Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 45(D1): D389-D396, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27679477

RESUMO

The use of high-throughput array and sequencing technologies has produced unprecedented amounts of gene expression data in central public depositories, including the Gene Expression Omnibus (GEO). The immense amount of expression data in GEO provides both vast research opportunities and data analysis challenges. Co-expression analysis of high-dimensional expression data has proven effective for the study of gene functions, and several co-expression databases have been developed. Here, we present a new co-expression database, COEXPEDIA (www.coexpedia.org), which is distinctive from other co-expression databases in three aspects: (i) it contains only co-functional co-expressions that passed a rigorous statistical assessment for functional association, (ii) the co-expressions were inferred from individual studies, each of which was designed to investigate gene functions with respect to a particular biomedical context such as a disease and (iii) the co-expressions are associated with medical subject headings (MeSH) that provide biomedical information for anatomical, disease, and chemical relevance. COEXPEDIA currently contains approximately eight million co-expressions inferred from 384 and 248 GEO series for humans and mice, respectively. We describe how these MeSH-associated co-expressions enable the identification of diseases and drugs previously unknown to be related to a gene or a gene group of interest.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Medical Subject Headings , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Humanos , Software
2.
Nucleic Acids Res ; 44(20): 9611-9623, 2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-27903883

RESUMO

Whole exome sequencing (WES) accelerates disease gene discovery using rare genetic variants, but further statistical and functional evidence is required to avoid false-discovery. To complement variant-driven disease gene discovery, here we present function-driven disease gene discovery in zebrafish (Danio rerio), a promising human disease model owing to its high anatomical and genomic similarity to humans. To facilitate zebrafish-based function-driven disease gene discovery, we developed a genome-scale co-functional network of zebrafish genes, DanioNet (www.inetbio.org/danionet), which was constructed by Bayesian integration of genomics big data. Rigorous statistical assessment confirmed the high prediction capacity of DanioNet for a wide variety of human diseases. To demonstrate the feasibility of the function-driven disease gene discovery using DanioNet, we predicted genes for ciliopathies and performed experimental validation for eight candidate genes. We also validated the existence of heterozygous rare variants in the candidate genes of individuals with ciliopathies yet not in controls derived from the UK10K consortium, suggesting that these variants are potentially involved in enhancing the risk of ciliopathies. These results showed that an integrated genomics big data for a model animal of diseases can expand our opportunity for harnessing WES data in disease gene discovery.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Genômica , Peixe-Zebra/genética , Algoritmos , Animais , Teorema de Bayes , Biologia Computacional/métodos , Conjuntos de Dados como Assunto , Exoma , Estudos de Associação Genética/métodos , Variação Genética , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Anotação de Sequência Molecular
3.
Nucleic Acids Res ; 44(D1): D848-54, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26527726

RESUMO

Laboratory mouse, Mus musculus, is one of the most important animal tools in biomedical research. Functional characterization of the mouse genes, hence, has been a long-standing goal in mammalian and human genetics. Although large-scale knockout phenotyping is under progress by international collaborative efforts, a large portion of mouse genome is still poorly characterized for cellular functions and associations with disease phenotypes. A genome-scale functional network of mouse genes, MouseNet, was previously developed in context of MouseFunc competition, which allowed only limited input data for network inferences. Here, we present an improved mouse co-functional network, MouseNet v2 (available at http://www.inetbio.org/mousenet), which covers 17 714 genes (>88% of coding genome) with 788 080 links, along with a companion web server for network-assisted functional hypothesis generation. The network database has been substantially improved by large expansion of genomics data. For example, MouseNet v2 database contains 183 co-expression networks inferred from 8154 public microarray samples. We demonstrated that MouseNet v2 is predictive for mammalian phenotypes as well as human diseases, which suggests its usefulness in discovery of novel disease genes and dissection of disease pathways. Furthermore, MouseNet v2 database provides functional networks for eight other vertebrate models used in various research fields.


Assuntos
Bases de Dados Genéticas , Redes Reguladoras de Genes , Camundongos/genética , Animais , Bovinos , Doença/genética , Cães , Genômica , Humanos , Fenótipo , Ratos
4.
Nucleic Acids Res ; 43(Database issue): D996-1002, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25355510

RESUMO

Arabidopsis thaliana is a reference plant that has been studied intensively for several decades. Recent advances in high-throughput experimental technology have enabled the generation of an unprecedented amount of data from A. thaliana, which has facilitated data-driven approaches to unravel the genetic organization of plant phenotypes. We previously published a description of a genome-scale functional gene network for A. thaliana, AraNet, which was constructed by integrating multiple co-functional gene networks inferred from diverse data types, and we demonstrated the predictive power of this network for complex phenotypes. More recently, we have observed significant growth in the availability of omics data for A. thaliana as well as improvements in data analysis methods that we anticipate will further enhance the integrated database of co-functional networks. Here, we present an updated co-functional gene network for A. thaliana, AraNet v2 (available at http://www.inetbio.org/aranet), which covers approximately 84% of the coding genome. We demonstrate significant improvements in both genome coverage and accuracy. To enhance the usability of the network, we implemented an AraNet v2 web server, which generates functional predictions for A. thaliana and 27 nonmodel plant species using an orthology-based projection of nonmodel plant genes on the A. thaliana gene network.


Assuntos
Arabidopsis/genética , Bases de Dados Genéticas , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Arabidopsis/metabolismo , Genoma de Planta , Internet , Fenótipo
5.
Nucleic Acids Res ; 43(W1): W91-7, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25943544

RESUMO

Drosophila melanogaster (fruit fly) has been a popular model organism in animal genetics due to the high accessibility of reverse-genetics tools. In addition, the close relationship between the Drosophila and human genomes rationalizes the use of Drosophila as an invertebrate model for human neurobiology and disease research. A platform technology for predicting candidate genes or functions would further enhance the usefulness of this long-established model organism for gene-to-phenotype mapping. Recently, the power of network prioritization for gene-to-phenotype mapping has been demonstrated in many organisms. Here we present a network prioritization server dedicated to Drosophila that covers ∼95% of the coding genome. This server, dubbed FlyNet, has several distinctive features, including (i) prioritization for both genes and functions; (ii) two complementary network algorithms: direct neighborhood and network diffusion; (iii) spatiotemporal-specific networks as an additional prioritization strategy for traits associated with a specific developmental stage or tissue and (iv) prioritization for human disease genes. FlyNet is expected to serve as a versatile hypothesis-generation platform for genes and functions in the study of basic animal genetics, developmental biology and human disease. FlyNet is available for free at http://www.inetbio.org/flynet.


Assuntos
Drosophila melanogaster/genética , Redes Reguladoras de Genes , Software , Algoritmos , Animais , Doença/genética , Modelos Animais de Doenças , Genes de Insetos , Humanos , Internet
6.
Nucleic Acids Res ; 43(W1): W122-7, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25813048

RESUMO

Rice is the most important staple food crop and a model grass for studies of bioenergy crops. We previously published a genome-scale functional network server called RiceNet, constructed by integrating diverse genomics data and demonstrated the use of the network in genetic dissection of rice biotic stress responses and its usefulness for other grass species. Since the initial construction of the network, there has been a significant increase in the amount of publicly available rice genomics data. Here, we present an updated network prioritization server for Oryza sativa ssp. japonica, RiceNet v2 (http://www.inetbio.org/ricenet), which provides a network of 25 765 genes (70.1% of the coding genome) and 1 775 000 co-functional links. Ricenet v2 also provides two complementary methods for network prioritization based on: (i) network direct neighborhood and (ii) context-associated hubs. RiceNet v2 can use genes of the related subspecies O. sativa ssp. indica and the reference plant Arabidopsis for versatility in generating hypotheses. We demonstrate that RiceNet v2 effectively identifies candidate genes involved in rice root/shoot development and defense responses, demonstrating its usefulness for the grass research community.


Assuntos
Genes de Plantas , Oryza/genética , Software , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Internet
7.
Nucleic Acids Res ; 42(Web Server issue): W76-82, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24813450

RESUMO

High-throughput experimental technologies gradually shift the paradigm of biological research from hypothesis-validation toward hypothesis-generation science. Translating diverse types of large-scale experimental data into testable hypotheses, however, remains a daunting task. We previously demonstrated that heterogeneous genomics data can be integrated into a single genome-scale gene network with high prediction power for ribonucleic acid interference (RNAi) phenotypes in Caenorhabditis elegans, a popular metazoan model in the study of developmental biology, neurobiology and genetics. Here, we present WormNet version 3 (v3), which is a new network-assisted hypothesis-generating server for C. elegans. WormNet v3 includes major updates to the base gene network, which substantially improved predictions of RNAi phenotypes. The server generates various gene network-based hypotheses using three complementary network methods: (i) a phenotype-centric approach to 'find new members for a pathway'; (ii) a gene-centric approach to 'infer functions from network neighbors' and (iii) a context-centric approach to 'find context-associated hub genes', which is a new method to identify key genes that mediate physiology within a specific context. For example, we demonstrated that the context-centric approach can be used to identify potential molecular targets of toxic chemicals. WormNet v3 is freely accessible at http://www.inetbio.org/wormnet.


Assuntos
Caenorhabditis elegans/genética , Software , Animais , Caenorhabditis elegans/efeitos dos fármacos , Diclorvós/toxicidade , Redes Reguladoras de Genes , Genes de Helmintos , Inseticidas/toxicidade , Internet , Fenótipo , Interferência de RNA
8.
Sci Rep ; 5: 11432, 2015 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-26066708

RESUMO

The reconstruction of transcriptional regulatory networks (TRNs) is a long-standing challenge in human genetics. Numerous computational methods have been developed to infer regulatory interactions between human transcriptional factors (TFs) and target genes from high-throughput data, and their performance evaluation requires gold-standard interactions. Here we present a database of literature-curated human TF-target interactions, TRRUST (transcriptional regulatory relationships unravelled by sentence-based text-mining, http://www.grnpedia.org/trrust), which currently contains 8,015 interactions between 748 TF genes and 1,975 non-TF genes. A sentence-based text-mining approach was employed for efficient manual curation of regulatory interactions from approximately 20 million Medline abstracts. To the best of our knowledge, TRRUST is the largest publicly available database of literature-curated human TF-target interactions to date. TRRUST also has several useful features: i) information about the mode-of-regulation; ii) tests for target modularity of a query TF; iii) tests for TF cooperativity of a query target; iv) inferences about cooperating TFs of a query TF; and v) prioritizing associated pathways and diseases with a query TF. We observed high enrichment of TF-target pairs in TRRUST for top-scored interactions inferred from high-throughput data, which suggests that TRRUST provides a reliable benchmark for the computational reconstruction of human TRNs.


Assuntos
Mineração de Dados , Bases de Dados Genéticas , Transcrição Gênica , Transcriptoma , Curadoria de Dados , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA