Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 89(20): 10655-10660, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-28945068

RESUMO

Protein digestion is one of the most important processes in proteomic analysis. Here, we report microwave-assisted protein digestion in a plate well, which allows for facile sampling as well as rapid protein digestion based on the combination of highly stable enzyme immobilization and 3D printing technologies. Trypsin (TR) was immobilized on polystyrene-based nanofibers via an enzyme coating (EC) approach. The EC with stabilized TR activity was assembled with the 3D-printed structure in the plate well (EC/3D), which provides two separated compartments for the solution sampling and the TR-catalyzed protein digestion, respectively. EC/3D can effectively prevent the interference of sampling by accommodating EC in the separated compartment from the sampling hole in the middle. EC/3D in the plate well maintained its protein digestion performance under shaking over 160 days. Microwave irradiation enabled the digestion of bovine serum albumin within 10 min, generating the MALDI-TOF MS results of 75.0% sequence coverage and 61 identified peptides. EC/3D maintained its protein digestion performance under microwave irradiation after 30 times of recycled uses. EC/3D in the plate well has demonstrated its potential as a robust and facile tool for the development of an automated protein digestion platform. The combination of stable immobilized enzymes and 3D-printed structures can be potentially utilized not only for the protein digestion, but also for many other enzyme applications, including bioconversion and biosensors.


Assuntos
Micro-Ondas , Tripsina/metabolismo , Animais , Bovinos , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Nanofibras/química , Peptídeos/análise , Poliestirenos/química , Impressão Tridimensional , Proteólise , Soroalbumina Bovina/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Tripsina/química
2.
J Med Chem ; 67(11): 9389-9405, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38787938

RESUMO

TLR7/8 agonists are versatile immune stimulators capable of treating various diseases such as viral infections, autoimmune, and cancer. Despite the structural similarity of TLR7/8, their immune stimulation mechanisms and time-course responses significantly differ. In this study, a new series of TLR7-selective agonists was synthesized utilizing the economical building block 2,6-dichloropurine. Compound 27b showed the most potent activity on hTLR7 with an EC50 of 17.53 nM and demonstrated high hTLR7 selectivity (224 folds against TLR8). 27b effectively stimulated the secretion of proinflammatory cytokines in mouse macrophages and enhanced intranasal vaccine efficacy against influenza A virus in vivo. Assessment of humoral and mucosal antibody titers confirmed that 27b elevates IgG and IgA levels, protecting against both homologous and heterologous influenza viral infections. These findings suggest that 27b is a promising candidate as a vaccine adjuvant to prevent viral infections or as a robust immunomodulator with prolonged activity for treating immune-suppressed diseases.


Assuntos
Administração Intranasal , Desenho de Fármacos , Vacinas contra Influenza , Purinas , Receptor 7 Toll-Like , Receptor 7 Toll-Like/agonistas , Animais , Camundongos , Humanos , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/administração & dosagem , Purinas/farmacologia , Purinas/química , Adjuvantes de Vacinas/farmacologia , Adjuvantes de Vacinas/química , Relação Estrutura-Atividade , Camundongos Endogâmicos BALB C , Feminino , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/imunologia , Citocinas/metabolismo , Células RAW 264.7 , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/síntese química , Adjuvantes Imunológicos/química
3.
J Microbiol ; 55(12): 979-983, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29214495

RESUMO

Influenza viruses are major human respiratory pathogens that cause high morbidity and mortality worldwide. Currently, prophylactic vaccines and therapeutic antiviral agents are used to prevent and control influenza virus infection. Oseltamivir free base (OSV-FB), a modified generic antiviral drug of Tamiflu (oseltamivir phosphate, OSV-P), was launched in the Republic of Korea last year. Here, we examine the bioequivalence of these two compounds by assessing their antiviral efficacy in infected cells and in a mouse model. It was observed that both antivirals showed comparable efficacy against 11 different influenza A and B viruses in vitro. Moreover, in mice infected with influenza A virus (mouse-adapted A/Puerto Rico/8/34), they showed a dose-dependent therapeutic activity and alleviated infection-mediated reductions in body weight, leading to significantly better survival. There was histopathological disappearance of virus-induced inflammatory cell infiltration of the lung after oral treatment with either antiviral agent (at 10 mg/kg). Pharmacokinetic analysis also exhibited similar plasma concentrations of the active drug, oseltamivir carboxylate, metabolised from both OSV-B and OSV-P. This is the first report showing bioequivalence of OSV-FB to its phosphate salt form in the mouse system. The free base drug has some beneficial points including simple drug formulation process and reduced risk of undesirable cation-phosphate precipitation within solution. The long term stability of OSV-FB requires further monitoring when it is provided as a national stock in readiness for an influenza pandemic.


Assuntos
Antivirais/administração & dosagem , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza B/efeitos dos fármacos , Influenza Humana/tratamento farmacológico , Oseltamivir/análogos & derivados , Oseltamivir/administração & dosagem , Animais , Antivirais/farmacocinética , Feminino , Humanos , Vírus da Influenza A/fisiologia , Vírus da Influenza B/fisiologia , Influenza Humana/virologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Oseltamivir/farmacocinética , Equivalência Terapêutica
4.
Antiviral Res ; 134: 77-88, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27565992

RESUMO

The spiro compound 5,6-dimethyl-3H,3'H-spiro(benzofuran-2,1'-isobenzofuran)-3,3'-dione (KR-23502) has antiviral activity against influenza A and more potently B viruses. The aim of this study is to elucidate its mechanism of action. Subcellular localization and time-course expression of influenza B viral proteins, nucleoprotein (NP) and matrix protein 1 (M1), showed that KR-23502 reduced their amounts within 5 h post-infection. Early steps of virus life cycle, including virus entry, nuclear localization of NP and viral RNA-dependent RNA replication, were not affected by KR-23502. Instead it interrupted a later event corresponding to nuclear export of NP and M1 proteins. Delivery of viral ribonucleoprotein (vRNP)-M1 complex has been known to be mediated by the viral nuclear export protein (NEP) through interaction with cellular chromosomal maintenance 1 (CRM1) protein. In this study, we experimentally demonstrated that the compound targets the nuclear export of vRNP. Moreover, a single mutation (aspartate to glycine) at amino acid position 54 in M1 [M1(D54G)] was detected after 18 passages in the presence of KR-23502 with a 2-fold increase in 50% effective concentration indicating that this compound has a relatively high genetic barrier to resistance. Interestingly, it was observed that proteasome-mediated degradation of M1(D54G) was attenuated by KR-23502. In conclusion, we suggest that KR-23502 shows its anti-influenza activity by downregulating NEP/CRM1-mediated nuclear export of influenza vRNP and M1. KR-23502 provides a core chemical skeleton for further structure-based design of novel antivirals against influenza viruses.


Assuntos
Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Antivirais/farmacologia , Benzofuranos/farmacologia , Vírus da Influenza B/efeitos dos fármacos , Ribonucleoproteínas/efeitos dos fármacos , Proteínas da Matriz Viral , Núcleo Celular/metabolismo , Humanos , Vírus da Influenza B/química , Vírus da Influenza B/genética , Influenza Humana/tratamento farmacológico , Mutação , RNA Viral , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Proteínas da Matriz Viral/efeitos dos fármacos , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA