Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(W1): W183-W190, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35657089

RESUMO

Circadian rhythms are a foundational aspect of biology. These rhythms are found at the molecular level in every cell of every living organism and they play a fundamental role in homeostasis and a variety of physiological processes. As a result, biomedical research of circadian rhythms continues to expand at a rapid pace. To support this research, CircadiOmics (http://circadiomics.igb.uci.edu/) is the largest annotated repository and analytic web server for high-throughput omic (e.g. transcriptomic, metabolomic, proteomic) circadian time series experimental data. CircadiOmics contains over 290 experiments and over 100 million individual measurements, across >20 unique tissues/organs, and 11 different species. Users are able to visualize and mine these datasets by deriving and comparing periodicity statistics for oscillating molecular species including: period, amplitude, phase, P-value and q-value. These statistics are obtained from BIO_CYCLE and JTK_CYCLE and are intuitively aggregated and displayed for comparison. CircadiOmics is the most up-to-date and cutting-edge web portal for searching and analyzing circadian omic data and is used by researchers around the world.


Assuntos
Ritmo Circadiano , Computadores , Bases de Dados Factuais , Internet , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Perfilação da Expressão Gênica , Metabolômica , Especificidade de Órgãos , Proteômica , Especificidade da Espécie , Fatores de Tempo , Transcriptoma , Conjuntos de Dados como Assunto , Mineração de Dados , Visualização de Dados
2.
Life Sci ; 303: 120601, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35561749

RESUMO

The gut microbiome influences cognition and behavior in mammals, yet its metabolic impact on the brain is only starting to be defined. Using metabolite profiling of antibiotics-treated mice, we reveal the microbiome as a key input controlling circadian metabolic cycles in the brain. Intra and inter-region analyses characterise the influence of the microbiome on the suprachiasmatic nucleus, containing the central clockwork, as well as the hippocampus and cortex, regions involved in learning and behavior.


Assuntos
Antibacterianos , Microbioma Gastrointestinal , Animais , Antibacterianos/farmacologia , Encéfalo/metabolismo , Mamíferos , Camundongos , Núcleo Supraquiasmático
3.
Sci Adv ; 8(26): eabo2896, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35767612

RESUMO

Life on Earth anticipates recurring 24-hour environmental cycles via genetically encoded molecular clocks active in all mammalian organs. Communication between these clocks controls circadian homeostasis. Intertissue communication is mediated, in part, by temporal coordination of metabolism. Here, we characterize the extent to which clocks in different organs control systemic metabolic rhythms, an area that remains largely unexplored. We analyzed the metabolome of serum from mice with tissue-specific expression of the clock gene Bmal1. Having functional hepatic and muscle clocks can only drive a minority (13%) of systemic metabolic rhythms. Conversely, limiting Bmal1 expression to the central pacemaker in the brain restores rhythms to 57% of circulatory metabolites. Rhythmic feeding imposed on clockless mice resulted in a similar rescue, indicating that the central clock mainly regulates metabolic rhythms via behavior. These findings explicate the circadian communication between tissues and highlight the importance of the central clock in governing those signals.

4.
Sci Adv ; 7(39): eabi7828, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34550736

RESUMO

The mammalian circadian clock, expressed throughout the brain and body, controls daily metabolic homeostasis. Clock function in peripheral tissues is required, but not sufficient, for this task. Because of the lack of specialized animal models, it is unclear how tissue clocks interact with extrinsic signals to drive molecular oscillations. Here, we isolated the interaction between feeding and the liver clock by reconstituting Bmal1 exclusively in hepatocytes (Liver-RE), in otherwise clock-less mice, and controlling timing of food intake. We found that the cooperative action of BMAL1 and the transcription factor CEBPB regulates daily liver metabolic transcriptional programs. Functionally, the liver clock and feeding rhythm are sufficient to drive temporal carbohydrate homeostasis. By contrast, liver rhythms tied to redox and lipid metabolism required communication with the skeletal muscle clock, demonstrating peripheral clock cross-talk. Our results highlight how the inner workings of the clock system rely on communicating signals to maintain daily metabolism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA