Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Brain ; 147(6): 2158-2168, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38315899

RESUMO

Vascular dysfunction is increasingly recognized as an important contributor to the pathogenesis of Alzheimer's disease. Alterations in vascular endothelial growth factor (VEGF) pathways have been implicated as potential mechanisms. However, the specific impact of VEGF proteins in preclinical Alzheimer's disease and their relationships with other Alzheimer's disease and vascular pathologies during this critical early period remain to be elucidated. We included 317 older adults from the Harvard Aging Brain Study, a cohort of individuals who were cognitively unimpaired at baseline and followed longitudinally for up to 12 years. Baseline VEGF family protein levels (VEGFA, VEGFC, VEGFD, PGF and FLT1) were measured in fasting plasma using high-sensitivity immunoassays. Using linear mixed effects models, we examined the interactive effects of baseline plasma VEGF proteins and amyloid PET burden (Pittsburgh Compound-B) on longitudinal cognition (Preclinical Alzheimer Cognitive Composite-5). We further investigated if effects on cognition were mediated by early neocortical tau accumulation (flortaucipir PET burden in the inferior temporal cortex) or hippocampal atrophy. Lastly, we examined the impact of adjusting for baseline cardiovascular risk score or white matter hyperintensity volume. Baseline plasma VEGFA and PGF each showed a significant interaction with amyloid burden on prospective cognitive decline. Specifically, low VEGFA and high PGF were associated with greater cognitive decline in individuals with elevated amyloid, i.e. those on the Alzheimer's disease continuum. Concordantly, low VEGFA and high PGF were associated with accelerated longitudinal tau accumulation in those with elevated amyloid. Moderated mediation analyses confirmed that accelerated tau accumulation fully mediated the effects of low VEGFA and partially mediated (31%) the effects of high PGF on faster amyloid-related cognitive decline. The effects of VEGFA and PGF on tau and cognition remained significant after adjusting for cardiovascular risk score or white matter hyperintensity volume. There were concordant but non-significant associations with longitudinal hippocampal atrophy. Together, our findings implicate low VEGFA and high PGF in accelerating early neocortical tau pathology and cognitive decline in preclinical Alzheimer's disease. Additionally, our results underscore the potential of these minimally-invasive plasma biomarkers to inform the risk of Alzheimer's disease progression in the preclinical population. Importantly, VEGFA and PGF appear to capture distinct effects from vascular risks and cerebrovascular injury. This highlights their potential as new therapeutic targets, in combination with anti-amyloid and traditional vascular risk reduction therapies, to slow the trajectory of preclinical Alzheimer's disease and delay or prevent the onset of cognitive decline.


Assuntos
Doença de Alzheimer , Cognição , Fator A de Crescimento do Endotélio Vascular , Proteínas tau , Humanos , Doença de Alzheimer/sangue , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Masculino , Feminino , Fator A de Crescimento do Endotélio Vascular/sangue , Fator A de Crescimento do Endotélio Vascular/metabolismo , Idoso , Proteínas tau/metabolismo , Proteínas tau/sangue , Estudos Longitudinais , Idoso de 80 Anos ou mais , Cognição/fisiologia , Tomografia por Emissão de Pósitrons , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/sangue , Biomarcadores/sangue
2.
Alzheimers Dement ; 20(4): 2680-2697, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38380882

RESUMO

INTRODUCTION: Amyloidosis, including cerebral amyloid angiopathy, and markers of small vessel disease (SVD) vary across dominantly inherited Alzheimer's disease (DIAD) presenilin-1 (PSEN1) mutation carriers. We investigated how mutation position relative to codon 200 (pre-/postcodon 200) influences these pathologic features and dementia at different stages. METHODS: Individuals from families with known PSEN1 mutations (n = 393) underwent neuroimaging and clinical assessments. We cross-sectionally evaluated regional Pittsburgh compound B-positron emission tomography uptake, magnetic resonance imaging markers of SVD (diffusion tensor imaging-based white matter injury, white matter hyperintensity volumes, and microhemorrhages), and cognition. RESULTS: Postcodon 200 carriers had lower amyloid burden in all regions but worse markers of SVD and worse Clinical Dementia Rating® scores compared to precodon 200 carriers as a function of estimated years to symptom onset. Markers of SVD partially mediated the mutation position effects on clinical measures. DISCUSSION: We demonstrated the genotypic variability behind spatiotemporal amyloidosis, SVD, and clinical presentation in DIAD, which may inform patient prognosis and clinical trials. HIGHLIGHTS: Mutation position influences Aß burden, SVD, and dementia. PSEN1 pre-200 group had stronger associations between Aß burden and disease stage. PSEN1 post-200 group had stronger associations between SVD markers and disease stage. PSEN1 post-200 group had worse dementia score than pre-200 in late disease stage. Diffusion tensor imaging-based SVD markers mediated mutation position effects on dementia in the late stage.


Assuntos
Doença de Alzheimer , Amiloidose , Doenças de Pequenos Vasos Cerebrais , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/genética , Doenças de Pequenos Vasos Cerebrais/complicações , Imagem de Tensor de Difusão , Imageamento por Ressonância Magnética , Mutação/genética , Presenilina-1/genética
3.
Ann Neurol ; 92(5): 745-755, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35880989

RESUMO

OBJECTIVE: Elevated vascular risk and beta-amyloid (Aß) burden have been synergistically associated with cognitive decline in preclinical Alzheimer's disease (AD), although the underlying mechanisms remain unclear. We examined whether accelerated longitudinal tau accumulation mediates the vascular risk-Aß interaction on cognitive decline. METHODS: We included 175 cognitively unimpaired older adults (age 70.5 ± 8.0 years). Baseline vascular risk was quantified using the office-based Framingham Heart Study general cardiovascular disease risk score (FHS-CVD). Baseline Aß burden was measured with Pittsburgh Compound-B positron emission tomography (PET). Tau burden was measured longitudinally (3.6 ± 1.5 years) with Flortaucipir PET, focusing on inferior temporal cortex (ITC). Cognition was assessed longitudinally (7.0 ± 2.0 years) using the Preclinical Alzheimer's Cognitive Composite. Linear mixed effects models examined the interactive effects of baseline vascular risk and Aß on longitudinal ITC tau. Additionally, moderated mediation was used to determine whether tau accumulation mediated the FHS-CVD*Aß effect on cognitive decline. RESULTS: We observed a significant interaction between elevated baseline FHS-CVD and Aß on greater ITC tau accumulation (p = 0.004), even in individuals with Aß burden below the conventional threshold for amyloid positivity. Examining individual vascular risk factors, we found elevated systolic blood pressure and body mass index showed independent interactions with Aß on longitudinal tau (both p < 0.0001). ITC tau accumulation mediated 33% of the interactive association of FHS-CVD and Aß on cognitive decline. INTERPRETATION: Vascular risks interact with subthreshold levels of Aß to promote cognitive decline, partially by accelerating early neocortical tau accumulation. Our findings support vascular risk reduction, especially treating hypertension and obesity, to attenuate Aß-related tau pathology and reduce late-life cognitive decline. ANN NEUROL 2022;92:745-755.


Assuntos
Doença de Alzheimer , Doenças Cardiovasculares , Disfunção Cognitiva , Humanos , Idoso , Pessoa de Meia-Idade , Proteínas tau , Disfunção Cognitiva/diagnóstico por imagem , Peptídeos beta-Amiloides , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/psicologia , Tomografia por Emissão de Pósitrons , Biomarcadores
4.
Ann Neurol ; 92(3): 358-363, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35670654

RESUMO

Autosomal-dominant, Dutch-type cerebral amyloid angiopathy (D-CAA) offers a unique opportunity to develop biomarkers for pre-symptomatic cerebral amyloid angiopathy (CAA). We hypothesized that neuroimaging measures of white matter injury would be present and progressive in D-CAA prior to hemorrhagic lesions or symptomatic hemorrhage. In a longitudinal cohort of D-CAA carriers and non-carriers, we observed divergence of white matter injury measures between D-CAA carriers and non-carriers prior to the appearance of cerebral microbleeds and >14 years before the average age of first symptomatic hemorrhage. These results indicate that white matter disruption measures may be valuable cross-sectional and longitudinal biomarkers of D-CAA progression. ANN NEUROL 2022;92:358-363.


Assuntos
Angiopatia Amiloide Cerebral , Substância Branca , Angiopatia Amiloide Cerebral/diagnóstico por imagem , Angiopatia Amiloide Cerebral/patologia , Hemorragia Cerebral/diagnóstico por imagem , Hemorragia Cerebral/patologia , Estudos Transversais , Hemorragia/patologia , Humanos , Imageamento por Ressonância Magnética , Neuroimagem , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
5.
Hum Brain Mapp ; 43(12): 3680-3693, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35429100

RESUMO

White matter hyperintensities (WMHs) are emblematic of cerebral small vessel disease, yet effects on the brain have not been well characterized at midlife. Here, we investigated whether WMH volume is associated with brain network alterations in midlife adults. Two hundred and fifty-four participants from the Coronary Artery Risk Development in Young Adults study were selected and stratified by WMH burden into Lo-WMH (mean age = 50 ± 3.5 years) and Hi-WMH (mean age = 51 ± 3.7 years) groups of equal size. We constructed group-level covariance networks based on cerebral blood flow (CBF) and gray matter volume (GMV) maps across 74 gray matter regions. Through consensus clustering, we found that both CBF and GMV covariance networks partitioned into modules that were largely consistent between groups. Next, CBF and GMV covariance network topologies were compared between Lo- and Hi-WMH groups at global (clustering coefficient, characteristic path length, global efficiency) and regional (degree, betweenness centrality, local efficiency) levels. At the global level, there were no between-group differences in either CBF or GMV covariance networks. In contrast, we found between-group differences in the regional degree, betweenness centrality, and local efficiency of several brain regions in both CBF and GMV covariance networks. Overall, CBF and GMV covariance analyses provide evidence that WMH-related network alterations are present at midlife.


Assuntos
Leucoaraiose , Substância Branca , Vasos Coronários , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Humanos , Leucoaraiose/patologia , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Adulto Jovem
6.
Magn Reson Med ; 88(1): 406-417, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35181925

RESUMO

PURPOSE: Develop and evaluate a deep learning approach to estimate cerebral blood flow (CBF) and arterial transit time (ATT) from multiple post-labeling delay (PLD) ASL MRI. METHODS: ASL MRI were acquired with 6 PLDs on a 1.5T or 3T GE system in adults with and without cognitive impairment (N = 99). Voxel-level CBF and ATT maps were quantified by training models with distinct convolutional neural network architectures: (1) convolutional neural network (CNN) and (2) U-Net. Models were trained and compared via 5-fold cross validation. Performance was evaluated using mean absolute error (MAE). Model outputs were trained on and compared against a reference ASL model fitting after data cleaning. Minimally processed ASL data served as another benchmark. Model output uncertainty was estimated using Monte Carlo dropout. The better-performing neural network was subsequently re-trained on inputs with missing PLDs to investigate generalizability to different PLD schedules. RESULTS: Relative to the CNN, the U-Net yielded lower MAE on training data. On test data, the U-Net MAE was 8.4 ± 1.4 mL/100 g/min for CBF and 0.22 ± 0.09 s for ATT. A significant association was observed between MAE and Monte Carlo dropout-based uncertainty estimates. Neural network performance remained stable despite systematically reducing the number of input images (i.e., up to 3 missing PLD images). Mean processing time was 10.77 s for the U-Net neural network compared to 10 min 41 s for the reference pipeline. CONCLUSION: It is feasible to generate CBF and ATT maps from 1.5T and 3T multi-PLD ASL MRI with a fast deep learning image-generation approach.


Assuntos
Circulação Cerebrovascular , Imageamento por Ressonância Magnética , Circulação Cerebrovascular/fisiologia , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Reprodutibilidade dos Testes , Marcadores de Spin
7.
Neuroimage ; 219: 117031, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32526385

RESUMO

Arterial spin labeling (ASL) has undergone significant development since its inception, with a focus on improving standardization and reproducibility of its acquisition and quantification. In a community-wide effort towards robust and reproducible clinical ASL image processing, we developed the software package ExploreASL, allowing standardized analyses across centers and scanners. The procedures used in ExploreASL capitalize on published image processing advancements and address the challenges of multi-center datasets with scanner-specific processing and artifact reduction to limit patient exclusion. ExploreASL is self-contained, written in MATLAB and based on Statistical Parameter Mapping (SPM) and runs on multiple operating systems. To facilitate collaboration and data-exchange, the toolbox follows several standards and recommendations for data structure, provenance, and best analysis practice. ExploreASL was iteratively refined and tested in the analysis of >10,000 ASL scans using different pulse-sequences in a variety of clinical populations, resulting in four processing modules: Import, Structural, ASL, and Population that perform tasks, respectively, for data curation, structural and ASL image processing and quality control, and finally preparing the results for statistical analyses on both single-subject and group level. We illustrate ExploreASL processing results from three cohorts: perinatally HIV-infected children, healthy adults, and elderly at risk for neurodegenerative disease. We show the reproducibility for each cohort when processed at different centers with different operating systems and MATLAB versions, and its effects on the quantification of gray matter cerebral blood flow. ExploreASL facilitates the standardization of image processing and quality control, allowing the pooling of cohorts which may increase statistical power and discover between-group perfusion differences. Ultimately, this workflow may advance ASL for wider adoption in clinical studies, trials, and practice.


Assuntos
Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Angiografia por Ressonância Magnética/métodos , Algoritmos , Circulação Cerebrovascular/fisiologia , Humanos , Reprodutibilidade dos Testes , Razão Sinal-Ruído , Software , Marcadores de Spin
8.
Hum Brain Mapp ; 41(4): 855-864, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31651075

RESUMO

Midlife metabolic and vascular risk factors (MVRFs) predict cognitive decline and dementia; however, these risk factors tend to overlap, and the mechanisms underlying their effects on cognitive performance are not well understood. This cross-sectional study investigates the contributions of MVRFs to regional cerebral blood flow (CBF) and verbal learning & memory among middle-aged adults. We used partial least squares (PLS) analysis to create latent risk factor profiles and examine their associations to CBF in 93 regions of interest among 451 participants (age 50.3 ± 3.5 years) of the Coronary Artery Risk Development in Young Adults. This multivariate analysis revealed regional CBF was lower in relation to obesity (higher body mass index and waist circumference), dysregulated glucose homeostasis (higher fasting glucose, oral glucose tolerance, and higher fasting insulin), and adverse fasting lipid profile (lower high-density lipoprotein cholesterol and higher triglycerides). In a sensitivity analysis, we found that significant associations between MVRFs and CBF were prominent in the hypertension-medicated subgroup. In a mediation model, the PLS-based MVRFs profile was associated with memory performance (rey auditory verbal learning test); however, CBF was not a significant mediator of this association. The results describe an adverse midlife metabolic profile that might set the stage for incipient dementia and contribute to widespread changes in CBF.


Assuntos
Circulação Cerebrovascular , Disfunção Cognitiva/epidemiologia , Doença das Coronárias/epidemiologia , Dislipidemias/epidemiologia , Transtornos do Metabolismo de Glucose/epidemiologia , Hipertensão/epidemiologia , Obesidade/epidemiologia , Aprendizagem Verbal , Circulação Cerebrovascular/fisiologia , Comorbidade , Estudos Transversais , Demência/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Estados Unidos/epidemiologia , Aprendizagem Verbal/fisiologia
9.
Hum Brain Mapp ; 41(8): 2121-2135, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32034832

RESUMO

Resting-state functional magnetic resonance imaging (rs-fMRI) is frequently used to study brain function; but, it is unclear whether BOLD-signal fluctuation amplitude and functional connectivity are associated with vascular factors, and how vascular-health factors are reflected in rs-fMRI metrics in the healthy population. As arterial stiffening is a known age-related cardiovascular risk factor, we investigated the associations between aortic stiffening (as measured using pulse-wave velocity [PWV]) and rs-fMRI metrics. We used cardiac MRI to measure aortic PWV (an established indicator of whole-body vascular stiffness), as well as dual-echo pseudo-continuous arterial-spin labeling to measure BOLD and CBF dynamics simultaneously in a group of generally healthy adults. We found that: (1) higher aortic PWV is associated with lower variance in the resting-state BOLD signal; (2) higher PWV is also associated with lower BOLD-based resting-state functional connectivity; (3) regions showing lower connectivity do not fully overlap with those showing lower BOLD variance with higher PWV; (4) CBF signal variance is a significant mediator of the above findings, only when averaged across regions-of-interest. Furthermore, we found no significant association between BOLD signal variance and systolic blood pressure, which is also a known predictor of vascular stiffness. Age-related vascular stiffness, as measured by PWV, provides a unique scenario to demonstrate the extent of vascular bias in rs-fMRI signal fluctuations and functional connectivity. These findings suggest that a substantial portion of age-related rs-fMRI differences may be driven by vascular effects rather than directly by brain function.


Assuntos
Aorta/fisiologia , Circulação Cerebrovascular/fisiologia , Conectoma , Imageamento por Ressonância Magnética , Análise de Onda de Pulso , Rigidez Vascular/fisiologia , Adolescente , Adulto , Idoso , Aorta/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Marcadores de Spin , Adulto Jovem
10.
Brain ; 142(4): 1108-1120, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30847466

RESUMO

Genetic forms of frontotemporal dementia are most commonly due to mutations in three genes, C9orf72, GRN or MAPT, with presymptomatic carriers from families representing those at risk. While cerebral blood flow shows differences between frontotemporal dementia and other forms of dementia, there is limited evidence of its utility in presymptomatic stages of frontotemporal dementia. This study aimed to delineate the cerebral blood flow signature of presymptomatic, genetic frontotemporal dementia using a voxel-based approach. In the multicentre GENetic Frontotemporal dementia Initiative (GENFI) study, we investigated cross-sectional differences in arterial spin labelling MRI-based cerebral blood flow between presymptomatic C9orf72, GRN or MAPT mutation carriers (n = 107) and non-carriers (n = 113), using general linear mixed-effects models and voxel-based analyses. Cerebral blood flow within regions of interest derived from this model was then explored to identify differences between individual gene carrier groups and to estimate a timeframe for the expression of these differences. The voxel-based analysis revealed a significant inverse association between cerebral blood flow and the expected age of symptom onset in carriers, but not non-carriers. Regions included the bilateral insulae/orbitofrontal cortices, anterior cingulate/paracingulate gyri, and inferior parietal cortices, as well as the left middle temporal gyrus. For all bilateral regions, associations were greater on the right side. After correction for partial volume effects in a region of interest analysis, the results were found to be largely driven by the C9orf72 genetic subgroup. These cerebral blood flow differences first appeared approximately 12.5 years before the expected symptom onset determined on an individual basis. Cerebral blood flow was lower in presymptomatic mutation carriers closer to and beyond their expected age of symptom onset in key frontotemporal dementia signature regions. These results suggest that arterial spin labelling MRI may be a promising non-invasive imaging biomarker for the presymptomatic stages of genetic frontotemporal dementia.


Assuntos
Circulação Cerebrovascular/genética , Demência Frontotemporal/genética , Adulto , Idoso , Encéfalo/metabolismo , Proteína C9orf72/genética , Estudos Transversais , Feminino , Heterozigoto , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Mutação , Testes Neuropsicológicos , Progranulinas/genética , Proteínas tau/genética
11.
Int J Food Sci Nutr ; 71(7): 785-792, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32126864

RESUMO

Studies have shown the effects of chocolate-based products on appetite-related indicators; however, the results of these studies are equivocal. Thus, the aim of the present study was to conduct a systematic review of studies investigating the acute and long-term response of appetite-related hormones to chocolate intake in adults. A systematic search of MEDLINE and EMBASE for published studies, in English, was performed from inception up to November 2018. It appears that ghrelin and leptin are not responsible for the satiating effect of chocolate products. Gastric infusion of milk chocolate elicited a greater increase in cholecystokinin (CCK), in comparison with oral ingestion of milk chocolate and gastric infusion of non-caloric products. Moreover, viscosity seems to have no effect on active CCK and glucagon-like peptide-1. Due to the heterogeneity between studies, limited sample, low quality of evidence, and substantial variation in methods and chocolate products, caution is suggested in interpreting these results.


Assuntos
Apetite/efeitos dos fármacos , Apetite/fisiologia , Chocolate , Hormônios/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Hormônios/genética , Humanos
12.
Neuroimage ; 200: 275-280, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31254646

RESUMO

MR-guided focused ultrasound (MRgFUS) can temporarily permeabilize the blood-brain barrier (BBB), noninvasively, to allow therapeutics access to the central nervous system. However, its secondary and potential neuromodulation effects are not well understood. We aimed to characterize the functional impact of MRgFUS BBB opening in human subjects, based on the phase I trial in patients with Alzheimer's disease. We analyzed for changes in bilateral frontoparietal networks in resting state functional MRI from five subjects after BBB opening in the right frontal lobe. We found a transient functional connectivity decrease within only the ipsilateral frontoparietal network that was recovered by the next day. Additionally, baseline to month three comparisons did not reveal any significant differences from matched-controls from the Alzheimer's Disease Neuroimaging Initiative. Overall, MRgFUS may transiently affect neurologic function, but the functional organization is restored at one day and remains unchanged at three months. This first in human data has implications for the development of MRgFUS as a drug delivery platform to pathologic brain tissue and potential use for non-invasive neuromodulation.


Assuntos
Doença de Alzheimer/fisiopatologia , Barreira Hematoencefálica/fisiopatologia , Conectoma , Rede Nervosa/fisiopatologia , Lobo Parietal/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Ultrassonografia Doppler Transcraniana , Idoso , Doença de Alzheimer/diagnóstico por imagem , Barreira Hematoencefálica/diagnóstico por imagem , Ensaios Clínicos Fase I como Assunto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Lobo Parietal/diagnóstico por imagem , Córtex Pré-Frontal/diagnóstico por imagem , Fatores de Tempo
13.
J Magn Reson Imaging ; 50(3): 858-867, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30666734

RESUMO

BACKGROUND: The spatial coefficient of variation (sCoV) of arterial spin-labeled (ASL) MRI can index cerebral blood flow spatial heterogeneity. This metric reflects delayed blood delivery-seen as a hyperintense ASL signal juxtaposed by hypointense regions. PURPOSE: To investigate the use of ASL-sCoV in the classification of cognitively unimpaired (CU), mild cognitive impairment (MCI), and Alzheimer's disease (AD) cohorts. STUDY TYPE: Prospective/cohort. POPULATION: Baseline ASL images from AD neuroimaging initiative dataset in three groups of CU, MCI, and AD (N = 258). FIELD STRENGTH/SEQUENCE: Pulsed ASL (PICORE QT2) images were acquired on 3 T Siemens systems (TE/TR = 12/3400 msec, TI1/2 = 700/1900 msec). ASSESSMENT: ASL-sCoV was calculated in temporal, parietal, occipital, and frontal lobes as well as whole gray matter. STATISTICAL TESTS: The primary analysis used an analysis of covariance to investigate sCoV and cognitive group (CU, MCI, AD) associations. We also evaluated the repeatability of sCoV by calculating within-subject agreement in a subgroup of CU participants with a repeat ASL. The secondary analyses assessed ventricular volume, amyloid burden, glucose uptake, ASL-sCoV, and regional CBF as cognitive group classifiers using logistic regression models and receiver operating characteristic analyses. RESULTS: We found that global and temporal lobe sCoV differed between cognitive groups (P = 0.006). Post-hoc tests showed that temporal lobe sCoV was lower in CU than in MCI (Cohen's d = -0.36) or AD (Cohen's d = -1.36). We found that sCoV was moderately repeatable in CU (intersession intraclass correlation = 0.50; intrasession intraclass correlation = 0.88). Subsequent logistic regression analyses revealed that temporal lobe sCoV and amyloid uptake classified CU vs. MCI (P < 0.01; accuracy = 78%). Temporal lobe sCoV, amyloid, and glucose uptake classified CU vs. AD (P < 0.01; accuracy = 97%); glucose uptake significantly classified MCI vs. AD (P < 0.01; accuracy = 85%). DATA CONCLUSION: We showed that ASL spatial heterogeneity can be used alongside AD neuroimaging markers to distinguish cognitive groups, in particular, cognitively unimpaired from cognitively impaired individuals. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2019;50:858-867.


Assuntos
Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Circulação Cerebrovascular/fisiologia , Disfunção Cognitiva/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
14.
J Magn Reson Imaging ; 47(3): 647-655, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28681479

RESUMO

PURPOSE: To validate a multiparametric automated algorithm-ENhancement of Automated Blood fLow Estimates (ENABLE)-that identifies useful and poor arterial spin-labeled (ASL) difference images in multiple postlabeling delay (PLD) acquisitions and thereby improve clinical ASL. MATERIALS AND METHODS: ENABLE is a sort/check algorithm that uses a linear combination of ASL quality features. ENABLE uses simulations to determine quality weighting factors based on an unconstrained nonlinear optimization. We acquired a set of 6-PLD ASL images with 1.5T or 3.0T systems among 98 healthy elderly and adults with mild cognitive impairment or dementia. We contrasted signal-to-noise ratio (SNR) of cerebral blood flow (CBF) images obtained with ENABLE vs. conventional ASL analysis. In a subgroup, we validated our CBF estimates with single-photon emission computed tomography (SPECT) CBF images. RESULTS: ENABLE produced significantly increased SNR compared to a conventional ASL analysis (Wilcoxon signed-rank test, P < 0.0001). We also found the similarity between ASL and SPECT was greater when using ENABLE vs. conventional ASL analysis (n = 51, Wilcoxon signed-rank test, P < 0.0001) and this similarity was strongly related to ASL SNR (t = 24, P < 0.0001). CONCLUSION: These findings suggest that ENABLE improves CBF image quality from multiple PLD ASL in dementia cohorts at either 1.5T or 3.0T, achieved by multiparametric quality features that guided postprocessing of dementia ASL. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:647-655.


Assuntos
Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Circulação Cerebrovascular/fisiologia , Disfunção Cognitiva/fisiopatologia , Demência/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Encéfalo/fisiopatologia , Disfunção Cognitiva/diagnóstico por imagem , Simulação por Computador , Demência/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Razão Sinal-Ruído , Marcadores de Spin , Tomografia Computadorizada de Emissão de Fóton Único
16.
Mult Scler ; 22(11): 1421-1428, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26754799

RESUMO

PURPOSE: Detection of cortical abnormalities in relapsing-remitting multiple sclerosis (RRMS) remains elusive. Structural magnetic resonance imaging (MRI) measures of cortical integrity are limited, although functional techniques such as pseudo-continuous arterial spin labeling (pCASL) show promise as a surrogate marker of disease severity. We sought to determine the utility of pCASL to assess cortical cerebral blood flow (CBF) in RRMS patients with (RRMS-I) and without (RRMS-NI) cognitive impairment. METHODS: A total of 19 age-matched healthy controls and 39 RRMS patients were prospectively recruited. Cognition was assessed using the Minimal Assessment of Cognitive Function in Multiple Sclerosis (MACFIMS) battery. Cortical CBF was compared between groups using a mass univariate voxel-based morphometric analysis accounting for demographic and structural variable covariates. RESULTS: Cognitive impairment was present in 51.3% of patients. Significant CBF reduction was present in the RRMS-I compared to other groups in left frontal and right superior frontal cortex. Compared to healthy controls, RRMS-I displayed reduced CBF in the frontal, limbic, parietal and temporal cortex, and putamen/thalamus. RRMS-I demonstrated reduced left superior frontal lobe cortical CBF compared to RRMS-NI. No significant cortical CBF differences were present between healthy controls and RRMS-NI. CONCLUSION: Significant cortical CBF reduction occurs in RRMS-I compared to healthy controls and RRMS-NI in anatomically significant regions after controlling for structural and demographic differences.


Assuntos
Córtex Cerebral/irrigação sanguínea , Circulação Cerebrovascular , Disfunção Cognitiva/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Adulto , Estudos de Casos e Controles , Córtex Cerebral/diagnóstico por imagem , Disfunção Cognitiva/complicações , Disfunção Cognitiva/psicologia , Feminino , Lobo Frontal/irrigação sanguínea , Lobo Frontal/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Lobo Límbico/irrigação sanguínea , Lobo Límbico/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/complicações , Esclerose Múltipla Recidivante-Remitente/psicologia , Lobo Parietal/irrigação sanguínea , Lobo Parietal/diagnóstico por imagem , Putamen/irrigação sanguínea , Putamen/diagnóstico por imagem , Lobo Temporal/irrigação sanguínea , Lobo Temporal/diagnóstico por imagem , Tálamo/irrigação sanguínea , Tálamo/diagnóstico por imagem
17.
J Magn Reson Imaging ; 42(5): 1377-85, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25873287

RESUMO

PURPOSE: To evaluate the impact of rejecting intermediate cerebral blood flow (CBF) images that are adversely affected by head motion during an arterial spin labeling (ASL) acquisition. MATERIALS AND METHODS: Eighty participants were recruited, representing a wide age range (14-90 years) and heterogeneous cerebrovascular health conditions including bipolar disorder, chronic stroke, and moderate to severe white matter hyperintensities of presumed vascular origin. Pseudocontinuous ASL and T1 -weigthed anatomical images were acquired on a 3T scanner. ASL intermediate CBF images were included based on their contribution to the mean estimate, with the goal to maximize CBF detectability in gray matter (GM). Simulations were conducted to evaluate the performance of the proposed optimization procedure relative to other ASL postprocessing approaches. Clinical CBF images were also assessed visually by two experienced neuroradiologists. RESULTS: Optimized CBF images (CBFopt ) had significantly greater agreement with a synthetic ground truth CBF image and greater CBF detectability relative to the other ASL analysis methods (P < 0.05). Moreover, empirical CBFopt images showed a significantly improved signal-to-noise ratio relative to CBF images obtained from other postprocessing approaches (mean: 12.6%; range 1% to 56%; P < 0.001), and this improvement was age-dependent (P = 0.03). Differences between CBF images from different analysis procedures were not perceptible by visual inspection, while there was a moderate agreement between the ratings (κ = 0.44, P < 0.001). CONCLUSION: This study developed an automated head motion threshold-free procedure to improve the detection of CBF in GM. The improvement in CBF image quality was larger when considering older participants.


Assuntos
Transtorno Bipolar/fisiopatologia , Encéfalo/fisiopatologia , Circulação Cerebrovascular/fisiologia , Transtornos Cerebrovasculares/fisiopatologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Encéfalo/irrigação sanguínea , Doença Crônica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , Razão Sinal-Ruído , Marcadores de Spin , Acidente Vascular Cerebral/fisiopatologia , Adulto Jovem
18.
Exp Brain Res ; 233(8): 2467-75, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26003127

RESUMO

The mechanisms supporting functional improvement by aerobic exercise following stroke remain incompletely understood. This study investigated how cycling intensity and aerobic fitness influence cerebral blood flow (CBF) following a single exercise session. Thirteen community-living stroke survivors performed 20 min of semi-recumbent cycling at low and moderate intensities (40-50 and 60-70 % of heart rate reserve, respectively) as determined from an exercise stress test. CBF was quantified by arterial spin labeling MRI at baseline, as well as 30 and 50 min post-exercise. An intensity-dependent effect was observed in the right post-central and supramarginal gyri up to 50 min after exercise (uncorrected p < 0.005, cluster size ≥10). Regional CBF was increased 18 ± 17 % and reduced 8 ± 12 % following moderate- and low-intensity cycling, respectively. In contrast, CBF changes were similar between sessions in the right lentiform nucleus and mid-frontal gyrus, as well as the left temporal and parietal gyri. Aerobic fitness was directly related to posterior cingulate and thalamic CBF, and inversely related to precuneal CBF at rest (R (2) ≥ 0.75); however, no relationship between fitness and the post-exercise change in CBF was observed. Divergent changes in regional CBF were observed in the right parietal cortex following low- and moderate-intensity exercise, which suggests that intensity of prescribed exercise may be useful in optimizing rehabilitation.


Assuntos
Córtex Cerebral/irrigação sanguínea , Circulação Cerebrovascular/fisiologia , Corpo Estriado/irrigação sanguínea , Exercício Físico/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Idoso , Doença Crônica , Feminino , Humanos , Angiografia por Ressonância Magnética , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Reabilitação do Acidente Vascular Cerebral
19.
J Cereb Blood Flow Metab ; : 271678X241237624, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38452039

RESUMO

In addition to amyloid and tau pathology, elevated systemic vascular risk, white matter injury, and reduced cerebral blood flow contribute to late-life cognitive decline. Given the strong collinearity among these parameters, we proposed a framework to extract the independent latent features underlying cognitive decline using the Harvard Aging Brain Study (N = 166 cognitively unimpaired older adults at baseline). We used the following measures from the baseline visit: cortical amyloid, inferior temporal cortex tau, relative cerebral blood flow, white matter hyperintensities, peak width of skeletonized mean diffusivity, and Framingham Heart Study cardiovascular disease risk. We used exploratory factor analysis to extract orthogonal factors from these variables and their interactions. These factors were used in a regression model to explain longitudinal Preclinical Alzheimer Cognitive Composite-5 (PACC) decline (follow-up = 8.5 ±2.7 years). We next examined whether gray matter volume atrophy acts as a mediator of factors and PACC decline. Latent factors of systemic vascular risk, white matter injury, and relative cerebral blood flow independently explain cognitive decline beyond amyloid and tau. Gray matter volume atrophy mediates these associations with the strongest effect on white matter injury. These results suggest that systemic vascular risk contributes to cognitive decline beyond current markers of cerebrovascular injury, amyloid, and tau.

20.
Alzheimers Res Ther ; 16(1): 148, 2024 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961512

RESUMO

BACKGROUND: Leveraging Alzheimer's disease (AD) imaging biomarkers and longitudinal cognitive data may allow us to establish evidence of cognitive resilience (CR) to AD pathology in-vivo. Here, we applied latent class mixture modeling, adjusting for sex, baseline age, and neuroimaging biomarkers of amyloid, tau and neurodegeneration, to a sample of cognitively unimpaired older adults to identify longitudinal trajectories of CR. METHODS: We identified 200 Harvard Aging Brain Study (HABS) participants (mean age = 71.89 years, SD = 9.41 years, 59% women) who were cognitively unimpaired at baseline with 2 or more timepoints of cognitive assessment following a single amyloid-PET, tau-PET and structural MRI. We examined latent class mixture models with longitudinal cognition as the dependent variable and time from baseline, baseline age, sex, neocortical Aß, entorhinal tau, and adjusted hippocampal volume as independent variables. We then examined group differences in CR-related factors across the identified subgroups from a favored model. Finally, we applied our favored model to a dataset from the Alzheimer's Disease Neuroimaging Initiative (ADNI; n = 160, mean age = 73.9 years, SD = 7.6 years, 60% women). RESULTS: The favored model identified 3 latent subgroups, which we labelled as Normal (71% of HABS sample), Resilient (22.5%) and Declining (6.5%) subgroups. The Resilient subgroup exhibited higher baseline cognitive performance and a stable cognitive slope. They were differentiated from other groups by higher levels of verbal intelligence and past cognitive activity. In ADNI, this model identified a larger Normal subgroup (88.1%), a smaller Resilient subgroup (6.3%) and a Declining group (5.6%) with a lower cognitive baseline. CONCLUSION: These findings demonstrate the value of data-driven approaches to identify longitudinal CR groups in preclinical AD. With such an approach, we identified a CR subgroup who reflected expected characteristics based on previous literature, higher levels of verbal intelligence and past cognitive activity.


Assuntos
Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Proteínas tau , Humanos , Feminino , Masculino , Idoso , Proteínas tau/metabolismo , Estudos Longitudinais , Estudos Transversais , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Doença de Alzheimer/psicologia , Doença de Alzheimer/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/metabolismo , Peptídeos beta-Amiloides/metabolismo , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/metabolismo , Cognição/fisiologia , Pessoa de Meia-Idade , Reserva Cognitiva/fisiologia , Biomarcadores , Neuroimagem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA