Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(D1): D1373-D1380, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36305812

RESUMO

PubChem (https://pubchem.ncbi.nlm.nih.gov) is a popular chemical information resource that serves a wide range of use cases. In the past two years, a number of changes were made to PubChem. Data from more than 120 data sources was added to PubChem. Some major highlights include: the integration of Google Patents data into PubChem, which greatly expanded the coverage of the PubChem Patent data collection; the creation of the Cell Line and Taxonomy data collections, which provide quick and easy access to chemical information for a given cell line and taxon, respectively; and the update of the bioassay data model. In addition, new functionalities were added to the PubChem programmatic access protocols, PUG-REST and PUG-View, including support for target-centric data download for a given protein, gene, pathway, cell line, and taxon and the addition of the 'standardize' option to PUG-REST, which returns the standardized form of an input chemical structure. A significant update was also made to PubChemRDF. The present paper provides an overview of these changes.


Assuntos
Bases de Dados de Compostos Químicos , Descoberta de Drogas , Descoberta de Drogas/métodos , Bioensaio , Proteínas , Quimioinformática
2.
Nucleic Acids Res ; 49(D1): D1388-D1395, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33151290

RESUMO

PubChem (https://pubchem.ncbi.nlm.nih.gov) is a popular chemical information resource that serves the scientific community as well as the general public, with millions of unique users per month. In the past two years, PubChem made substantial improvements. Data from more than 100 new data sources were added to PubChem, including chemical-literature links from Thieme Chemistry, chemical and physical property links from SpringerMaterials, and patent links from the World Intellectual Properties Organization (WIPO). PubChem's homepage and individual record pages were updated to help users find desired information faster. This update involved a data model change for the data objects used by these pages as well as by programmatic users. Several new services were introduced, including the PubChem Periodic Table and Element pages, Pathway pages, and Knowledge panels. Additionally, in response to the coronavirus disease 2019 (COVID-19) outbreak, PubChem created a special data collection that contains PubChem data related to COVID-19 and the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).


Assuntos
COVID-19/prevenção & controle , Bases de Dados de Compostos Químicos , Armazenamento e Recuperação da Informação/estatística & dados numéricos , SARS-CoV-2/isolamento & purificação , Interface Usuário-Computador , COVID-19/epidemiologia , COVID-19/virologia , Descoberta de Drogas/estatística & dados numéricos , Epidemias , Humanos , Armazenamento e Recuperação da Informação/métodos , Internet , Saúde Pública/estatística & dados numéricos , SARS-CoV-2/fisiologia , Software
3.
Nucleic Acids Res ; 47(D1): D1102-D1109, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30371825

RESUMO

PubChem (https://pubchem.ncbi.nlm.nih.gov) is a key chemical information resource for the biomedical research community. Substantial improvements were made in the past few years. New data content was added, including spectral information, scientific articles mentioning chemicals, and information for food and agricultural chemicals. PubChem released new web interfaces, such as PubChem Target View page, Sources page, Bioactivity dyad pages and Patent View page. PubChem also released a major update to PubChem Widgets and introduced a new programmatic access interface, called PUG-View. This paper describes these new developments in PubChem.


Assuntos
Biologia Computacional/métodos , Bases de Dados de Compostos Químicos , Preparações Farmacêuticas/química , Bibliotecas de Moléculas Pequenas/química , Animais , Bioensaio/métodos , Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala/métodos , Humanos , Armazenamento e Recuperação da Informação/métodos , Internet , Estrutura Molecular , Patentes como Assunto , Relação Estrutura-Atividade
4.
Nucleic Acids Res ; 45(D1): D955-D963, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27899599

RESUMO

PubChem's BioAssay database (https://pubchem.ncbi.nlm.nih.gov) has served as a public repository for small-molecule and RNAi screening data since 2004 providing open access of its data content to the community. PubChem accepts data submission from worldwide researchers at academia, industry and government agencies. PubChem also collaborates with other chemical biology database stakeholders with data exchange. With over a decade's development effort, it becomes an important information resource supporting drug discovery and chemical biology research. To facilitate data discovery, PubChem is integrated with all other databases at NCBI. In this work, we provide an update for the PubChem BioAssay database describing several recent development including added sources of research data, redesigned BioAssay record page, new BioAssay classification browser and new features in the Upload system facilitating data sharing.


Assuntos
Bases de Dados de Compostos Químicos , Bases de Dados de Ácidos Nucleicos , Interferência de RNA , Ferramenta de Busca , Bibliotecas de Moléculas Pequenas , Descoberta de Drogas , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Software , Interface Usuário-Computador , Navegador
5.
Nucleic Acids Res ; 44(D1): D1202-13, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26400175

RESUMO

PubChem (https://pubchem.ncbi.nlm.nih.gov) is a public repository for information on chemical substances and their biological activities, launched in 2004 as a component of the Molecular Libraries Roadmap Initiatives of the US National Institutes of Health (NIH). For the past 11 years, PubChem has grown to a sizable system, serving as a chemical information resource for the scientific research community. PubChem consists of three inter-linked databases, Substance, Compound and BioAssay. The Substance database contains chemical information deposited by individual data contributors to PubChem, and the Compound database stores unique chemical structures extracted from the Substance database. Biological activity data of chemical substances tested in assay experiments are contained in the BioAssay database. This paper provides an overview of the PubChem Substance and Compound databases, including data sources and contents, data organization, data submission using PubChem Upload, chemical structure standardization, web-based interfaces for textual and non-textual searches, and programmatic access. It also gives a brief description of PubChem3D, a resource derived from theoretical three-dimensional structures of compounds in PubChem, as well as PubChemRDF, Resource Description Framework (RDF)-formatted PubChem data for data sharing, analysis and integration with information contained in other databases.


Assuntos
Bases de Dados de Compostos Químicos , Internet , Estrutura Molecular , Preparações Farmacêuticas/química , Software
6.
Nucleic Acids Res ; 42(Database issue): D1075-82, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24198245

RESUMO

PubChem's BioAssay database (http://pubchem.ncbi.nlm.nih.gov) is a public repository for archiving biological tests of small molecules generated through high-throughput screening experiments, medicinal chemistry studies, chemical biology research and drug discovery programs. In addition, the BioAssay database contains data from high-throughput RNA interference screening aimed at identifying critical genes responsible for a biological process or disease condition. The mission of PubChem is to serve the community by providing free and easy access to all deposited data. To this end, PubChem BioAssay is integrated into the National Center for Biotechnology Information retrieval system, making them searchable by Entrez queries and cross-linked to other biomedical information archived at National Center for Biotechnology Information. Moreover, PubChem BioAssay provides web-based and programmatic tools allowing users to search, access and analyze bioassay test results and metadata. In this work, we provide an update for the PubChem BioAssay resource, such as information content growth, new developments supporting data integration and search, and the recently deployed PubChem Upload to streamline chemical structure and bioassay submissions.


Assuntos
Bases de Dados de Compostos Químicos , Ensaios de Triagem em Larga Escala , Interferência de RNA , Descoberta de Drogas , Genes , Humanos , Internet , Proteínas/genética , Bibliotecas de Moléculas Pequenas , Integração de Sistemas
7.
Biophys J ; 109(6): 1295-306, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26213149

RESUMO

Structures of protein complexes provide atomistic insights into protein interactions. Human proteins represent a quarter of all structures in the Protein Data Bank; however, available protein complexes cover less than 10% of the human proteome. Although it is theoretically possible to infer interactions in human proteins based on structures of homologous protein complexes, it is still unclear to what extent protein interactions and binding sites are conserved, and whether protein complexes from remotely related species can be used to infer interactions and binding sites. We considered biological units of protein complexes and clustered protein-protein binding sites into similarity groups based on their structure and sequence, which allowed us to identify unique binding sites. We showed that the growth rate of the number of unique binding sites in the Protein Data Bank was much slower than the growth rate of the number of structural complexes. Next, we investigated the evolutionary roots of unique binding sites and identified the major phyletic branches with the largest expansion in the number of novel binding sites. We found that many binding sites could be traced to the universal common ancestor of all cellular organisms, whereas relatively few binding sites emerged at the major evolutionary branching points. We analyzed the physicochemical properties of unique binding sites and found that the most ancient sites were the largest in size, involved many salt bridges, and were the most compact and least planar. In contrast, binding sites that appeared more recently in the evolution of eukaryotes were characterized by a larger fraction of polar and aromatic residues, and were less compact and more planar, possibly due to their more transient nature and roles in signaling processes.


Assuntos
Sítios de Ligação/genética , Evolução Molecular , Ligação Proteica/genética , Proteínas/genética , Proteínas/metabolismo , Animais , Humanos , Modelos Moleculares
8.
EMBO Rep ; 13(3): 266-71, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22261719

RESUMO

Although the identification of protein interactions by high-throughput (HTP) methods progresses at a fast pace, 'interactome' data sets still suffer from high rates of false positives and low coverage. To map the human protein interactome, we describe a new framework that uses experimental evidence on structural complexes, the atomic details of binding interfaces and evolutionary conservation. The structurally inferred interaction network is highly modular and more functionally coherent compared with experimental interaction networks derived from multiple literature citations. Moreover, structurally inferred and high-confidence HTP networks complement each other well, allowing us to construct a merged network to generate testable hypotheses and provide valuable experimental leads.


Assuntos
Complexos Multiproteicos/química , Mapeamento de Interação de Proteínas/métodos , Proteômica/métodos , Sítios de Ligação , Biologia Computacional/métodos , Bases de Dados Genéticas , Humanos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Software
9.
Nucleic Acids Res ; 40(Database issue): D834-40, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22102591

RESUMO

We have recently developed the Inferred Biomolecular Interaction Server (IBIS) and database, which reports, predicts and integrates different types of interaction partners and locations of binding sites in proteins based on the analysis of homologous structural complexes. Here, we highlight several new IBIS features and options. The server's webpage is now redesigned to allow users easier access to data for different interaction types. An entry page is added to give a quick summary of available results and to now accept protein sequence accessions. To elucidate the formation of protein complexes, not just binary interactions, IBIS currently presents an expandable interaction network. Previously, IBIS provided annotations for four different types of binding partners: proteins, small molecules, nucleic acids and peptides; in the current version a new protein-ion interaction type has been added. Several options provide easy downloads of IBIS data for all Protein Data Bank (PDB) protein chains and the results for each query. In this study, we show that about one-third of all RefSeq sequences can be annotated with IBIS interaction partners and binding sites. The IBIS server is available at http://www.ncbi.nlm.nih.gov/Structure/ibis/ibis.cgi and updated biweekly.


Assuntos
Bases de Dados de Proteínas , Mapeamento de Interação de Proteínas , Proteínas/química , Sítios de Ligação , Gráficos por Computador , Íons/química , Anotação de Sequência Molecular , Complexos Multiproteicos/química , Ácidos Nucleicos/química , Peptídeos/química , Análise de Sequência de Proteína , Integração de Sistemas , Interface Usuário-Computador
10.
Nucleic Acids Res ; 40(Database issue): D400-12, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22140110

RESUMO

PubChem (http://pubchem.ncbi.nlm.nih.gov) is a public repository for biological activity data of small molecules and RNAi reagents. The mission of PubChem is to deliver free and easy access to all deposited data, and to provide intuitive data analysis tools. The PubChem BioAssay database currently contains 500,000 descriptions of assay protocols, covering 5000 protein targets, 30,000 gene targets and providing over 130 million bioactivity outcomes. PubChem's bioassay data are integrated into the NCBI Entrez information retrieval system, thus making PubChem data searchable and accessible by Entrez queries. Also, as a repository, PubChem constantly optimizes and develops its deposition system answering many demands of both high- and low-volume depositors. The PubChem information platform allows users to search, review and download bioassay description and data. The PubChem platform also enables researchers to collect, compare and analyze biological test results through web-based and programmatic tools. In this work, we provide an update for the PubChem BioAssay resource, including information content growth, data model extension and new developments of data submission, retrieval, analysis and download tools.


Assuntos
Bases de Dados Factuais , Descoberta de Drogas , Interferência de RNA , Bioensaio , Ensaios de Triagem em Larga Escala , Indicadores e Reagentes , Estrutura Molecular , Software
11.
Environ Sci Process Impacts ; 25(11): 1788-1801, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37431591

RESUMO

The term "exposome" is defined as a comprehensive study of life-course environmental exposures and the associated biological responses. Humans are exposed to many different chemicals, which can pose a major threat to the well-being of humanity. Targeted or non-targeted mass spectrometry techniques are widely used to identify and characterize various environmental stressors when linking exposures to human health. However, identification remains challenging due to the huge chemical space applicable to exposomics, combined with the lack of sufficient relevant entries in spectral libraries. Addressing these challenges requires cheminformatics tools and database resources to share curated open spectral data on chemicals to improve the identification of chemicals in exposomics studies. This article describes efforts to contribute spectra relevant for exposomics to the open mass spectral library MassBank (https://www.massbank.eu) using various open source software efforts, including the R packages RMassBank and Shinyscreen. The experimental spectra were obtained from ten mixtures containing toxicologically relevant chemicals from the US Environmental Protection Agency (EPA) Non-Targeted Analysis Collaborative Trial (ENTACT). Following processing and curation, 5582 spectra from 783 of the 1268 ENTACT compounds were added to MassBank, and through this to other open spectral libraries (e.g., MoNA, GNPS) for community benefit. Additionally, an automated deposition and annotation workflow was developed with PubChem to enable the display of all MassBank mass spectra in PubChem, which is rerun with each MassBank release. The new spectral records have already been used in several studies to increase the confidence in identification in non-target small molecule identification workflows applied to environmental and exposomics research.


Assuntos
Exposição Ambiental , Software , Humanos , Espectrometria de Massas/métodos , Exposição Ambiental/análise , Bases de Dados Factuais
12.
Nucleic Acids Res ; 38(Database issue): D283-7, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19906708

RESUMO

Most of the proteins in a cell assemble into complexes to carry out their function. In this work, we have created a new database (named ComSin) of protein structures in bound (complex) and unbound (single) states to provide a researcher with exhaustive information on structures of the same or homologous proteins in bound and unbound states. From the complete Protein Data Bank (PDB), we selected 24 910 pairs of protein structures in bound and unbound states, and identified regions of intrinsic disorder. For 2448 pairs, the proteins in bound and unbound states are identical, while 7129 pairs have sequence identity 90% or larger. The developed server enables one to search for proteins in bound and unbound states with several options including sequence similarity between the corresponding proteins in bound and unbound states, and validation of interaction interfaces of protein complexes. Besides that, through our web server, one can obtain necessary information for studying disorder-to-order and order-to-disorder transitions upon complex formation, and analyze structural differences between proteins in bound and unbound states. The database is available at http://antares.protres.ru/comsin/.


Assuntos
Proteínas de Bactérias/química , Biologia Computacional/métodos , Bases de Dados Genéticas , Animais , Biologia Computacional/tendências , Bases de Dados de Proteínas , Humanos , Armazenamento e Recuperação da Informação/métodos , Internet , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Software
13.
Nucleic Acids Res ; 38(Database issue): D255-66, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19933261

RESUMO

The PubChem BioAssay database (http://pubchem.ncbi.nlm.nih.gov) is a public repository for biological activities of small molecules and small interfering RNAs (siRNAs) hosted by the US National Institutes of Health (NIH). It archives experimental descriptions of assays and biological test results and makes the information freely accessible to the public. A PubChem BioAssay data entry includes an assay description, a summary and detailed test results. Each assay record is linked to the molecular target, whenever possible, and is cross-referenced to other National Center for Biotechnology Information (NCBI) database records. 'Related BioAssays' are identified by examining the assay target relationship and activity profile of commonly tested compounds. A key goal of PubChem BioAssay is to make the biological activity information easily accessible through the NCBI information retrieval system-Entrez, and various web-based PubChem services. An integrated suite of data analysis tools are available to optimize the utility of the chemical structure and biological activity information within PubChem, enabling researchers to aggregate, compare and analyze biological test results contributed by multiple organizations. In this work, we describe the PubChem BioAssay database, including data model, bioassay deposition and utilities that PubChem provides for searching, downloading and analyzing the biological activity information contained therein.


Assuntos
Bioensaio , Biologia Computacional/métodos , Bases de Dados Factuais , Dicionários Químicos como Assunto , Animais , Biologia Computacional/tendências , Bases de Dados de Proteínas , Humanos , Armazenamento e Recuperação da Informação/métodos , Internet , National Library of Medicine (U.S.) , Preparações Farmacêuticas/química , Farmacologia , Software , Relação Estrutura-Atividade , Estados Unidos
14.
Nucleic Acids Res ; 38(Database issue): D518-24, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19843613

RESUMO

IBIS is the NCBI Inferred Biomolecular Interaction Server. This server organizes, analyzes and predicts interaction partners and locations of binding sites in proteins. IBIS provides annotations for different types of binding partners (protein, chemical, nucleic acid and peptides), and facilitates the mapping of a comprehensive biomolecular interaction network for a given protein query. IBIS reports interactions observed in experimentally determined structural complexes of a given protein, and at the same time IBIS infers binding sites/interacting partners by inspecting protein complexes formed by homologous proteins. Similar binding sites are clustered together based on their sequence and structure conservation. To emphasize biologically relevant binding sites, several algorithms are used for verification in terms of evolutionary conservation, biological importance of binding partners, size and stability of interfaces, as well as evidence from the published literature. IBIS is updated regularly and is freely accessible via http://www.ncbi.nlm.nih.gov/Structure/ibis/ibis.html.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Bases de Dados de Proteínas , Mapeamento de Interação de Proteínas/métodos , Estrutura Terciária de Proteína , Algoritmos , Animais , Sítios de Ligação , Domínio Catalítico , Análise por Conglomerados , Biologia Computacional/tendências , Humanos , Armazenamento e Recuperação da Informação/métodos , Internet , Proteínas Tirosina Quinases/química , Software
15.
BMC Bioinformatics ; 11: 365, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20594344

RESUMO

BACKGROUND: The study of protein-small molecule interactions is vital for understanding protein function and for practical applications in drug discovery. To benefit from the rapidly increasing structural data, it is essential to improve the tools that enable large scale binding site prediction with greater emphasis on their biological validity. RESULTS: We have developed a new method for the annotation of protein-small molecule binding sites, using inference by homology, which allows us to extend annotation onto protein sequences without experimental data available. To ensure biological relevance of binding sites, our method clusters similar binding sites found in homologous protein structures based on their sequence and structure conservation. Binding sites which appear evolutionarily conserved among non-redundant sets of homologous proteins are given higher priority. After binding sites are clustered, position specific score matrices (PSSMs) are constructed from the corresponding binding site alignments. Together with other measures, the PSSMs are subsequently used to rank binding sites to assess how well they match the query and to better gauge their biological relevance. The method also facilitates a succinct and informative representation of observed and inferred binding sites from homologs with known three-dimensional structures, thereby providing the means to analyze conservation and diversity of binding modes. Furthermore, the chemical properties of small molecules bound to the inferred binding sites can be used as a starting point in small molecule virtual screening. The method was validated by comparison to other binding site prediction methods and to a collection of manually curated binding site annotations. We show that our method achieves a sensitivity of 72% at predicting biologically relevant binding sites and can accurately discriminate those sites that bind biological small molecules from non-biological ones. CONCLUSIONS: A new algorithm has been developed to predict binding sites with high accuracy in terms of their biological validity. It also provides a common platform for function prediction, knowledge-based docking and for small molecule virtual screening. The method can be applied even for a query sequence without structure. The method is available at http://www.ncbi.nlm.nih.gov/Structure/ibis/ibis.cgi.


Assuntos
Algoritmos , Sítios de Ligação , Proteínas/química , Proteínas/metabolismo , Sequência de Aminoácidos , Análise por Conglomerados , Bases de Conhecimento , Ligação Proteica , Análise de Sequência de Proteína , Homologia Estrutural de Proteína
16.
PLoS Comput Biol ; 5(3): e1000316, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19282967

RESUMO

We perform a large-scale study of intrinsically disordered regions in proteins and protein complexes using a non-redundant set of hundreds of different protein complexes. In accordance with the conventional view that folding and binding are coupled, in many of our cases the disorder-to-order transition occurs upon complex formation and can be localized to binding interfaces. Moreover, analysis of disorder in protein complexes depicts a significant fraction of intrinsically disordered regions, with up to one third of all residues being disordered. We find that the disorder in homodimers, especially in symmetrical homodimers, is significantly higher than in heterodimers and offer an explanation for this interesting phenomenon. We argue that the mechanisms of regulation of binding specificity through disordered regions in complexes can be as common as for unbound monomeric proteins. The fascinating diversity of roles of disordered regions in various biological processes and protein oligomeric forms shown in our study may be a subject of future endeavors in this area.


Assuntos
Modelos Químicos , Modelos Moleculares , Mapeamento de Interação de Proteínas/métodos , Proteínas/química , Proteínas/ultraestrutura , Análise de Sequência de Proteína/métodos , Sequência de Aminoácidos , Sítios de Ligação , Simulação por Computador , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína
17.
PLoS Comput Biol ; 3(4): e43, 2007 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-17465672

RESUMO

Recent advances in high-throughput experimental methods for the identification of protein interactions have resulted in a large amount of diverse data that are somewhat incomplete and contradictory. As valuable as they are, such experimental approaches studying protein interactomes have certain limitations that can be complemented by the computational methods for predicting protein interactions. In this review we describe different approaches to predict protein interaction partners as well as highlight recent achievements in the prediction of specific domains mediating protein-protein interactions. We discuss the applicability of computational methods to different types of prediction problems and point out limitations common to all of them.


Assuntos
Algoritmos , Modelos Químicos , Mapeamento de Interação de Proteínas/métodos , Proteínas/química , Proteínas/metabolismo , Análise de Sequência de Proteína/métodos , Sítios de Ligação , Simulação por Computador , Ligação Proteica , Estrutura Terciária de Proteína
18.
Methods Mol Biol ; 1825: 63-91, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30334203

RESUMO

PubChem ( https://pubchem.ncbi.nlm.nih.gov ) is a key chemical information resource, developed and maintained by the US National Institutes of Health. The present chapter describes how to find potential multitarget ligands from PubChem that would be tested in further experiments. While the protocol presented here uses PubChem's Web-based interfaces to allow users to follow it interactively, it can also be implemented in computer software by using programmatic access interfaces to PubChem (such as PUG-REST or E-Utilities).


Assuntos
Bases de Dados de Compostos Químicos , Descoberta de Drogas/métodos , Internet , Preparações Farmacêuticas/metabolismo , Software , Humanos , Ligantes , National Institutes of Health (U.S.) , Preparações Farmacêuticas/química , Estados Unidos , Interface Usuário-Computador
19.
Nucleic Acids Res ; 33(Database issue): D192-6, 2005 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-15608175

RESUMO

The Conserved Domain Database (CDD) is the protein classification component of NCBI's Entrez query and retrieval system. CDD is linked to other Entrez databases such as Proteins, Taxonomy and PubMed, and can be accessed at http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=cdd. CD-Search, which is available at http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi, is a fast, interactive tool to identify conserved domains in new protein sequences. CD-Search results for protein sequences in Entrez are pre-computed to provide links between proteins and domain models, and computational annotation visible upon request. Protein-protein queries submitted to NCBI's BLAST search service at http://www.ncbi.nlm.nih.gov/BLAST are scanned for the presence of conserved domains by default. While CDD started out as essentially a mirror of publicly available domain alignment collections, such as SMART, Pfam and COG, we have continued an effort to update, and in some cases replace these models with domain hierarchies curated at the NCBI. Here, we report on the progress of the curation effort and associated improvements in the functionality of the CDD information retrieval system.


Assuntos
Bases de Dados de Proteínas , Estrutura Terciária de Proteína , Proteínas/classificação , Sequência de Aminoácidos , Sequência Conservada , Filogenia , Alinhamento de Sequência , Análise de Sequência de Proteína , Interface Usuário-Computador
20.
Methods Mol Biol ; 1647: 221-236, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28809006

RESUMO

We describe a computational protocol to aid the design of small molecule and peptide drugs that target protein-protein interactions, particularly for anti-cancer therapy. To achieve this goal, we explore multiple strategies, including finding binding hot spots, incorporating chemical similarity and bioactivity data, and sampling similar binding sites from homologous protein complexes. We demonstrate how to combine existing interdisciplinary resources with examples of semi-automated workflows. Finally, we discuss several major problems, including the occurrence of drug-resistant mutations, drug promiscuity, and the design of dual-effect inhibitors.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Terapia de Alvo Molecular , Mapeamento de Interação de Proteínas , Proteínas/química , Antineoplásicos/química , Sítios de Ligação , Simulação por Computador , Resistencia a Medicamentos Antineoplásicos , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA