Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Mater ; 36(11): e2310109, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38037437

RESUMO

Nanodiamonds (ND) hold great potential for diverse applications due to their biocompatibility, non-toxicity, and versatile functionalization. Direct visualization of ND by means of non-invasive imaging techniques will open new venues for labeling and tracking, offering unprecedented and unambiguous detection of labeled cells or nanodiamond-based drug carrier systems. The structural defects in diamonds, such as vacancies, can have paramagnetic properties and potentially act as contrast agents in magnetic resonance imaging (MRI). The smallest nanoscale diamond particles, detonation ND, are reported to effectively reduce longitudinal relaxation time T1 and provide signal enhancement in MRI. Using in vivo, chicken embryos, direct visualization of ND is demonstrated as a bright signal with high contrast to noise ratio. At 24 h following intravascular application marked signal enhancement is noticed in the liver and the kidneys, suggesting uptake by the phagocytic cells of the reticuloendothelial system (RES), and in vivo labeling of these cells. This is confirmed by visualization of nanodiamond-labeled macrophages as positive (bright) signal, in vitro. Macrophage cell labeling is not associated with significant increase in pro-inflammatory cytokines or marked cytotoxicity. These results indicate nanodiamond as a novel gadolinium-free contrast-enhancing agent with potential for cell labeling and tracking and over periods of time.


Assuntos
Nanodiamantes , Embrião de Galinha , Animais , Nanodiamantes/química , Imageamento por Ressonância Magnética/métodos , Fígado/diagnóstico por imagem , Macrófagos , Portadores de Fármacos/farmacologia
2.
Nat Commun ; 15(1): 6693, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107326

RESUMO

High-precision additive manufacturing technologies, such as two-photon polymerization, are mainly limited to photo-curable polymers and currently lacks the possibility to produce multimaterial components. Herein, we report a physically bottom-up assembly strategy that leverages capillary force to trap various nanomaterials and assemble them onto three-dimensional (3D) microscaffolds. This capillary-trapping strategy enables precise and uniform assembly of nanomaterials into versatile 3D microstructures with high uniformity and mass loading. Our approach applies to diverse materials irrespective of their physiochemical properties, including polymers, metals, metal oxides, and others. It can integrate at least four different material types into a single 3D microstructure in a sequential, layer-by-layer manner, opening immense possibilities for tailored functionalities on demand. Furthermore, the 3D microscaffolds are removable, facilitating the creation of pure material-based 3D microstructures. This universal 3D micro-/nanofabrication technique with various nanomaterials enables the creation of advanced miniature devices with potential applications in multifunctional microrobots and smart micromachines.

3.
Adv Mater ; 35(2): e2207257, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36271730

RESUMO

Various functional complex 3D patterned surfaces with micro- or nanostructures have been developed and their superior performances over non-patterned smooth surfaces proven. However, it is challenging to mass-produce such complex micro-/nanopatterned surfaces, which limits their commercialization drastically. Although roll-to-roll (R2R) manufacturing using flexible molds has been implemented for mass-production of such functional surfaces, the poor mold repeatability issue has not been resolved yet. Here, a strategy to significantly improve the repeatability of the micropatterned flexible silicone molds over 1000 cycles against highly adhesive polyurethane acrylates (PUAs) in UV light curing based R2R systems by using a two-step curing process is reported. The mold repeatability is drastically increased from 10s of cycles to over 1000 cycles through the proposed strategy in spite of the complicated 3D undercut geometry and high tackiness of the microstructure. This two-step process would enable scaled-up production of micro-/nanostructured adhesives, such as gecko-inspired microfiber adhesives as demonstrated in this study, as well as various other functional micro-/nanostructured surfaces by enhancing the flexible mold lifetime.

4.
Adv Mater ; 35(10): e2209812, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36585849

RESUMO

While a majority of wireless microrobots have shown multi-responsiveness to implement complex biomedical functions, their functional executions are strongly dependent on the range of stimulus inputs, which curtails their functional diversity. Furthermore, their responsive functions are coupled to each other, which results in the overlap of the task operations. Here, a 3D-printed multifunctional microrobot inspired by pollen grains with three hydrogel components is demonstrated: iron platinum (FePt) nanoparticle-embedded pentaerythritol triacrylate (PETA), poly N-isopropylacrylamide (pNIPAM), and poly N-isopropylacrylamide acrylic acid (pNIPAM-AAc) structures. Each of these structures exhibits their respective targeted functions: responding to magnetic fields for torque-driven surface rolling and steering, exhibiting temperature responsiveness for on-demand surface attachment (anchoring), and pH-responsive cargo release. The versatile multifunctional pollen grain-inspired robots conceptualized here pave the way for various future medical microrobots to improve their projected performance and functional diversity.


Assuntos
Acrilamidas , Hidrogéis , Hidrogéis/química , Acrilamidas/química , Ferro , Impressão Tridimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA