Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 52(16): 9304-9310, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30036476

RESUMO

An anoxic flow-through cell experiment was conducted to examine mechanisms controlling the real-time reduction of selenate (Se(VI)) by zerovalent iron (ZVI), which is commonly used in permeable reactive barriers to treat dissolved contaminants including Se(VI). Changes in selenium (Se) isotope composition were examined by increasing the influent Se concentration over time, thus changing the proportion of Se removed from solution. At the conclusion of the experiment, an anoxic Se-free solution was pumped through the cell to assess the stability of the reaction products. At all stages, X-ray absorption data were obtained from the solid phase and Se isotope data from the aqueous phase. Reduced Se in the form of adsorbed Se(IV), Fe2SeO4, Se(0), and iron selenides accumulated on the ZVI over time. A linear regression function was fit to the δ82/76Se values of the effluent, yielding an isotopic separation of 9.6‰. A Rayleigh curve was fit to the isotope data from the effluent samples collected during the rinse stage with an effective fractionation of 2.4‰. The results from this experiment can be used to elucidate the effect of multiple concurrent mechanisms on Se isotope behavior.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Ferro , Isótopos , Ácido Selênico
2.
Environ Sci Technol ; 49(19): 11688-96, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26302231

RESUMO

Batch experiments were conducted using granular zerovalent iron (G-ZVI) with either ultrapure water or CaCO3 saturated simulated groundwater to assess the extent of Se isotope fractionation in solution under the anaerobic conditions characteristic of many aquifers. G-ZVI is a common remediation material in permeable reactive barriers (PRB) to treat Se-contaminated groundwater, and stable isotopes are a potential tool for assessing removal mechanisms. The solution composition, speciation of Se, and Se isotope ratios were determined during both sets of experiments. Dissolved Se concentrations decreased from 10 to <2 mg L(-1) after 3 d in the CaCO3 system and below 0.4 mg L(-1) after 2 d in the ultrapure water system. XANES analysis of the solid phase showed spectra consistent with the formation of Se(IV), Fe2(SeO3)3, FeSe, FeSe2, and Se(0) on the G-ZVI. Selenium isotope ratio measurements in solution in the CaCO3 and ultrapure water experiments showed enrichment of δ(82/76)Se values from -0.94 ± 0.07‰ and -1.93 ± 0.20‰ to maximum values of 6.85 ± 0.52‰ and 5.68 ± 0.20‰ over 72 and 36 h, respectively. The effective fractionations associated with the reduction of Se(VI) were 4.3‰ within the CaCO3 saturated water and 3.0‰ in ultrapure water.


Assuntos
Água Subterrânea/química , Ferro/química , Selênio/química , Poluentes Químicos da Água/química , Carbonato de Cálcio/química , Fracionamento Químico , Monitoramento Ambiental/métodos , Isótopos/química , Oxirredução , Ácido Selênico/química , Água , Purificação da Água/métodos , Espectroscopia por Absorção de Raios X
3.
J Hazard Mater ; 412: 125130, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33529829

RESUMO

Galena and Pb-bearing secondary phases are the main sources of Pb in the terrestrial environment. Oxidative dissolution of galena releases aqueous Pb and SO4 to the surficial environment and commonly causes the formation of anglesite (in acidic environments) or cerussite (in alkaline environments). However, conditions prevalent in weathering environments are diverse and different reaction mechanisms reflect this variability at various scales. Here we applied complementary techniques across a range of scales, from nanometers to 10 s of meters, to study the oxidation of galena and accumulation of secondary phases that influence the release and mobilization of Pb within a sulfide-bearing waste-rock pile. Within the neutral-pH pore-water environment, the oxidation of galena releases Pb ions resulting in the formation of secondary Pb-bearing carbonate precipitates. Cerussite is the dominant phase and shannonite is a possible minor phase. Dissolved Cu from the pore water reacts at the surface of galena, forming covellite at the interface. Nanometer scale characterization suggests that secondary covellite is intergrown with secondary Pb-bearing carbonates at the interface. A small amount of the S derived from galena is sequestered with the secondary covellite, but the majority of the S is oxidized to sulfate and released to the pore water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA