Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Small ; 19(38): e2302193, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37224803

RESUMO

In this study, a one-step method is discussed for producing uniform cell-sized microgels using glass capillaries filled with a binary polymer blend of polyethylene glycol (PEG) and gelatin. Upon decreasing temperature, phase separation of the PEG/gelatin blends and gelation of gelatin occur, and then the polymer blend forms linearly aligned, uniformly sized gelatin microgels in the glass capillary. When DNA is added to the polymer solution, gelatin microgels entrapping DNA are spontaneously formed, and the DNA prevents the coalescence of the microdroplets even at temperatures above the melting point. This novel method to form uniform cell-sized microgels may be applicable to other biopolymers. This method is expected to contribute to diverse materials science via biopolymer microgels and biophysics and synthetic biology through cellular models containing biopolymer gels.


Assuntos
Microgéis , Gelatina , Água , Polietilenoglicóis , Polímeros , Biopolímeros , Géis , DNA
2.
Biomacromolecules ; 23(7): 2941-2950, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35714282

RESUMO

Significant challenges have gone into the design of smart hydrogels, with numerous potential applications in the industrial, cosmetic, and biomedical fields. Herein, we report the synthesis of novel 4-arm self-assembling peptide-polyethylene glycol (PEG) hybrid star-shaped polymers and their comprehensive hydrogel properties. ß-sheet-forming oligopeptides with alternating hydrophobic Leu/ionizable Glu repeats and Cys residues were successfully conjugated to 4-arm PEG via a thiol-maleimide click reaction. The hybrid star-shaped polymers demonstrated good cytocompatibility and reversible ß-sheet (lightly acidic pH)-to-random coil (neutral and basic pH) transition in dilute aqueous solutions. At increasing polymer concentrations up to 0.5 wt %, the star-shaped polymers formed transparent hydrogels with shear-thinning and self-healing behaviors via ß-sheet self-assembly, as well as a conformation-dependent gel-sol transition. Interestingly, the star-shaped polymers responded rapidly to pH changes, causing gelation to occur rapidly within a few seconds from the change in pH. Hydrogel characteristics could be modulated by manipulating the length and net charge of the peptide blocks. Furthermore, these star-shaped polymers served as satisfactory network scaffolds that could respond to dynamic environmental changes in the pH-oscillation system, owing to their excellent gelation capability and pH sensitivity. As such, they are highly favorable for diverse applications, such as pH-responsive controlled release.


Assuntos
Hidrogéis , Polímeros , Hidrogéis/química , Concentração de Íons de Hidrogênio , Peptídeos , Polietilenoglicóis/química , Polímeros/química
3.
Langmuir ; 35(44): 14266-14271, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31603682

RESUMO

A sustainable droplet motion that is driven by pH oscillation was obtained. The pH oscillation is only of a single pulse in a batch reactor. However, it shows continuous oscillation around the moving droplet, as the motion itself controls the diffusion flux in an asymmetric manner. Various types of motions that are spontaneous in nature may be obtained by a single-pulse oscillation coupled with mass transport.

4.
J Chem Phys ; 150(1): 014901, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30621421

RESUMO

The direct current (DC) motor is a rotary device that converts DC electrical energy into mechanical energy. However, it is known that, in downsizing the currently available macromotor, rotary motion of DC micromotors cannot work well due to the larger viscous effect. Here, we report simple DC micromotors working under a new principle. We previously revealed that in an oil phase containing an ionic surfactant, non-spherical particles exhibit various types of regular motions such as spinning and circular orbital motions. In this study, we found that a microhelix exhibits a new type of periodic motion, namely, the cork-screw-type rotation, in a specific direction depending on the material of the helix, metal or non-metallic organics. The results show that a left-handed nickel helix rotates in the clockwise direction when viewed from the positive electrode, whereas an organic one rotates in the opposite direction (anti-clockwise) under the same electrode arrangement with stationary constant DC voltage. In addition, we demonstrate that the cork-screw rotation is switched to opposite direction by changing the handedness (chirality). It is to be noted that the micromotors reported here maintain their stable motion without any mechanical support such as rotational axes or electronic switching devices. The invented DC micromotor would be applicable for mechanical and fluidic devices, being useful as a smart device in microrobots and microfluidics.

5.
Langmuir ; 31(40): 11005-11, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26393274

RESUMO

We report a unique ion-dependent motion of a float at an oil/water interface. The type of motion depended on the cation species that was dissolved in the water. Irregular vibrations occurred when the water contained Ca(2+), back-and-forth motion occurred when the water contained Fe(2+), a type of motion intermediate between these occurred when the water contained Mn(2+), and intermittent long-distance travel occurred when the water contained Fe(3+). This is one of the simplest systems that can be used to show how macroscopic regular motion emerges depending on specific chemicals, which is one of the central issues in the study of biological and biomimetic motions.


Assuntos
Cátions Bivalentes/química , Tensão Superficial , Água/química
6.
Sci Rep ; 14(1): 16619, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39025908

RESUMO

A geometrically symmetric gear with asymmetric surface wettability exhibits one-way spin on a vibrating water bed. On the side face of the gear, a parafilm was coated to create asymmetry in the surface energy. The gear shows fluctuations in both directions within a shorter timescale; however, for a longer timescale, the gear exhibits a one-way spin. This unique motion is generated by a stochastic process with a biased driving force produced by the interaction between the vibrating water surface and the side face of the gear. This new model resembles an active Brownian ratchet. Until now, most ratchet motors, which obtain regular motion from nonthermal fluctuations, utilize a geometrical ratchet structure. However, in this study, the surface energy forms a ratchet that rectifies the noisy motion.

7.
ACS Macro Lett ; : 207-211, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38265017

RESUMO

We report the spontaneous formation of a characteristic periodic pattern through the phase separation of a tripolymer solution comprising polyethylene-glycol (PEG)/dextran (DEX)/gelatin. When this tripolymer solution is introduced into a glass capillary with a PEG-coated inner surface, we observe the time-dependent growth of microphase separation. Remarkably, a self-organized, periodic alignment of DEX- and gelatin-rich microdroplets ensues, surrounded by a PEG-rich phase. This pattern demonstrates considerable stability, enduring for at least 8 h. The fundamental characteristics of the experimentally observed periodic alignment are successfully replicated via numerical simulations using a Cahn-Hilliard model underpinned by a set of simple, theoretically derived equations. We propose that this type of kinetically stabilized periodic patterning can be produced across a broad range of phase-separation systems by selecting appropriate boundary conditions such as at the surface within a narrow channel.

8.
J Chem Phys ; 139(3): 034705, 2013 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-23883050

RESUMO

Most of the current studies on nano∕microscale motors to generate regular motion have adapted the strategy to fabricate a composite with different materials. In this paper, we report that a simple object solely made of platinum generates regular motion driven by a catalytic chemical reaction with hydrogen peroxide. Depending on the morphological symmetry of the catalytic particles, a rich variety of random and regular motions are observed. The experimental trend is well reproduced by a simple theoretical model by taking into account of the anisotropic viscous effect on the self-propelled active Brownian fluctuation.


Assuntos
Movimento (Física) , Platina/química , Catálise , Peróxido de Hidrogênio/química , Modelos Moleculares , Processos Estocásticos
9.
Sci Rep ; 13(1): 12377, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37524759

RESUMO

Under non-equilibrium conditions, liquid droplets dynamically couple with their milieu through the continuous flux of matter and energy, forming active systems capable of self-organizing functions reminiscent of those of living organisms. Among the various dynamic behaviors demonstrated by cells, the pairing of heterogeneous cell units is necessary to enable collective activity and cell fusion (to reprogram somatic cells). Furthermore, the cyclic occurrence of eruptive events such as necroptosis or explosive cell lysis is necessary to maintain cell functions. However, unlike the self-propulsion behavior of cells, cyclic cellular behavior involving pairing and eruption has not been successfully modeled using artificial systems. Here, we show that a simple droplet system based on quasi-immiscible hydrophobic oils (perfluorodecalin and decane) deposited on water, mimics such complex cellular dynamics. Perfluorodecalin and decane droplet duos form autonomously moving Janus or coaxial structures, depending on their volumes. Notably, the system with a coaxial structure demonstrates cyclic behavior, alternating between autonomous motion and eruption. Despite their complexity, the dynamic behaviors of the system are consistently explained in terms of the spreading properties of perfluorodecalin/decane duplex interfacial films.


Assuntos
Fluorocarbonos , Água , Água/química , Movimento (Física)
10.
Chaos ; 22(3): 037111, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23020502

RESUMO

Spontaneous motion and tension oscillation of an oil/water interface responding to specific cation Ca(2+) or Fe(3+) were observed when the oil phase containing the anionic surfactant bis(2-ethylhexyl) phosphate came in contact with the cation-containing water. Both the dynamics were the results of Marangoni instability. Complex formation between the anionic surfactant and cation caused the instability. The results showing the level of cation extraction and degree of interfacial tension revealed that the surfactant-cation combination forms an oil-soluble complex with reduced surface activity. Brewster angle microscopy indicated that molecules of the complex tend to aggregate at the interface. This aggregation affected the desorption rate of the complex. We were able to generate ion-selective instability by imposing mechanical and electrochemical perturbations to the interface at equilibrium. The results from these efforts suggested that the aggregation is a type of thermodynamic transition and is required for the onset of instability: Desorption probably occurs as an exfoliation of the aggregated complex, which generates the gradient of interfacial tension. For the standard experiment of biphasic contact, two neighboring interfacial flows compress the local interface between them. We considered that this compression provides mechanical work to the local interface, resulting in desorption of the aggregates and occurrence of instability. Both complex formation and aggregation are possible in the presence of the specific cation. The interface detects the cation via the chemical and thermodynamic processes in order to develop the macroscopic movement, a form of biomimetic motion of the oil/water interface.

11.
Sci Rep ; 12(1): 14141, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35986049

RESUMO

A ratchet gear on a vibrating water bed exhibits a one-way spin. However, the spinning direction is opposite to that of the gear placed on the granular bed. The one-way spin is caused by the surface waves of water. Surface deformation causes transportation of the water element to rotate the gear. The spatial symmetry of the surface wave and gear geometry regulates the rotational torque. In this study, the same ratchet shows reversed motion between the granular and water beds, and the direction is not determined only by the ratchet geometry. The self-organization of the fluid medium caused by small agitation induces a nontrivial inversion of the spinning direction.


Assuntos
Água , Movimento (Física)
12.
Langmuir ; 27(23): 14131-42, 2011 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-22017536

RESUMO

An oil/water interface containing bis(2-ethylhexyl)phosphate and Ca(2+) or Fe(3+) exhibits spontaneous Marangoni instability associated with the fluctuation in interfacial tension. This instability rarely appears for oil/water systems with Mg(2+), Sr(2+), Ba(2+), Cu(2+), or Co(2+). The same ion selectivity is observed for n-heptane and nitrobenzene despite their significant differences in density, viscosity, and the dielectric constant of oil. We studied this instability under acidic pH conditions to avoid the neutralization reaction effects. The result of the equilibrium interfacial tension and the extraction ratio of cations indicates that a large number of oil-soluble complexes form at the interfaces of Ca(2+)-containing systems and probably for Fe(3+)-containing systems. The results obtained by oscillating drop tensiometry and Brewster angle microscopy indicate that desorption, rather than adsorption, is more significant to the onset of instability and that the resulting complex tends to form aggregates in the interface. This aggregation gives the nonlinear desorption rate of the oil-soluble complex. Then, exfoliation of the aggregating matter occurs, which triggers the Marangoni instability. The induced convection removes the oil-soluble complex accumulated at the interface, creating a renewed interface, which is necessary for the successive occurrence of the Marangoni instability. For the other cations, the oil-soluble compounds are insignificant, and they rarely form aggregates. In such cases, adsorption/desorption proceeds without instability.


Assuntos
Compostos Organometálicos/química , Adsorção , Dietilexilftalato/química , Concentração de Íons de Hidrogênio , Íons/química , Metais Alcalinoterrosos/química , Metais Pesados/química , Óleos/química , Compostos Organometálicos/síntese química , Tensoativos/química , Água/química
13.
Sci Rep ; 11(1): 11983, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099769

RESUMO

The horizontal spin of a ratchet motor by vertical vibration is reported. A macroscopic ratchet gear is placed on a granular bed, where nearly half of the gear is penetrated in the bed. The gear and granular bed are mechanically vibrated. The gear shows a random motion or one-way spin that depend on the diameter of the granules, vibration frequency, and degree of vertical motion allowed for the gear. Even when one-way spin is observed, the spin direction depends on the abovementioned factors. Although the dependency is complicated, it is deterministic because the motion or flows of granular matter determines it. The characteristics observed in the experiments are explained by a simple model that accounts for the statistical variance in the motion of the granular matter. Extraction of systematic motion from small and non-useful motions such as mechanical agitation will be developed into energy harvest technology and may facilitate the science of a spontaneously moving system in a uniform potential field.

14.
Front Chem ; 9: 708633, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34381762

RESUMO

The motion of the contact line at the oil/water interface caused by chemical reactions is well known as a typical example of artificial active matter in the field of nonlinear science. When water (containing trimethylstearylammonium chloride) and nitrobenzene (containing iodide anion) phases are in contact, the regulated traveling-wave patterns appear along the inner wall of the glass container. In this study, we demonstrate a new dynamical mode of the contact line, an up-and-down motion, which becomes dominant with the decrease in the size of a glass tube, and the probability of occurrence is extremely high when the diameter of the glass tube is below 1 mm. A physicochemical model of the contact line motion that incorporates the spatiotemporal variation of the surfactant concentration on a glass surface is proposed, and its effect on the wettability of oil/water phases on the walls of the glass tubes is studied. The present model can reproduce the mode bifurcation of the dynamical motion depending on the inner diameter of the glass tubes.

15.
Langmuir ; 26(3): 1610-8, 2010 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-20030347

RESUMO

The autonomous motion of vesicle is observed in a simple chemical system. A vesicle composed of didodecyldimethylammonium bromide DDAB breaks down by ion exchange from Br(-) to I(-). When an electrolyte is supplied to vesicles, some of them begin to move after an induction period. They continue to move, leaving behind the reaction products on the trail. The ion exchange decreases the vesicle size, and smaller vesicles remain after the motion. We examine the characteristics of this motion. The surface tension of the DDAB-containing aqueous phase depends on the KI concentration. Considering this result carefully, we conclude that vesicles can move when the ion exchange from Br(-) to I(-) proceeds irreversibly. Then, inhomogeneity in the vesicle membrane develops because of the coagulating nature of the product, didodecyldimethylammonium iodide (DDAI), which is sparingly soluble in water. Inhomogeneous properties of vesicle membranes are then generated, which induce surface transport of the reaction product and flow in the water pool. As a result, a couple of convection rolls appear in the water pool of the vesicle. The convection rolls drive vesicle motion. A simple model for the semiquantitative description is proposed.

16.
RSC Adv ; 9(15): 8333-8339, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35518708

RESUMO

A centimeter-sized flat-headed push pin with photothermal properties can be moved on a water surface by a simple near-infrared laser. Using light as an external stimulus allows for the remote control of the timing, direction and velocity of its locomotion. It has been clarified that the vertical orientation of the pin at the air-water interface affects the friction of locomotion, and therefore velocity and acceleration. The pin placed on a water surface with a pin point upward (a point protruding into air phase) moved an average distance of 5.3 ± 2.9 cm following one pulse of laser irradiation, and that placed with a pin point downward (a point protruding into water phase) moved 2.0 ± 1.4 cm. The velocity and acceleration were larger when the pin was placed on the water surface with a pin pointing upward, compared to when placed with the pin pointing downward. Numerical analysis conducted for the locomotions of the pin concluded that the differences in traveling distance, velocity and acceleration were due to the difference in fluid resistance of the pin point in air and water phases during their locomotion. This demonstration of remote control of the motion of small objects by light can open up a wide range of future transport applications.

17.
Front Chem ; 7: 788, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31803721

RESUMO

Herein, the oscillation of an oil droplet on the surface of water is studied. The droplet contains an anionic surfactant that can react with the cations present in water. The oscillation starts after a random motion, and the oscillation pattern apparently depends on the cation species in the water phase. However, a common pattern is included. The cation species only affects the amplitude and frequency and sometimes perturbs the regular pattern owing to the instability at the oil/water interface. This common pattern is explained by a simple model that incorporates the surfactant transport from the droplet to the surrounding water surface. The dependency of the amplitude and frequency on cation species is expressed quantitatively by a single parameter, the product of the amplitude and square of frequency. This parameter depends on the cationic species and can be understood in terms of the spreading coefficient. The simple model successfully explains this dependency.

18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 77(3 Pt 2): 036208, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18517486

RESUMO

A model for autonomous motion of the contact line of the oil-water interface along a solid surface is proposed. The present model is inspired by the spontaneous wave generation and the contact line motion of an oil-water interface composed of cationic surfactant and oil-soluble anions. The motion is created through wetting by an adsorption of surfactant followed by an autocatalytic process with a chemical reaction and also dewetting due to the desorption of the remaining monolayer. The wetting process is accelerated by the contact line motion itself through the convection-enhanced transport of reaction constituents, which is autocatalytic in nature. These processes are expressed by nonlinear time-evolution equations for the velocity and the amplitude. Following the model, the autonomous motion is essentially excitable, and hence the spatiotemporal pattern is of the noise-induced type. The present model explains well the diverse features of the experimental results with a few parameters.

19.
J Colloid Interface Sci ; 314(1): 329-33, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17574263

RESUMO

Diffusions of Cu(2+) and Fe(3+) in gelatin generate a moving blue band. It is formed by a diffusion of Cu(2+) and a phase separation of gelatin with diffusing Fe(3+). The diffusing Fe(3+) forms Fe(OH)(3) colloids and gathers gelatin molecules from the surroundings. The diffusion of gelatin molecules generates the concentration gradient, resulting in a gel/sol transition in the dilute phase. In the region where the concentration of Fe(3+) is high enough, the gel remains hard, while a sol phase appears under the hard gel. The absorption spectrum of Cu(2+) depends on the concentration ratio of Cu(2+) to gelatin. As a consequence, we can see a blue band in the restricted region between the diffusing front of Cu(2+) and the phase separation front. The movement of the blue band is caused by a coupling of a simple diffusion and the phase separation.

20.
Sci Rep ; 7(1): 5267, 2017 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-28706232

RESUMO

Single-walled carbon nanotubes (SWCNTs) are reported to spontaneously align in a rotational pattern by drying a liquid droplet of toluene containing polyfluorene as a dispersant. By situating a droplet of an SWCNT solution around a glass bead, spiral patterns are generated. The parallel alignment of SWCNTs along one stripe of such a pattern is confirmed using scanning electron microscopy and polarized optical microscopy. The orientation order increases toward the outer edge of a stripe. The stripe width in the pattern is proportional to the solute concentration, and the width and position of the stripes follow geometric sequences. The growth of the rotational pattern is also observed in real time. The process of spiral pattern formation is visualized, indicating the role of the annihilation of counter-traveling accompanied by continuous depinning. The geometric sequences for the stripe width and position are explained by the near-constant traveling speed and solute enrichment at the droplet periphery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA