molten salts with unique properties, show amazing potential for oral delivery. In addition to being able to form active pharmaceutical ingredients based ILs (API-ILs) to overcome drug solubility and polymorphism issues, ILs have also been used to enhance the solubility of poorly soluble drugs, enhance drug stability in the gastrointestinal environment, improve drug permeability in intestinal mucus, and facilitate drug penetration across the intestinal epithelial barrier. Furthermore, ILs were attempted as formulation components to develop novel oral drug delivery systems. This review focus on the application progress of ILs in oral drug delivery and the mechanisms. The challenges and perspectives of the development of ILs-based oral delivery systems are also discussed. This article reviews the latest advances of ionic liquids for oral drug delivery, focusing on the application and related mechanisms of ionic liquids in improving the drug physicochemical properties and enhancing drug delivery across physiological barriers.


Assuntos
Sistemas de Liberação de Medicamentos , Líquidos Iônicos , Administração Oral , Sistemas de Liberação de Medicamentos/métodos , Líquidos Iônicos/administração & dosagem
14.
Oral Dis ; 28(3): 621-630, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33529425

RESUMO

OBJECTIVE: Primary cilia, evolutionally conserved organelles involving multiple cell functions, are frequently lost in various cancers. However, little is known about the role of primary cilia in oral squamous cell carcinoma (OSCC). METHODS: Immunofluorescence staining was applied to detect primary cilia in normal, oral leukoplakia (OLK) and OSCC tissues. Differentially expressed ciliary genes of OSCC were screened from the TCGA database. Immunohistochemical analysis was used for validating the correlation between the expression of interested proteins and primary cilia, and their regulatory effect on primary cilia was further proved in vitro and in vivo. RESULTS: A significant decrease in cilia ratio was found in OLK, especially in OSCC. Multiple ciliary genes were abnormally expressed in OSCC and epidermal growth factor receptor (EGFR)-Aurora A signaling was chosen for further study. A parallel increase of EGFR-Aurora A was observed in OLK and OSCC tissues. Moreover, EGFR activation induced obvious cilia absorption by phosphorylating Aurora A. Besides, Aurora A silencing significantly restored ciliary expression and decreased tumor growth in vivo. CONCLUSIONS: The abnormal activation of EGFR-Aurora A leads to the gradual loss of primary cilia in oral mucosa carcinogenesis. Primary cilia have the potential to be new biomarkers and therapeutic targets of oral cancer.


Assuntos
Aurora Quinase A , Carcinoma de Células Escamosas , Receptores ErbB , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Aurora Quinase A/metabolismo , Carcinoma de Células Escamosas/patologia , Cílios/metabolismo , Cílios/patologia , Receptores ErbB/metabolismo , Humanos , Leucoplasia Oral/patologia , Neoplasias Bucais/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço
15.
Oral Dis ; 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36260219

RESUMO

OBJECTIVE: Manganese ion (Mn2+ ) is reported to promote the antitumor immune response by activating the cGAS-STING pathway, but it is unknown whether Mn2+ can prevent the malignant transformation of precancerous lesions. The effects of Mn2+ in treating oral leukoplakia (OLK) were explored in this work. METHODS: Peripheral blood Mn analysis of the patients was performed using inductively coupled plasma atomic emission spectroscopy (ICP-AES). A coculture model of dendritic cells (DCs)/macrophages, CD8+ T cells, and dysplastic oral keratinocytes (DOKs) was employed to analyze the role and mechanism of Mn2+ in a simulated OLK immune microenvironment. Western blot, RT-PCR, flow cytometry, enzyme-linked immunosorbent assay (ELISA), and lactate dehydrogenase (LDH) assays were adopted to detect the mechanism of Mn2+ in this model. 4-nitroquinoline oxide (4NQO)-induced OLK mice were used to assess the role of Mn2+ in suppressing OLK progression, and a novel Mn2+ -loaded guanosine-tannic acid hydrogel (G-TA@Mn2+ hydrogel) was fabricated and evaluated for its advantages in OLK therapy. RESULTS: The content of Mn in patients' peripheral blood was negatively related to the progression of OLK. Mn2+ promoted the maturation and antigen presentation of DCs and macrophages and enhanced the activation of CD8+ T cells in the coculture model, resulting in effective killing of DOKs. Mechanistic analysis found that Mn2+ enhanced the anti-OLK immune response by activating the cGAS-STING pathway. Moreover, Mn2+ suppressed the development of 4NQO-induced carcinogenesis in the mouse model. In addition, the G-TA@Mn2+ hydrogel had better anti-OLK effects. CONCLUSIONS: Mn2+ enhanced the anti-OLK immune response by activating the cGAS-STING pathway, and the G-TA@Mn2+ hydrogel is a potential novel therapeutic approach for OLK treatment.

16.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36077403

RESUMO

Cashmere is initiated and develops in the fetal stages and the number and density of secondary hair follicles (SHFs) determine cashmere production and quality. Growing evidence indicates that both microRNA (miRNA) and long non-coding RNA (lncRNA) play an indispensable role in hair follicle (HF) growth and development. However, little is known about miRNAs, lncRNAs, and their functions as well as their interactions during cashmere initiation and development. Here, based on lncRNA and miRNA high-throughput sequencing and bioinformatics analysis, we identified 10,485 lncRNAs, 40,639 mRNAs, and 605 miRNAs in cashmere goat skin during HF induction, organogenesis, and cytodifferentiation stages. Among them, 521 lncRNAs, 5976 genes, and 204 miRNAs were differentially expressed (DE). KEGG analysis of DE genes indicated that ECM-receptor interaction and biosynthesis of amino acids were crucial for HF development. Notch, TGF-beta, and Wnt signaling pathways were also identified, which are conventional pathways associated with HF growth and development. Then, the ceRNA regulatory network was constructed, and the impact of lncRNA H19 was investigated in dermal papilla (DP) cells. The MTT, CCK-8, and EdU assays showed that the viability and proliferation of DP cells were promoted by H19, and mechanistic studies suggested that H19 performed its function through the chi-miR-214-3p/ß-catenin axis. The present study created a resource for lncRNA, miRNA, and mRNA studies in cashmere morphogenesis. It could contribute to a better understanding of the molecular mechanism of ncRNAs involved in the regulation of HF growth and development.


Assuntos
MicroRNAs , RNA Longo não Codificante , Animais , Proliferação de Células/genética , Perfilação da Expressão Gênica , Cabras/metabolismo , Folículo Piloso/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Organogênese , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , Transcriptoma , beta Catenina/genética , beta Catenina/metabolismo
17.
Int J Mol Sci ; 24(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36613496

RESUMO

The phenomenon of cross adaptation refers to the ability of plants to improve their resistance to other stress after experiencing one type of stress. However, there are limited reports on how ultraviolet radiation B (UVB) pretreatment affects the enrichment, transport, and tolerance of cadmium (Cd) in plants. Since an appropriate UVB pretreatment has been reported to change plant tolerance to stress, we hypothesized that this application could alter plant uptake and tolerance to heavy metals. In this study, a woody plant species, 84K poplar (Populus alba × Populus glandulosa), was pretreated with UVB and then subjected to Cd treatment. The RT-qPCR results indicated that the UVB-treated plants could affect the expression of Cd uptake, transport, and detoxification-related genes in plants, and that the UVB-Pretreatment induced the ability of Cd absorption in plants, which significantly enriched Cd accumulation in several plant organs, especially in the leaves and roots. The above results showed that the UVB-Pretreatment further increased the toxicity of Cd to plants in UVB-Cd group, which was shown as increased leaf malonaldehyde (MDA) and hydrogen peroxide (H2O2) content, as well as downregulated activities of antioxidant enzymes such as Superoxide Dismutase (SOD), Catalase (CAT), and Ascorbate peroxidase (APX). Therefore, poplar plants in the UVB-Cd group presented a decreased photosynthesis and leaf chlorosis. In summary, the UVB treatment improved the Cd accumulation ability of poplar plants, which could provide some guidance for the potential application of forest trees in the phytoremediation of heavy metals in the future.


Assuntos
Cádmio , Populus , Cádmio/metabolismo , Populus/genética , Populus/metabolismo , Peróxido de Hidrogênio/metabolismo , Raios Ultravioleta , Antioxidantes/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Estresse Oxidativo
18.
J Sci Food Agric ; 102(4): 1540-1549, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34424545

RESUMO

BACKGROUND: Accurate and efficient evaluation of the effect of nitrogen application rate on tea quality is of great significance for nitrogen management in a tea garden. However, previous methods were all through soil or leaf sampling, using biochemical methods for laboratory testing. These methods are not only less one-time detection samples, but also time-consuming, laborious and inefficient. Therefore, the development of fast, efficient and non-destructive diagnostic methods is an important goal in this field. RESULTS: We obtained spectral information on the tea canopy using a multispectral camera carried by an unmanned aerial vehicle (UAV), and extracted the average DN value of the experimental plot by environmental visual imagery (ENVI); we finally obtained 28 spectral parameters. By analyzing the correlation between spectral parameters and ground parameters measured synchronously, five spectral parameters with high correlation were selected. Finally, the prediction models of tea nitrogen, polyphenol and amino acid content were established by using support vector machine (SVM), partial least squares and backpropagation neural network. Through modeling comparison and coefficient verification, the results show that the ground parameters measured in the laboratory were in good agreement with the results estimated by the model. The SVM model had the best performance in predicting nitrogen and tea polyphenol content, with R2  = 0.7583 and 0.7533, root mean square error of prediction (RMSEP) = 0.4086 and 0.3392, and normalized RMSEP (NRMSEP) = 1.23 and 1.28, respectively. The partial least squares regression model had the best performance in predicting amino acid content, with R2  = 0.7597, RMSEP = 0.1176 and NRMSEP = 4.10. CONCLUSION: The results show that the model based on UAV image data and machine learning algorithm can effectively detect the main biochemical components of the tea plant, which provides an important basis for tea garden management. © 2021 Society of Chemical Industry.


Assuntos
Camellia sinensis , Nitrogênio , Análise dos Mínimos Quadrados , Nitrogênio/análise , Solo , Chá
19.
BMC Genomics ; 22(1): 731, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34625025

RESUMO

BACKGROUND: Trees such as Populus are planted extensively for reforestation and afforestation. However, their successful establishment greatly depends upon ambient environmental conditions and their relative resistance to abiotic and biotic stresses. Polyphenol oxidase (PPO) is a ubiquitous metalloproteinase in plants, which plays crucial roles in mediating plant resistance against biotic and abiotic stresses. Although the whole genome sequence of Populus trichocarpa has long been published, little is known about the PPO genes in Populus, especially those related to drought stress, mechanical damage, and insect feeding. Additionally, there is a paucity of information regarding hormonal responses at the whole genome level. RESULTS: A genome-wide analysis of the poplar PPO family was performed in the present study, and 18 PtrPPO genes were identified. Bioinformatics and qRT-PCR were then used to analyze the gene structure, phylogeny, chromosomal localization, gene replication, cis-elements, and expression patterns of PtrPPOs. Sequence analysis revealed that two-thirds of the PtrPPO genes lacked intronic sequences. Phylogenetic analysis showed that all PPO genes were categorized into 11 groups, and woody plants harbored many PPO genes. Eighteen PtrPPO genes were disproportionally localized on 19 chromosomes, and 3 pairs of segmented replication genes and 4 tandem repeat genomes were detected in poplars. Cis-acting element analysis identified numerous growth and developmental elements, secondary metabolism processes, and stress-related elements in the promoters of different PPO members. Furthermore, PtrPPO genes were expressed preferentially in the tissues and fruits of young plants. In addition, the expression of some PtrPPOs could be significantly induced by polyethylene glycol, abscisic acid, and methyl jasmonate, thereby revealing their potential role in regulating the stress response. Currently, we identified potential upstream TFs of PtrPPOs using bioinformatics. CONCLUSIONS: Comprehensive analysis is helpful for selecting candidate PPO genes for follow-up studies on biological function, and progress in understanding the molecular genetic basis of stress resistance in forest trees might lead to the development of genetic resources.


Assuntos
Catecol Oxidase , Proteínas de Plantas/genética , Populus , Catecol Oxidase/genética , Secas , Regulação da Expressão Gênica de Plantas , Filogenia , Populus/enzimologia , Populus/genética , Estresse Fisiológico
20.
BMC Plant Biol ; 21(1): 147, 2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33743593

RESUMO

BACKGROUND: Climate change is predicted to lead to changes in the amount and distribution of precipitation during the growing seasonal. This "repackaging" of rainfall could be particularly important for grassland productivity. Here, we designed a two-factor full factorial experiment (three levels of precipitation amount and six levels of dry intervals) to investigate the effect of precipitation patterns on biomass production in Leymus chinensis (Trin.) Tzvel. (a dominant species in the Eastern Eurasian Steppe). RESULTS: Our results showed that increased amounts of rainfall with prolonged dry intervals promoted biomass production in L. chinensis by increasing soil moisture, except for the longest dry interval (21 days). However, prolonged dry intervals with increased amount of precipitation per event decreased the available soil nitrogen content, especially the soil NO3--N content. For small with more frequent rainfall events pattern, L. chinensis biomass decreased due to smaller plant size (plant height) and fewer ramets. Under large quantities of rain falling during a few events, the reduction in biomass was not only affected by decreasing plant individual size and lower ramet number but also by withering of aboveground parts, which resulted from both lower soil water content and lower NO3--N content. CONCLUSION: Our study suggests that prolonged dry intervals between rainfall combined with large precipitation events will dramatically change grassland productivity in the future. For certain combinations of prolonged dry intervals and increased amounts of intervening rainfall, semi-arid grassland productivity may improve. However, this rainfall pattern may accelerate the loss of available soil nitrogen. Under extremely prolonged dry intervals, the periods between precipitation events exceeded the soil moisture recharge interval, the available soil moisture became fully depleted, and plant growth ceased. This implies that changes in the seasonal distribution of rainfall due to climate change could have a major impact on grassland productivity.


Assuntos
Pradaria , Poaceae/crescimento & desenvolvimento , Chuva , Biomassa , China , Mudança Climática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA