Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Cell ; 184(21): 5432-5447.e16, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34619077

RESUMO

Understanding vaccine-elicited protection against SARS-CoV-2 variants and other sarbecoviruses is key for guiding public health policies. We show that a clinical stage multivalent SARS-CoV-2 spike receptor-binding domain nanoparticle (RBD-NP) vaccine protects mice from SARS-CoV-2 challenge after a single immunization, indicating a potential dose-sparing strategy. We benchmarked serum neutralizing activity elicited by RBD-NPs in non-human primates against a lead prefusion-stabilized SARS-CoV-2 spike (HexaPro) using a panel of circulating mutants. Polyclonal antibodies elicited by both vaccines are similarly resilient to many RBD residue substitutions tested, although mutations at and surrounding position 484 have negative consequences for neutralization. Mosaic and cocktail nanoparticle immunogens displaying multiple sarbecovirus RBDs elicit broad neutralizing activity in mice and protect mice against SARS-CoV challenge even in the absence of SARS-CoV RBD in the vaccine. This study provides proof of principle that multivalent sarbecovirus RBD-NPs induce heterotypic protection and motivates advancing such broadly protective sarbecovirus vaccines to the clinic.

2.
Nature ; 594(7862): 253-258, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33873199

RESUMO

The development of a portfolio of COVID-19 vaccines to vaccinate the global population remains an urgent public health imperative1. Here we demonstrate the capacity of a subunit vaccine, comprising the SARS-CoV-2 spike protein receptor-binding domain displayed on an I53-50 protein nanoparticle scaffold (hereafter designated RBD-NP), to stimulate robust and durable neutralizing-antibody responses and protection against SARS-CoV-2 in rhesus macaques. We evaluated five adjuvants including Essai O/W 1849101, a squalene-in-water emulsion; AS03, an α-tocopherol-containing oil-in-water emulsion; AS37, a Toll-like receptor 7 (TLR7) agonist adsorbed to alum; CpG1018-alum, a TLR9 agonist formulated in alum; and alum. RBD-NP immunization with AS03, CpG1018-alum, AS37 or alum induced substantial neutralizing-antibody and CD4 T cell responses, and conferred protection against SARS-CoV-2 infection in the pharynges, nares and bronchoalveolar lavage. The neutralizing-antibody response to live virus was maintained up to 180 days after vaccination with RBD-NP in AS03 (RBD-NP-AS03), and correlated with protection from infection. RBD-NP immunization cross-neutralized the B.1.1.7 SARS-CoV-2 variant efficiently but showed a reduced response against the B.1.351 variant. RBD-NP-AS03 produced a 4.5-fold reduction in neutralization of B.1.351 whereas the group immunized with RBD-NP-AS37 produced a 16-fold reduction in neutralization of B.1.351, suggesting differences in the breadth of the neutralizing-antibody response induced by these adjuvants. Furthermore, RBD-NP-AS03 was as immunogenic as a prefusion-stabilized spike immunogen (HexaPro) with AS03 adjuvant. These data highlight the efficacy of the adjuvanted RBD-NP vaccine in promoting protective immunity against SARS-CoV-2 and have led to phase I/II clinical trials of this vaccine (NCT04742738 and NCT04750343).


Assuntos
Adjuvantes Imunológicos , Anticorpos Neutralizantes/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Compostos de Alúmen , Animais , Anticorpos Antivirais/imunologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , COVID-19/virologia , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Modelos Animais de Doenças , Imunidade Celular , Imunidade Humoral , Macaca mulatta/imunologia , Masculino , Oligodesoxirribonucleotídeos , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Esqualeno
3.
PLoS Pathog ; 15(5): e1007776, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31083697

RESUMO

VRC01 protects macaques from vaginal SHIV infection after a single high-dose challenge. Infusion of a simianized anti-α4ß7 mAb (Rh-α4ß7) just prior to, and during repeated vaginal exposures to SIVmac251 partially protected macaques from vaginal SIV infection and rescued CD4+ T cells. To investigate the impact of combining VRC01 and Rh-α4ß7 on SHIV infection, 3 groups of macaques were treated with a suboptimal dosing of VRC01 alone or in combination with Rh-α4ß7 or with control antibodies prior to the initiation of weekly vaginal exposures to a high dose (1000 TCID50) of SHIVAD8-EO. The combination Rh-α4ß7-VRC01 significantly delayed SHIVAD8-EO vaginal infection. Following infection, VRC01-Rh-α4ß7-treated macaques maintained higher CD4+ T cell counts and exhibited lower rectal SIV-DNA loads compared to controls. Interestingly, VRC01-Rh-α4ß7-treated macaques had fewer IL-17-producing cells in the blood and the gut during the acute phase of infection. Moreover, higher T cell responses to the V2-loop of the SHIVAD8-EO envelope in the VRC01-Rh-α4ß7 group inversely correlated with set point viremia. The combination of suboptimal amounts of VRC01 and Rh-α4ß7 delayed infection, altered antiviral immune responses and minimized CD4+ T cell loss. Further exploration of the effect of combining bNAbs with Rh-α4ß7 on SIV/HIV infection and antiviral immune responses is warranted and may lead to novel preventive and therapeutic strategies.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais/farmacologia , Integrinas/antagonistas & inibidores , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Vagina/efeitos dos fármacos , Viremia/prevenção & controle , Animais , Anticorpos Antivirais/imunologia , Anticorpos Amplamente Neutralizantes , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Quimioterapia Combinada , Feminino , Anticorpos Anti-HIV , Integrinas/imunologia , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/imunologia , Vagina/imunologia , Vagina/virologia , Viremia/imunologia , Viremia/virologia
4.
Sci Transl Med ; 16(758): eadn6605, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39083589

RESUMO

Authorization of the Matrix-M (MM)-adjuvanted R21 vaccine by three countries and its subsequent endorsement by the World Health Organization for malaria prevention in children are a milestone in the fight against malaria. Yet, our understanding of the innate and adaptive immune responses elicited by this vaccine remains limited. Here, we compared three clinically relevant adjuvants [3M-052 + aluminum hydroxide (Alum) (3M), a TLR7/8 agonist formulated in Alum; GLA-LSQ, a TLR4 agonist formulated in liposomes with QS-21; and MM, the now-approved adjuvant for R21] for their capacity to induce durable immune responses to R21 in macaques. R21 adjuvanted with 3M on a 0, 8, and 23-week schedule elicited anti-circumsporozoite antibody responses comparable in magnitude to the R21/MM vaccine administered using a 0-4-8-week regimen and persisted up to 72 weeks with a half-life of 337 days. A booster dose at 72 weeks induced a recall response similar to the R21/MM vaccination. In contrast, R21/GLA-LSQ immunization induced a lower, short-lived response at the dose used. Consistent with the durable serum antibody responses, MM and 3M induced long-lived plasma cells in the bone marrow and other tissues, including the spleen. Furthermore, whereas 3M stimulated potent and persistent antiviral transcriptional and cytokine signatures after primary and booster immunizations, MM induced enhanced expression of interferon- and TH2-related signatures more highly after the booster vaccination. Collectively, these findings provide a resource on the immune responses of three clinically relevant adjuvants with R21 and highlight the promise of 3M as another adjuvant for malarial vaccines.


Assuntos
Adjuvantes Imunológicos , Vacinas Antimaláricas , Animais , Vacinas Antimaláricas/imunologia , Adjuvantes Imunológicos/farmacologia , Macaca mulatta , Adjuvantes de Vacinas , Anticorpos Antiprotozoários/imunologia , Citocinas/metabolismo
5.
Sci Immunol ; 9(98): eadk9550, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39213338

RESUMO

Eliciting potent and broadly neutralizing antibodies (bnAbs) is a major goal in HIV-1 vaccine development. Here, we describe how germline-targeting immunogen BG505 SOSIP germline trimer 1.1 (GT1.1), generated through structure-based design, engages a diverse range of VRC01-class bnAb precursors. A single immunization with GT1.1 expands CD4 binding site (CD4bs)-specific VRC01-class B cells in knock-in mice and drives VRC01-class maturation. In nonhuman primates (NHPs), GT1.1 primes CD4bs-specific neutralizing serum responses. Selected monoclonal antibodies (mAbs) isolated from GT1.1-immunized NHPs neutralize fully glycosylated BG505 virus. Two mAbs, 12C11 and 21N13, neutralize subsets of diverse heterologous neutralization-resistant viruses. High-resolution structures revealed that 21N13 targets the same conserved residues in the CD4bs as VRC01-class and CH235-class bnAbs despite its low sequence similarity (~40%), whereas mAb 12C11 binds predominantly through its heavy chain complementarity-determining region 3. These preclinical data underpin the ongoing evaluation of GT1.1 in a phase 1 clinical trial in healthy volunteers.


Assuntos
Vacinas contra a AIDS , Anticorpos Neutralizantes , Antígenos CD4 , Anticorpos Anti-HIV , HIV-1 , Animais , Vacinas contra a AIDS/imunologia , Camundongos , Humanos , Anticorpos Anti-HIV/imunologia , Anticorpos Neutralizantes/imunologia , HIV-1/imunologia , Antígenos CD4/imunologia , Sítios de Ligação/imunologia , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , Vacinação , Anticorpos Monoclonais/imunologia , Feminino
6.
Sci Immunol ; 9(98): eadm7097, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39213340

RESUMO

Adolescents are a growing population of people living with HIV. The period between weaning and sexual debut presents a low-risk window for HIV acquisition, making early childhood an ideal time for implementing an immunization regimen. Because the elicitation of broadly neutralizing antibodies (bnAbs) is critical for an effective HIV vaccine, our goal was to assess the ability of a bnAb B cell lineage-designed HIV envelope SOSIP (protein stabilized by a disulfide bond between gp120-gp41-named "SOS"-and an isoleucine-to-proline point mutation-named "IP"-at residue 559) to induce precursor CD4 binding site (CD4bs)-targeting bnAbs in early life. Infant rhesus macaques received either a BG505 SOSIP, based on the infant BG505 transmitted/founder virus, or the CD4bs germ line-targeting BG505 SOSIP GT1.1 (n = 5 per group). Although both strategies induced durable, high-magnitude plasma autologous virus neutralization responses, only GT1.1-immunized infants (n = 3 of 5) exhibited VRC01-like CD4bs bnAb precursor development. Thus, a multidose immunization regimen with bnAb lineage-designed SOSIPs shows promise for inducing early B cell responses with the potential to mature into protective HIV bnAbs before sexual debut.


Assuntos
Vacinas contra a AIDS , Anticorpos Anti-HIV , Macaca mulatta , Animais , Anticorpos Anti-HIV/imunologia , Vacinas contra a AIDS/imunologia , Vacinas contra a AIDS/administração & dosagem , Anticorpos Neutralizantes/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , Imunização , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , HIV-1/imunologia , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , Humanos , Células Germinativas/imunologia
7.
bioRxiv ; 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36711543

RESUMO

The rapid emergence of SARS-CoV-2 variants that evade immunity to vaccination has placed a global health imperative on the development of therapeutic countermeasures that provide broad protection against SARS-CoV-2 and related sarbecoviruses. Here, we identified extremely potent pan-sarbecovirus antibodies from non-human primates vaccinated with an AS03 adjuvanted subunit vaccine against SARS-CoV-2 that recognize conserved epitopes in the receptor binding domain (RBD) with femtomolar affinities. Longitudinal analysis revealed progressive accumulation of somatic mutation in the immunoglobulin genes of antigen-specific memory B cells for at least one year following primary vaccination. 514 monoclonal antibodies (mAbs) were generated from antigen-specific memory B cells. Antibodies isolated at 5 to 12 months following vaccination displayed greater potency and breadth, relative to those identified at 1.4 months. Notably, 15 out of 338 (∼4.4%) antibodies isolated at 1.4∼6 months after the primary vaccination showed extraordinary neutralization potency against SARS-CoV-2 omicron BA.1, despite the absence of BA.1 neutralization in serum. Two of them, 25F9 and 20A7, neutralized authentic clade Ia sarbecoviruses (SARS-CoV, WIV-1, SHC014) and clade Ib sarbecoviruses (SARS-CoV-2 D614G, SARS-CoV-2 BA.1, Pangolin-GD) with half-maximal inhibition concentrations of (0.85 ng/ml, 3 ng/ml, 6 ng/ml, 6 ng/ml, 42 ng/ml, 6 ng/ml) and (13 ng/ml, 2 ng/ml, 18 ng/ml, 9 ng/ml, 6 ng/ml, 345 ng/ml), respectively. Furthermore, 20A7 and 27A12 showed potent neutralization against all SARS-CoV-2 variants of concern and multiple Omicron sublineages, including BA.1, BA.2, BA.3, BA.4/5, BQ.1, BQ.1.1 and XBB variants. X-ray crystallography studies revealed the molecular basis of broad and potent neutralization through targeting conserved RBD sites. In vivo prophylactic protection of 25F9, 20A7 and 27A12 was confirmed in aged Balb/c mice. Notably, administration of 25F9 provided complete protection against SARS-CoV-2, SARS-CoV-2 BA.1, SARS-CoV, and SHC014 challenge, underscoring that these mAbs are promising pan-sarbecovirus therapeutic antibodies. One Sentence Summary: Extremely potent pan-sarbecovirus neutralizing antibodies.

8.
Nat Commun ; 14(1): 2149, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069151

RESUMO

While the rapid development of COVID-19 vaccines has been a scientific triumph, the need remains for a globally available vaccine that provides longer-lasting immunity against present and future SARS-CoV-2 variants of concern (VOCs). Here, we describe DCFHP, a ferritin-based, protein-nanoparticle vaccine candidate that, when formulated with aluminum hydroxide as the sole adjuvant (DCFHP-alum), elicits potent and durable neutralizing antisera in non-human primates against known VOCs, including Omicron BQ.1, as well as against SARS-CoV-1. Following a booster ~one year after the initial immunization, DCFHP-alum elicits a robust anamnestic response. To enable global accessibility, we generated a cell line that can enable production of thousands of vaccine doses per liter of cell culture and show that DCFHP-alum maintains potency for at least 14 days at temperatures exceeding standard room temperature. DCFHP-alum has potential as a once-yearly (or less frequent) booster vaccine, and as a primary vaccine for pediatric use including in infants.


Assuntos
COVID-19 , Geranium , Nanopartículas , Animais , Humanos , Vacinas contra COVID-19 , Ferritinas , COVID-19/prevenção & controle , SARS-CoV-2 , Soros Imunes , Primatas , Anticorpos Neutralizantes , Anticorpos Antivirais
9.
Sci Transl Med ; 15(695): eadg7404, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37163615

RESUMO

The rapid emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants that evade immunity elicited by vaccination has placed an imperative on the development of countermeasures that provide broad protection against SARS-CoV-2 and related sarbecoviruses. Here, we identified extremely potent monoclonal antibodies (mAbs) that neutralized multiple sarbecoviruses from macaques vaccinated with AS03-adjuvanted monovalent subunit vaccines. Longitudinal analysis revealed progressive accumulation of somatic mutation in the immunoglobulin genes of antigen-specific memory B cells (MBCs) for at least 1 year after primary vaccination. Antibodies generated from these antigen-specific MBCs at 5 to 12 months after vaccination displayed greater potency and breadth relative to those identified at 1.4 months. Fifteen of the 338 (about 4.4%) antibodies isolated at 1.4 to 6 months after the primary vaccination showed potency against SARS-CoV-2 BA.1, despite the absence of serum BA.1 neutralization. 25F9 and 20A7 neutralized authentic clade 1 sarbecoviruses (SARS-CoV, WIV-1, SHC014, SARS-CoV-2 D614G, BA.1, and Pangolin-GD) and vesicular stomatitis virus-pseudotyped clade 3 sarbecoviruses (BtKY72 and PRD-0038). 20A7 and 27A12 showed potent neutralization against all SARS-CoV-2 variants and multiple Omicron sublineages, including BA.1, BA.2, BA.3, BA.4/5, BQ.1, BQ.1.1, and XBB. Crystallography studies revealed the molecular basis of broad and potent neutralization through targeting conserved sites within the RBD. Prophylactic protection of 25F9, 20A7, and 27A12 was confirmed in mice, and administration of 25F9 particularly provided complete protection against SARS-CoV-2, BA.1, SARS-CoV, and SHC014 challenge. These data underscore the extremely potent and broad activity of these mAbs against sarbecoviruses.


Assuntos
COVID-19 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Animais , Humanos , Camundongos , Anticorpos Amplamente Neutralizantes , Vacinas contra COVID-19 , Macaca , SARS-CoV-2 , COVID-19/prevenção & controle , Imunização , Vacinação , Anticorpos Monoclonais , Anticorpos Antivirais , Anticorpos Neutralizantes
10.
bioRxiv ; 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37986885

RESUMO

A vaccine that can achieve protective immunity prior to sexual debut is critical to prevent the estimated 410,000 new HIV infections that occur yearly in adolescents. As children living with HIV can make broadly neutralizing antibody (bnAb) responses in plasma at a faster rate than adults, early childhood is an opportune window for implementation of a multi-dose HIV immunization strategy to elicit protective immunity prior to adolescence. Therefore, the goal of our study was to assess the ability of a B cell lineage-designed HIV envelope SOSIP to induce bnAbs in early life. Infant rhesus macaques (RMs) received either BG505 SOSIP or the germline-targeting BG505 GT1.1 SOSIP (n=5/group) with the 3M-052-SE adjuvant at 0, 6, and 12 weeks of age. All infant RMs were then boosted with the BG505 SOSIP at weeks 26, 52 and 78, mimicking a pediatric immunization schedule of multiple vaccine boosts within the first two years of life. Both immunization strategies induced durable, high magnitude binding antibodies and plasma autologous virus neutralization that primarily targeted the CD4-binding site (CD4bs) or C3/465 epitope. Notably, three BG505 GT1.1-immunized infants exhibited a plasma HIV neutralization signature reflective of VRC01-like CD4bs bnAb precursor development and heterologous virus neutralization. Finally, infant RMs developed precursor bnAb responses at a similar frequency to that of adult RMs receiving a similar immunization strategy. Thus, a multi-dose immunization regimen with bnAb lineage designed SOSIPs is a promising strategy for inducing protective HIV bnAb responses in childhood prior to adolescence when sexual HIV exposure risk begins.

11.
bioRxiv ; 2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36597527

RESUMO

While the rapid development of COVID-19 vaccines has been a scientific triumph, the need remains for a globally available vaccine that provides longer-lasting immunity against present and future SARS-CoV-2 variants of concern (VOCs). Here, we describe DCFHP, a ferritin-based, protein-nanoparticle vaccine candidate that, when formulated with aluminum hydroxide as the sole adjuvant (DCFHP-alum), elicits potent and durable neutralizing antisera in non-human primates against known VOCs, including Omicron BQ.1, as well as against SARS-CoV-1. Following a booster ∻one year after the initial immunization, DCFHP-alum elicits a robust anamnestic response. To enable global accessibility, we generated a cell line that can enable production of thousands of vaccine doses per liter of cell culture and show that DCFHP-alum maintains potency for at least 14 days at temperatures exceeding standard room temperature. DCFHP-alum has potential as a once-yearly booster vaccine, and as a primary vaccine for pediatric use including in infants.

12.
JCI Insight ; 7(21)2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36125890

RESUMO

TGF-ß plays a critical role in maintaining immune cells in a resting state by inhibiting cell activation and proliferation. Resting HIV-1 target cells represent the main cellular reservoir after long-term antiretroviral therapy (ART). We hypothesized that releasing cells from TGF-ß-driven signaling would promote latency reversal. To test our hypothesis, we compared HIV-1 latency models with and without TGF-ß and a TGF-ß type 1 receptor inhibitor, galunisertib. We tested the effect of galunisertib in SIV-infected, ART-treated macaques by monitoring SIV-env expression via PET/CT using the 64Cu-DOTA-F(ab')2 p7D3 probe, along with plasma and tissue viral loads (VLs). Exogenous TGF-ß reduced HIV-1 reactivation in U1 and ACH-2 models. Galunisertib increased HIV-1 latency reversal ex vivo and in PBMCs from HIV-1-infected, ART-treated, aviremic donors. In vivo, oral galunisertib promoted increased total standardized uptake values in PET/CT images in gut and lymph nodes of 5 out of 7 aviremic, long-term ART-treated, SIV-infected macaques. This increase correlated with an increase in SIV RNA in the gut. Two of the 7 animals also exhibited increases in plasma VLs. Higher anti-SIV T cell responses and antibody titers were detected after galunisertib treatment. In summary, our data suggest that blocking TGF-ß signaling simultaneously increases retroviral reactivation events and enhances anti-SIV immune responses.


Assuntos
Infecções por HIV , HIV-1 , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Radioisótopos de Cobre/farmacologia , Radioisótopos de Cobre/uso terapêutico , Antirretrovirais/uso terapêutico , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Macaca mulatta , Replicação Viral , Fator de Crescimento Transformador beta , Imunidade
13.
Cell Rep ; 40(9): 111299, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35988541

RESUMO

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019 has led to the development of a large number of vaccines, several of which are now approved for use in humans. Understanding vaccine-elicited antibody responses against emerging SARS-CoV-2 variants of concern (VOCs) in real time is key to inform public health policies. Serum neutralizing antibody titers are the current best correlate of protection from SARS-CoV-2 challenge in non-human primates and a key metric to understand immune evasion of VOCs. We report that vaccinated BALB/c mice do not recapitulate faithfully the breadth and potency of neutralizing antibody responses elicited by various vaccine platforms against VOCs, compared with non-human primates or humans, suggesting caution should be exercised when interpreting data obtained with this animal model.


Assuntos
COVID-19 , Vacinas Virais , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Primatas , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
14.
Sci Transl Med ; 14(658): eabq4130, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35976993

RESUMO

Despite the remarkable efficacy of COVID-19 vaccines, waning immunity and the emergence of SARS-CoV-2 variants such as Omicron represents a global health challenge. Here, we present data from a study in nonhuman primates demonstrating durable protection against the Omicron BA.1 variant induced by a subunit SARS-CoV-2 vaccine comprising the receptor binding domain of the ancestral strain (RBD-Wu) on the I53-50 nanoparticle adjuvanted with AS03, which was recently authorized for use in individuals 18 years or older. Vaccination induced neutralizing antibody (nAb) titers that were maintained at high concentrations for at least 1 year after two doses, with a pseudovirus nAb geometric mean titer (GMT) of 1978 and a live virus nAb GMT of 1331 against the ancestral strain but not against the Omicron BA.1 variant. However, a booster dose at 6 to 12 months with RBD-Wu or RBD-ß (RBD from the Beta variant) displayed on I53-50 elicited high neutralizing titers against the ancestral and Omicron variants. In addition, we observed persistent neutralization titers against a panel of sarbecoviruses, including SARS-CoV. Furthermore, there were substantial and persistent memory T and B cell responses reactive to Beta and Omicron variants. Vaccination resulted in protection against Omicron infection in the lung and suppression of viral burden in the nares at 6 weeks after the final booster immunization. Even at 6 months after vaccination, we observed protection in the lung and rapid control of virus in the nares. These results highlight the durable and cross-protective immunity elicited by the AS03-adjuvanted RBD-I53-50 nanoparticle vaccine.


Assuntos
COVID-19 , Vacinas Virais , Adjuvantes Imunológicos/farmacologia , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , SARS-CoV-2 , Vacinas de Subunidades Antigênicas
15.
bioRxiv ; 2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33594366

RESUMO

The development of a portfolio of SARS-CoV-2 vaccines to vaccinate the global population remains an urgent public health imperative. Here, we demonstrate the capacity of a subunit vaccine under clinical development, comprising the SARS-CoV-2 Spike protein receptor-binding domain displayed on a two-component protein nanoparticle (RBD-NP), to stimulate robust and durable neutralizing antibody (nAb) responses and protection against SARS-CoV-2 in non-human primates. We evaluated five different adjuvants combined with RBD-NP including Essai O/W 1849101, a squalene-in-water emulsion; AS03, an alpha-tocopherol-containing squalene-based oil-in-water emulsion used in pandemic influenza vaccines; AS37, a TLR-7 agonist adsorbed to Alum; CpG 1018-Alum (CpG-Alum), a TLR-9 agonist formulated in Alum; or Alum, the most widely used adjuvant. All five adjuvants induced substantial nAb and CD4 T cell responses after two consecutive immunizations. Durable nAb responses were evaluated for RBD-NP/AS03 immunization and the live-virus nAb response was durably maintained up to 154 days post-vaccination. AS03, CpG-Alum, AS37 and Alum groups conferred significant protection against SARS-CoV-2 infection in the pharynges, nares and in the bronchoalveolar lavage. The nAb titers were highly correlated with protection against infection. Furthermore, RBD-NP when used in conjunction with AS03 was as potent as the prefusion stabilized Spike immunogen, HexaPro. Taken together, these data highlight the efficacy of the RBD-NP formulated with clinically relevant adjuvants in promoting robust immunity against SARS-CoV-2 in non-human primates.

16.
17.
Sci Rep ; 9(1): 4603, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30872669

RESUMO

Members of the Mycobacterium chelonae-abscessus complex (MCAC) are close to the mycobacterial ancestor and includes both human, animal and fish pathogens. We present the genomes of 14 members of this complex: the complete genomes of Mycobacterium salmoniphilum and Mycobacterium chelonae type strains, seven M. salmoniphilum isolates, and five M. salmoniphilum-like strains including strains isolated during an outbreak in an animal facility at Uppsala University. Average nucleotide identity (ANI) analysis and core gene phylogeny revealed that the M. salmoniphilum-like strains are variants of the human pathogen Mycobacterium franklinii and phylogenetically close to Mycobacterium abscessus. Our data further suggested that M. salmoniphilum separates into three branches named group I, II and III with the M. salmoniphilum type strain belonging to group II. Among predicted virulence factors, the presence of phospholipase C (plcC), which is a major virulence factor that makes M. abscessus highly cytotoxic to mouse macrophages, and that M. franklinii originally was isolated from infected humans make it plausible that the outbreak in the animal facility was caused by a M. salmoniphilum-like strain. Interestingly, M. salmoniphilum-like was isolated from tap water suggesting that it can be present in the environment. Moreover, we predicted the presence of mutational hotspots in the M. salmoniphilum isolates and 26% of these hotspots overlap with genes categorized as having roles in virulence, disease and defense. We also provide data about key genes involved in transcription and translation such as sigma factor, ribosomal protein and tRNA genes.


Assuntos
Infecções por Mycobacterium não Tuberculosas/microbiologia , Infecções por Mycobacterium/microbiologia , Mycobacterium abscessus/genética , Mycobacterium/genética , Animais , Biologia Computacional/métodos , Genoma Bacteriano , Genômica/métodos , Humanos , Anotação de Sequência Molecular , Filogenia , Polimorfismo de Nucleotídeo Único , RNA Ribossômico 16S/genética , Sequenciamento Completo do Genoma
18.
Nat Biomed Eng ; 3(5): 371-380, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30936432

RESUMO

Visualization of the spatio-temporal trafficking of vaccines after their delivery would help evaluate the efficacy of candidate formulations and aid their rational design for preclinical and translational studies. Here, we show that a dual radionuclide-near-infrared probe allows for quantitative, longitudinal and non-invasive monitoring, via positron emission tomography-computed tomography and near-infrared imaging of cynomolgus macaques, of the trafficking dynamics to draining lymph nodes of a model messenger RNA vaccine labelled with the probe. After intramuscular administration of the vaccine to the monkeys, we observed the dynamics of the mRNA vaccine at the injection site and in the draining lymph nodes, performed cellular analyses of the involved tissues using flow cytometry and identified through immunofluorescence that professional antigen-presenting cells are the primary cells containing the injected mRNA and encoding the antigen. This approach may reveal spatio-temporal determinants of vaccine efficacy in preclinical and translational studies employing large mammals.


Assuntos
Técnicas de Transferência de Genes , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , RNA Mensageiro/administração & dosagem , Espectroscopia de Luz Próxima ao Infravermelho , Vacinas/administração & dosagem , Animais , Células Apresentadoras de Antígenos/metabolismo , Radioisótopos de Cobre/química , Células HeLa , Humanos , Linfonodos/diagnóstico por imagem , Macaca fascicularis , Masculino , Músculos/metabolismo
19.
Sci Rep ; 8(1): 12040, 2018 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-30104693

RESUMO

Mycobacterium marinum is the causative agent for the tuberculosis-like disease mycobacteriosis in fish and skin lesions in humans. Ubiquitous in its geographical distribution, M. marinum is known to occupy diverse fish as hosts. However, information about its genomic diversity is limited. Here, we provide the genome sequences for 15 M. marinum strains isolated from infected humans and fish. Comparative genomic analysis of these and four available genomes of the M. marinum strains M, E11, MB2 and Europe reveal high genomic diversity among the strains, leading to the conclusion that M. marinum should be divided into two different clusters, the "M"- and the "Aronson"-type. We suggest that these two clusters should be considered to represent two M. marinum subspecies. Our data also show that the M. marinum pan-genome for both groups is open and expanding and we provide data showing high number of mutational hotspots in M. marinum relative to other mycobacteria such as Mycobacterium tuberculosis. This high genomic diversity might be related to the ability of M. marinum to occupy different ecological niches.


Assuntos
Peixes/microbiologia , Variação Genética/genética , Genoma Bacteriano/genética , Infecções por Mycobacterium não Tuberculosas/veterinária , Mycobacterium marinum/genética , Mycobacterium marinum/isolamento & purificação , Animais , Sequência de Bases , Peixes/classificação , Humanos , Filogenia , Plasmídeos/genética , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA