Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(14): e2321611121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38547058

RESUMO

Malignant glioma exhibits immune evasion characterized by highly expressing the immune checkpoint CD47. RNA 5-methylcytosine(m5C) modification plays a pivotal role in tumor pathogenesis. However, the mechanism underlying m5C-modified RNA metabolism remains unclear, as does the contribution of m5C-modified RNA to the glioma immune microenvironment. In this study, we demonstrate that the canonical 28SrRNA methyltransferase NSUN5 down-regulates ß-catenin by promoting the degradation of its mRNA, leading to enhanced phagocytosis of tumor-associated macrophages (TAMs). Specifically, the NSUN5-induced suppression of ß-catenin relies on its methyltransferase activity mediated by cysteine 359 (C359) and is not influenced by its localization in the nucleolus. Intriguingly, NSUN5 directly interacts with and deposits m5C on CTNNB1 caRNA (chromatin-associated RNA). NSUN5-induced recruitment of TET2 to chromatin is independent of its methyltransferase activity. The m5C modification on caRNA is subsequently oxidized into 5-hydroxymethylcytosine (5hmC) by TET2, which is dependent on its binding affinity for Fe2+ and α-KG. Furthermore, NSUN5 enhances the chromatin recruitment of RBFOX2 which acts as a 5hmC-specific reader to recognize and facilitate the degradation of 5hmC caRNA. Notably, hmeRIP-seq analysis reveals numerous mRNA substrates of NSUN5 that potentially undergo this mode of metabolism. In addition, NSUN5 is epigenetically suppressed by DNA methylation and is negatively correlated with IDH1-R132H mutation in glioma patients. Importantly, pharmacological blockage of DNA methylation or IDH1-R132H mutant and CD47/SIRPα signaling synergistically enhances TAM-based phagocytosis and glioma elimination in vivo. Our findings unveil a general mechanism by which NSUN5/TET2/RBFOX2 signaling regulates RNA metabolism and highlight NSUN5 targeting as a potential strategy for glioma immune therapy.


Assuntos
5-Metilcitosina , 5-Metilcitosina/análogos & derivados , Proteínas de Ligação a DNA , Dioxigenases , Glioma , Proteínas Musculares , Humanos , 5-Metilcitosina/metabolismo , beta Catenina/metabolismo , Cromatina , Antígeno CD47/genética , RNA , Evasão da Resposta Imune , Glioma/patologia , RNA Mensageiro/metabolismo , Metiltransferases/metabolismo , RNA Nuclear Pequeno , Microambiente Tumoral , Fatores de Processamento de RNA/genética , Proteínas Repressoras/metabolismo
2.
Prostate ; 83(15): 1430-1445, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37517867

RESUMO

BACKGROUND: Melittin is a small molecule polypeptide extracted from the abdominal cavity of bees, which is used to treat inflammatory diseases and relieve pain. However, the antitumor effect of melittin and its mechanisms remain unclear, especially in castration-resistant prostate cancer (CRPC). METHODS: Through CCK-8 assay, colony formation assay, wound healing assay and Transwell migration assay, we explored the effect of melittin on CRPC cell lines. In addition, with microarray analysis, gene ontology analysis and kyoto encyclopedia of genes and genomes analysis, this study identified key genes and signaling pathways that influence the growth of PC-3 cells. Meanwhile, the effect of melittin on CRPC was also verified through subcutaneous tumor formation experiments. Finally, we also tested the relevant indicators of human prostate cancer (PCa) specimens through immunohistochemistry and H&E stating. RESULTS: Here, melittin was verified to inhibit the cell proliferation and migration of CPRC. Moreover, RNA-sequence analysis demonstrated that Interleukin-17 (IL-17) signaling pathway gene Lipocalin-2 (LCN2) was downregulated by melittin treatment in CRPC. Further investigation revealed that overexpression of LCN2 was able to rescue tumor suppression and cisplatin sensitivity which melittin mediated. Interestingly, the expression of LCN2 is highly related to metastasis in PCa. CONCLUSIONS: In brief, our study indicates that LCN2 plays an oncogenic role in CRPC and melittin may be selected as an attractive candidate for CRPC therapy.


Assuntos
Cisplatino , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Animais , Lipocalina-2/genética , Lipocalina-2/metabolismo , Lipocalina-2/farmacologia , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Interleucina-17/metabolismo , Interleucina-17/farmacologia , Meliteno/farmacologia , Meliteno/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais , Proliferação de Células , Movimento Celular
3.
Int J Mol Sci ; 24(16)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37629061

RESUMO

The prognosis of low-grade glioma (LGG) is highly variable and requires more accurate predictors. Ferroptosis, a newly discovered programmed cell death, has been demonstrated to play a crucial role in some types of tumors. However, prognostic prediction based on ferroptosis-related genes (FRGs) and the influence on the tumor microenvironment (TME) in LGG remains elusive. We derived expression profiles for LGG from public databases. Based on the expression of 25 FRGs in LGG, two independent subtypes and a risk model were successfully constructed. Different methods were applied to assess the tumor heterogeneity, tumor microenvironment, and the prognostic value. In addition, a competing endogenous RNA (ceRNA) regulatory axis was constructed. The subtypes had independent tumor heterogeneity, tumor microenvironments, and prognoses. LPCAT3, SLC1A5, HSPA5, and NFE2L2 were identified as the potential prognostic FRGs. Based on these four FRGs, our risk model possesses excellent potential to predict prognosis and varied immune infiltration abundance. The ceRNA regulatory axis provides a potential therapeutic target for LGG. Our molecular subtypes, risk model, and ceRNA regulatory axis have strong immune prediction and prognostic prediction capabilities which could guide LGG treatment.


Assuntos
Ferroptose , Glioma , Humanos , Antígeno B7-H1/genética , Ferroptose/genética , Glioma/genética , Apoptose , Bases de Dados Factuais , RNA , Microambiente Tumoral/genética , Antígenos de Histocompatibilidade Menor , Sistema ASC de Transporte de Aminoácidos
4.
J Cell Mol Med ; 25(21): 10197-10212, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34609072

RESUMO

Residue hepatocellular carcinoma (HCC) cells enduring hypoxic environment triggered by interventional embolization obtain more malignant potential with little clarified mechanism. The N6 -methyladenosine (m6 A) biological activity plays essential roles in diverse physiological processes. However, its role under hypoxic condition remains largely unexplored. RT-qPCR and Western blot were used to evaluate METTL14 expression in hypoxic HCC cells. MDA assay and electronic microscopy photography were used to evaluate ferroptosis. The correlation between SLC7A11 and METTL14 was conducted by bioinformatical analysis. Flow cytometry was used to verify the effect of SLC7A11 on ROS production. Cell counting kit-8 assay was performed to detect cells proliferation ability. Hypoxia triggered suppression of METTL14 in a HIF-1α-dependent manner potently abrogated ferroptosis of HCC cells. Mechanistic investigation identified SLC7A11 was a direct target of METTL14. Both in vitro and in vivo assay demonstrated that METTL14 induced m6 A modification at 5'UTR of SLC7A11 mRNA, which in turn underwent degradation relied on the YTHDF2-dependent pathway. Importantly, ectopic expression of SLC7A11 strongly blocked METTL14-induced tumour-suppressive effect in hypoxic HCC. Our investigations lay the emphasis on the hypoxia-regulated ferroptosis in HCC cells and identify the HIF-1α /METTL14/YTHDF2/SLC7A11 axis as a potential therapeutic target for the HCC interventional embolization treatment.


Assuntos
Sistema y+ de Transporte de Aminoácidos/genética , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/metabolismo , Ferroptose/genética , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/metabolismo , Metiltransferases/metabolismo , Proteínas de Ligação a RNA/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Expressão Ectópica do Gene , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Hipóxia/genética , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Peroxidação de Lipídeos , Neoplasias Hepáticas/patologia , Metilação , Modelos Biológicos , Prognóstico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo
5.
Biochem Biophys Res Commun ; 546: 169-177, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33582561

RESUMO

Microwave ablation is a first-line treatment of small hepatocellular carcinoma (HCC), while incomplete ablation induces recurrence and metastasis. However, its underlying mechanism remains largely unexplored. Here we reported that sublethal heat treatment (46 °C) strongly promoted migration and EMT transition in HCC cells. Mechanistic investigation revealed that compared with 37 °C, HCC cells treated with 46 °C expressed higher level of CD47. Knockdown of CD47 significantly attenuated sublethal heat treatment stimulated migration and EMT transition. In addition, METTL3 which is the key enzyme of m6A modification was also induced by 46 °C treatment and triggered CD47 expression in HCC cells. Moreover, CD47 mRNA degradation was further proved to be stabled in the IGF2BP1-dependent manner. Importantly, sublethal heat treatment stimulated CD47 expression and EMT transition were also confirmed in patient-derived organoid. Taken together, our study suggests that METTL3/IGF2BP1/CD47 mediated EMT transition contributes to the incomplete ablation induced metastasis in HCC cells. Moreover, these findings identify the METTL3/IGF2BP1/CD47 axis as a potential therapeutic target for the microwave ablation and shed new lights on the crosstalk between incomplete heat ablation and RNA methylation.


Assuntos
Antígeno CD47/metabolismo , Carcinoma Hepatocelular/patologia , Transição Epitelial-Mesenquimal , Temperatura Alta , Neoplasias Hepáticas/patologia , Metiltransferases/metabolismo , Proteínas de Ligação a RNA/metabolismo , Adenina/análogos & derivados , Adenina/metabolismo , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Humanos , Neoplasias Hepáticas/metabolismo , Micro-Ondas , Metástase Neoplásica , Organoides/metabolismo , Organoides/patologia
6.
Proc Natl Acad Sci U S A ; 112(39): E5420-6, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26305977

RESUMO

A key property of herpes simplex viruses (HSVs) is their ability to establish latent infection in sensory or autonomic ganglia and to reactivate on physical, hormonal, or emotional stress. In latently infected ganglia, HSVs express a long noncoding RNA, a latency-associated transcript (LAT), which plays a key role in maintaining latently infected neurons, but not viral proteins. To investigate the events leading to reactivation, we examined the use of ganglionic organ cultures that enable rapid reactivation in medium containing antibody to nerve growth factor (NGF) or delayed reactivation in medium containing NGF and epidermal growth factor (EGF). Here we report the discovery that activating transcription factor 3 (ATF3), a stress response protein, profoundly affects the interaction of HSV with its host. Specifically, (i) ATF3 is induced by stress, such as inhibition of protein synthesis or infection; (ii) in infected cells, ATF3 enhances the accumulation of LAT by acting on the response elements in the promoter of the LAT precursor RNA; (iii) ATF3 is induced nearly 100-fold in ganglionic organ cultures; and (iv) ATF3 plays a key role in the maintenance of the latent state, inasmuch as expression of ATF3 bereft of the C-terminal activation domain acts as a dominant negative factor, inducing HSV gene expression in ganglionic organ cultures harboring latent virus and incubated in medium containing NGF and EGF. Thus, ATF3 is a component of a cluster of cellular proteins that together with LAT maintain the integrity of the neurons harboring latent virus.


Assuntos
Fator 3 Ativador da Transcrição/metabolismo , Gânglios/virologia , Herpesvirus Humano 1/fisiologia , Latência Viral/fisiologia , Animais , Anticorpos Monoclonais , Primers do DNA/genética , Ensaio de Desvio de Mobilidade Eletroforética , Células HEK293 , Humanos , Immunoblotting , Camundongos , Plasmídeos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estresse Fisiológico/fisiologia , Estresse Psicológico/virologia
7.
J Virol ; 89(10): 5643-50, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25762736

RESUMO

UNLABELLED: Herpes simplex viruses (HSV) package and bring into cells an RNase designated virion host shutoff (VHS) RNase. In infected cells, the VHS RNase targets primarily stress response mRNAs characterized by the presence of AU-rich elements in their 3' untranslated regions (UTRs). In uninfected cells, these RNAs are sequestered in exosomes or P bodies by host proteins that bind to the AU-rich elements. In infected cells, the AU-rich RNAs are deadenylated and cleaved close to the AU-rich elements, leading to long-term persistence of nontranslatable RNAs consisting of the 5' portions of the cleavage products. The host proteins that bind to the AU-rich elements are either resident in cells (e.g., TIA-1) or induced (e.g., tristetraprolin). Earlier, this laboratory reported that tristetraprolin binds VHS RNase. To test the hypothesis that tristetraprolin directs VHS RNase to the AU-rich elements, we mapped the domains of VHS and tristetraprolin required for their interactions. We report that VHS binds to the domain of tristetraprolin that enables its interaction with RNA. A single amino acid substitution in that domain abolished the interaction with RNA but did not block the binding to VHS RNase. In transfected cells, the mutant but not the wild-type tristetraprolin precluded the degradation of the AU-rich RNAs by VHS RNase. We conclude that TTP mediates the cleavage of the 3' UTRs of stress response mRNAs by recruiting the VHS RNase to the AU-rich elements. IMPORTANCE: The primary host response to HSV infection is the synthesis of stress response mRNAs characterized by the presence of AU-rich elements in their 3' UTRs. These mRNAs are the targets of the virion host shutoff (VHS) RNase. The VHS RNase binds both to mRNA cap structure and to tristetraprolin, an inducible host protein that sequesters AU-rich mRNAs in exosomes or P bodies. Here we show that tristetraprolin recruits VHS RNase to the AU-rich elements and enables the degradation of the stress response mRNAs.


Assuntos
Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribonucleases/metabolismo , Tristetraprolina/metabolismo , Proteínas Virais/metabolismo , Regiões 3' não Traduzidas , Elementos Ricos em Adenilato e Uridilato , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas Reguladoras de Apoptose/genética , Sequência de Bases , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Proteínas de Membrana/genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ribonucleases/química , Ribonucleases/genética , Tristetraprolina/química , Tristetraprolina/genética , Proteínas Virais/química , Proteínas Virais/genética , Vírion/genética , Vírion/metabolismo
8.
Proc Natl Acad Sci U S A ; 110(18): E1669-75, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23589852

RESUMO

Herpes simplex virus 1 (HSV-1) encodes an endoribonuclease that is responsible for the shutoff of host protein synthesis [virion host shutoff (VHS)-RNase]. The VHS-RNase released into cells during infection targets differentially four classes of mRNAs. Thus, (a) VHS-RNase degrades stable cellular mRNAs and α (immediate early) viral mRNAs; (b) it stabilizes host stress response mRNAs after deadenylation and subsequent cleavage near the adenylate-uridylate (AU)-rich elements; (c) it does not effectively degrade viral ß or γ mRNAs; and (d) it selectively spares from degradation a small number of cellular mRNAs. Current evidence suggests that several viral and at least one host protein (tristetraprolin) regulate its activity. Thus, virion protein (VP) 16 and VP22 neutralize the RNase activity at late times after infection. By binding to AU-rich elements via its interaction with tristetraprolin, the RNase deadenylates and cleaves the mRNAs in proximity to the AU-rich elements. In this report we show that another virion protein, UL47, brought into the cell during infection, attenuates the VHS-RNase activity with respect to stable host and viral α mRNAs and effectively blocks the degradation of ß and γ mRNAs, but it has no effect on the processing of AU-rich mRNAs. The properties of UL47 suggest that it, along with the α protein infected cell protein 27, attenuates degradation of mRNAs by the VHS-RNase through interaction with the enzyme in polyribosomes. Mutants lacking both VHS-RNase and UL47 overexpress α genes and delay the expression of ß and γ genes, suggesting that overexpression of α genes inhibits the downstream expression of early and late genes.


Assuntos
Herpesvirus Humano 1/metabolismo , Estabilidade de RNA , Ribonucleases/metabolismo , Proteínas Virais de Fusão/metabolismo , Proteínas Virais/metabolismo , Elementos Ricos em Adenilato e Uridilato/genética , Animais , Extratos Celulares , DNA Viral/metabolismo , Deleção de Genes , Células HEK293 , Herpes Simples/metabolismo , Herpes Simples/virologia , Humanos , Proteínas Imediatamente Precoces , Modelos Biológicos , Mutação/genética , RNA Viral/metabolismo , Reprodutibilidade dos Testes , Transfecção
9.
J Virol ; 87(24): 13569-78, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24109211

RESUMO

The herpes simplex virus host shutoff RNase (VHS-RNase) is the major early block of host responses to infection. VHS-RNase is introduced into cells during infection and selectively degrades stable mRNAs made before infection and the normally short-lived AU-rich stress response mRNAs induced by sensors of innate immunity. Through its interactions with pUL47, another tegument protein, it spares from degradation viral mRNAs. Analyses of embedded motifs revealed that VHS-RNase contains a nuclear export signal (NES) but not a nuclear localization signal. To reconcile the potential nuclear localization with earlier studies showing that VHS-RNase degrades mRNAs in polyribosomes, we constructed a mutant in which NES was ablated. Comparison of the mutant and wild-type VHS-RNases revealed the following. (i) On infection, VHS-RNase is transported to the nucleus, but only the wild-type protein shuttles between the nucleus and cytoplasm. (ii) Both VHS-RNases localized in the cytoplasm following transfection. On cotransfection with pUL47, a fraction of VHS-RNase was translocated to the nucleus, suggesting that pUL47 may enable nuclear localization of VHS-RNase. (iii) In infected cells, VHS-RNase lacking NES degraded the short-lived AU-rich mRNAs but not the stable mRNAs. In transfected cells, both wild-type and NES mutant VHS-RNases effectively degraded cellular mRNAs. Our results suggest that the stable mRNAs are degraded in the cytoplasm, whereas the AU-rich mRNAs may be degraded in both cellular compartments. The selective sparing of viral mRNAs may take place during the nuclear phase in the course of interaction of pUL47, VHS-RNase, and nascent viral mRNAs.


Assuntos
Núcleo Celular/virologia , Citoplasma/virologia , Herpes Simples/genética , Herpesvirus Humano 1/enzimologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribonucleases/metabolismo , Proteínas Virais de Fusão/metabolismo , Proteínas Virais/metabolismo , Sequência Rica em At , Núcleo Celular/genética , Núcleo Celular/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Herpes Simples/metabolismo , Herpes Simples/virologia , Herpesvirus Humano 1/química , Herpesvirus Humano 1/genética , Humanos , Sinais de Exportação Nuclear , Transporte Proteico , Estabilidade de RNA , RNA Mensageiro/química , Ribonucleases/química , Ribonucleases/genética , Proteínas Virais de Fusão/genética , Proteínas Virais/química , Proteínas Virais/genética
10.
Nat Commun ; 15(1): 131, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167409

RESUMO

Oncolytic virotherapy holds promise for cancer treatment, but the factors determining its oncolytic activity remain unclear. Neutrophil extracellular traps (NETs) are associated with cancer progression, yet their formation mechanism and role in oncolytic virotherapy remain elusive. In this study, we demonstrate that, in glioma, upregulation of IGF2BP3 enhances the expression of E3 ubiquitin protein ligase MIB1, promoting FTO degradation via the ubiquitin-proteasome pathway. This results in increased m6A-mediated CSF3 release and NET formation. Oncolytic herpes simplex virus (oHSV) stimulates IGF2BP3-induced NET formation in malignant glioma. In glioma models in female mice, a BET inhibitor enhances the oncolytic activity of oHSV by impeding IGF2BP3-induced NETosis, reinforcing virus replication through BRD4 recruitment with the CDK9/RPB-1 complex to HSV gene promoters. Our findings unveil the regulation of m6A-mediated NET formation, highlight oncolytic virus-induced NETosis as a critical checkpoint hindering oncolytic potential, and propose targeting NETosis as a strategy to overcome resistance in oncolytic virotherapy.


Assuntos
Glioma , Terapia Viral Oncolítica , Vírus Oncolíticos , Feminino , Camundongos , Animais , Terapia Viral Oncolítica/métodos , Resistencia a Medicamentos Antineoplásicos , Proteínas Nucleares , Fatores de Transcrição , Glioma/genética , Simplexvirus/genética , Vírus Oncolíticos/genética
11.
Acta Parasitol ; 68(1): 1-20, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36642777

RESUMO

BACKGROUND: Ticks are important medical arthropods that can transmit hundreds of pathogens, such as parasites, bacteria, and viruses, leading to serious public health burdens worldwide. Unexplained fever is the most common clinical manifestation of tick-borne diseases. Since the emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the surge of coronavirus disease 2019 (COVID-19) cases led to the hospital overload and fewer laboratory tests for tick-borne diseases. Therefore, it is essential to review the tick-borne pathogens and further understand tick-borne diseases. PURPOSE: The geographic distribution and population of ticks in the Northern hemisphere have expanded while emerging tick-borne pathogens have been introduced to China continuously. This paper focused on the tick-borne pathogens that are threatening public health in the world. Their medical significant tick vectors, as well as the epidemiology, clinical manifestations, diagnosis, treatment, prevention, and control measures, are emphasized in this document. METHODS: In this study, all required data were collected from articles indexed in English databases, including Scopus, PubMed, Web of Science, Science Direct, and Google Scholar. RESULTS: Ticks presented a great threat to the economy and public health. Although both infections by tick-borne pathogens and SARS-CoV-2 have fever symptoms, the history of tick bite and its associated symptoms such as encephalitis or eschar could be helpful for the differential diagnosis. Additionally, as a carrier of vector ticks, migratory birds may play a potential role in the geographical expansion of ticks and tick-borne pathogens during seasonal migration. CONCLUSION: China should assess the risk score of vector ticks and clarify the potential role of migratory birds in transmitting ticks. Additionally, the individual and collective protection, vector control, comprehensive surveillance, accurate diagnosis, and symptomatic treatment should be carried out, to meet the challenge.


Assuntos
COVID-19 , Doenças Transmitidas por Carrapatos , Carrapatos , Animais , Humanos , Carrapatos/microbiologia , COVID-19/epidemiologia , SARS-CoV-2 , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/veterinária , Aves/parasitologia
12.
Front Immunol ; 14: 1290185, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38274825

RESUMO

Introduction: Heat ablation is one of the key modalities in treating liver cancer, yet the residual cancer tissues suffering sublethal heat treatment possess a potential for increased malignancy. This study conducts a comprehensive analysis of cellular dynamics, metabolic shifts, and macrophage polarization within the tumor microenvironment following sublethal heat treatment. Methods: We observed significant acidification in tumor cell supernatants, attributed to increased lactic acid production. The study focused on how this pH shift, crucial in tumor progression and resistance, influences macrophage polarization, especially towards the M2 phenotype known for tumor-promoting functions. We also examined the upregulation of MCT1 expression post sublethal heat treatment and its primary role in lactic acid transport. Results: Notably, the study found minimal disparity in MCT1 expression between hepatocellular carcinoma patients and healthy liver tissues, highlighting the complexity of cancer biology. The research further revealed an intricate relationship between lactic acid, MCT1, and the inhibition of macrophage pyroptosis, offering significant insights for therapeutic strategies targeting the tumor immune environment. Post sublethal heat treatment, a reduction in paraspeckle under lactic acid exposure was observed, indicating diverse cellular impacts. Additionally, PKM2 was identified as a key molecule in this context, with decreased levels after sublethal heat treatment in the presence of lactic acid. Discussion: Collectively, these findings illuminate the intertwined mechanisms of sublethal heat treatments, metabolic alterations, and immune modulation in the tumor milieu, providing a deeper understanding of the complex interplay in cancer biology and treatment.


Assuntos
Carcinoma Hepatocelular , Piroptose , Humanos , Linhagem Celular Tumoral , Ácido Láctico/metabolismo , Temperatura Alta , Paraspeckles , Carcinoma Hepatocelular/patologia , Macrófagos/metabolismo , Microambiente Tumoral
13.
Nat Commun ; 14(1): 6781, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880243

RESUMO

IDH1 mutations frequently occur early in human glioma. While IDH1 mutation has been shown to promote gliomagenesis via DNA and histone methylation, little is known regarding its regulation in antiviral immunity. Here, we discover that IDH1 mutation inhibits virus-induced interferon (IFN) antiviral responses in glioma cells. Mechanistically, D2HG produced by mutant IDH1 enhances the binding of DNMT1 to IRF3/7 promoters such that IRF3/7 are downregulated, leading to impaired type I IFN response in glioma cells, which enhances the susceptibility of gliomas to viral infection. Furthermore, we identify DNMT1 as a potential biomarker predicting which IDH1mut gliomas are most likely to respond to oncolytic virus. Finally, both D2HG and ectopic mutant IDH1 can potentiate the replication and oncolytic efficacy of VSVΔ51 in female mouse models. These findings reveal a pivotal role for IDH1 mutation in regulating antiviral response and demonstrate that IDH1 mutation confers sensitivity to oncolytic virotherapy.


Assuntos
Neoplasias Encefálicas , Glioma , Terapia Viral Oncolítica , Vírus Oncolíticos , Animais , Feminino , Humanos , Camundongos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Glioma/genética , Glioma/terapia , Glioma/metabolismo , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Metilação , Mutação , Vírus Oncolíticos/genética , Vírus Oncolíticos/metabolismo
14.
Mol Pharmacol ; 81(3): 292-8, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22172575

RESUMO

Glioma is the most common malignant cancer affecting the central nerve system, with dismal prognosis. Differentiation-inducing therapy is a novel strategy that has been preliminarily proved effective against malignant glioma. We have reported previously that activation of cAMP/protein kinase A (PKA) pathway is capable of inducing glioma cell differentiation, characterized by astrocyte-like shape and dramatic induction of astrocyte biomarker glial fibrillary acidic protein (GFAP). However, little progress has been made on molecular mechanisms related. Here we demonstrate that microRNA 335 (miR-335) is responsible for the glioma cell differentiation stimulated by activation of cAMP/PKA pathway. In the cAMP elevator cholera toxin-induced differentiation model of rat C6 glioma cells, miR-335 was significantly up-regulated, which was mimicked by other typical cAMP/PKA pathway activators (e.g., forskolin, dibutyryl-cAMP) and abolished by PKA-specific inhibitor (9R,10S,12S)-2,3,9,10,11,12-hexahydro-10-hydroxy-9-methyl-1-oxo-9,12-epoxy-1H-diindolo[1,2,3-fg:3',2',1'-kl]pyrrolo[3,4-i] [1,6]benzodiazocine-10-carboxylic acid, hexyl ester (KT5720). In an assay measuring gain and loss of miR-335 function, exogenetic miR-335 resulted in induction of GFAP, whereas miR-335 specific inhibitor antagomir-335 violently blocked cholera toxin-induced GFAP up-regulation. It is noteworthy that in human U87-MG glioma cells and human primary culture glioma cells, miR-335 also mediated cholera toxin-induced differentiation. Taken together, our findings suggest that miR-335 is potently required for differentiation of malignant glioma cells induced by cAMP/PKA pathway activation, and a single microRNA may act as an important fate determinant to control the differentiation status of malignant gliomas, which has provided a new insight into differentiation-inducing therapy against malignant gliomas.


Assuntos
Neoplasias Encefálicas/patologia , Diferenciação Celular/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Glioma/patologia , MicroRNAs/fisiologia , Animais , Sequência de Bases , Toxina da Cólera/farmacologia , Primers do DNA , Ativação Enzimática , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , MicroRNAs/genética , Ratos , Reação em Cadeia da Polimerase em Tempo Real
15.
Cancer Lett ; 534: 215615, 2022 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-35278613

RESUMO

Abnormal RNA methylation and dysregulation of miRNA are frequently occurred in bladder cancer. Melittin is a potential drug candidate for intravesical chemotherapy against bladder cancer. However, the underlying epigenetic mechanism by which melittin-induced anti-tumor effect remains unclear. Here, we showed that melittin selectively induced apoptosis of bladder cancer cells in a METTL3-dependent manner. Ectopic expression of METTL3 significantly blocked melittin-induced apoptosis in vitro and in vivo. MicroRNA-sequence analysis identified miR-146a-5p suppression contributed to the melittin-induced selective antitumor effect. Further investigation revealed that METTL3-guided m6A modification methylated pri-miR-146 at the flanking sequence, which was responsible for the pri-miR-146 maturation. Moreover, NUMB/NOTCH2 axis was identified as a downstream target signal that mediated the pro-survival role of miR-146a-5p in bladder cancer cells. Importantly, METTL3 and miR-146a-5p were positively correlated with recurrence and poor prognosis of patients with bladder cancer. Our study indicates that METTL3 acts as a fate determinant that controls the sensitivity of bladder cancer cells to melittin treatment. Moreover, METTL3/miR-146a-5p/NUMB/NOTCH2 axis plays an oncogenic role in bladder cancer pathogenesis and could be a potential therapeutic target for recurrent bladder cancer treatment.


Assuntos
MicroRNAs , Neoplasias da Bexiga Urinária , Regulação Neoplásica da Expressão Gênica , Humanos , Meliteno/farmacologia , Metiltransferases/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Recidiva Local de Neoplasia/genética , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia
16.
Mol Cancer ; 10: 59, 2011 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-21592405

RESUMO

BACKGROUND: Astrocytomas are the most common and aggressive brain tumors characterized by their highly invasive growth. Gain of chromosome 7 with a hot spot at 7q32 appears to be the most prominent aberration in astrocytoma. Previously reports have shown that microRNA-335 (miR-335) resided on chromosome 7q32 is deregulated in many cancers; however, the biological function of miR-335 in astrocytoma has yet to be elucidated. RESULTS: We report that miR-335 acts as a tumor promoter in conferring tumorigenic features such as growth and invasion on malignant astrocytoma. The miR-335 level is highly elevated in C6 astrocytoma cells and human malignant astrocytomas. Ectopic expression of miR-335 in C6 cells dramatically enhances cell viability, colony-forming ability and invasiveness. Conversely, delivery of antagonist specific for miR-335 (antagomir-335) to C6 cells results in growth arrest, cell apoptosis, invasion repression and marked regression of astrocytoma xenografts. Further investigation reveals that miR-335 targets disheveled-associated activator of morphogenesis 1(Daam1) at posttranscriptional level. Moreover, silencing of endogenous Daam1 (siDaam1) could mimic the oncogenic effects of miR-335 and reverse the growth arrest, proapoptotic and invasion repression effects induced by antagomir-335. Notably, the oncogenic effects of miR-335 and siDAAM1 together with anti-tumor effects of antagomir-335 are also confirmed in human astrocytoma U87-MG cells. CONCLUSION: These findings suggest an oncogenic role of miR-335 and shed new lights on the therapy of malignant astrocytomas by targeting miR-335.


Assuntos
Astrocitoma/fisiopatologia , MicroRNAs/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adulto , Animais , Apoptose/genética , Linhagem Celular , Proliferação de Células , Sobrevivência Celular/genética , Feminino , Técnicas de Silenciamento de Genes , Ordem dos Genes , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Proteínas dos Microfilamentos , Invasividade Neoplásica/genética , Ratos , Ratos Sprague-Dawley , Carga Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Adulto Jovem , Proteínas rho de Ligação ao GTP
17.
FEBS Lett ; 595(22): 2829-2843, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34687039

RESUMO

Factors that increase cAMP levels can induce lineage-specific differentiation of glioma cells into astrocyte-like cells. However, the differentiation pattern and underlying mechanisms remain unclear. Here, we find that cAMP/protein kinase A (PKA)/cAMP responsive element binding protein 1 (CREB1)-induced miR-221/222 suppression contributes to the neuron-like differentiation of gliomas. cAMP agonists selectively induced neuron- and astrocyte-like but not oligodendrocyte-like differentiation of C6 glioma cells. PKA inhibitors and CREB1 knockout blocked neuron-like differentiation of glioma cells. cAMP inhibited miR-221/222 in a PKA/CREB1-dependent manner. Importantly, both in vitro and in vivo assays demonstrated that transcriptional suppression of miR-221/222 is required for neuronal differentiation of glioma cells. Our findings suggest that increasing cAMP levels can induce bidirectional differentiation of glioma cells. Furthermore, the miR-221/222 cluster acts as an epigenetic brake during glioma differentiation.


Assuntos
Neoplasias Encefálicas/metabolismo , Diferenciação Celular , AMP Cíclico/metabolismo , Glioma/metabolismo , MicroRNAs/genética , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Linhagem da Célula , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Glioma/patologia , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Ratos
18.
Front Immunol ; 12: 797450, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069579

RESUMO

Circadian disruption in tumorigenesis has been extensively studied, but how circadian rhythm (CR) affects the formation of tumor microenvironment (TME) and the crosstalk between TME and cancer cells is largely unknown, especially in gliomas. Herein, we retrospectively analyzed transcriptome data and clinical parameters of glioma patients from public databases to explore circadian rhythm-controlled tumor heterogeneity and characteristics of TME in gliomas. Firstly, we pioneered the construction of a CR gene set collated from five datasets and review literatures. Unsupervised clustering was used to identify two CR clusters with different CR patterns on the basis of the expression of CR genes. Remarkably, the CR cluster-B was characterized by enriched myeloid cells and activated immune-related pathways. Next, we applied principal component analysis to construct a CRscore to quantify CR patterns of individual tumors, and the function of the CRscore in prognostic prediction was further verified by univariate and multivariate regression analyses in combination with a nomogram. The CRscore could not only be an independent factor to predict prognosis of glioma patients but also guide patients to choose suitable treatment strategies: immunotherapy or chemotherapy. A glioma patient with a high CRscore might respond to immune checkpoint blockade, whereas one with a low CRscore could benefit from chemotherapy. In this study, we revealed that circadian rhythms modulated tumor heterogeneity, TME diversity, and complexity in gliomas. Evaluating the CRscore of an individual tumor would contribute to gaining a greater understanding of the tumor immune status of each patient, enhancing the accuracy of prognostic prediction, and suggesting more effective treatment options.


Assuntos
Neoplasias Encefálicas/imunologia , Ritmo Circadiano/imunologia , Regulação Neoplásica da Expressão Gênica/imunologia , Glioma/imunologia , Transcriptoma/imunologia , Microambiente Tumoral/imunologia , Idoso , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Ritmo Circadiano/genética , Análise por Conglomerados , Feminino , Ontologia Genética , Glioma/genética , Glioma/terapia , Humanos , Imunoterapia/métodos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Microambiente Tumoral/genética
19.
Cancers (Basel) ; 13(7)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917399

RESUMO

The prognosis of patients with glioma is largely related to both the tumor-infiltrating immune cells and the expression of RNA-binding proteins (RBPs) that are able to regulate various pro-inflammatory and oncogenic mediators. However, immune-associated RBPs in glioma remain unexplored. In this study, we captured patient data from The Cancer Genome Atlas (TCGA) and divided them into two immune subtype groups according to the difference in infiltration of immune cells. After differential expression and co-expression analysis, we identified 216 RBPs defined as immune-associated RBPs. After narrowing down processes, eight RBPs were selected out to construct a risk signature that proven to be a novel and independent prognostic factor. The patients were divided into high- and low-risk groups on the basis of risk score. Higher risk scores meant worse overall survival and higher expression of human leukocyte antigen and immune checkpoints such as PD1 and CTLA4. In addition, analyses of pathway enrichment, somatic mutation, copy number variations and immuno-/chemotherapeutic response prediction were performed in high- and low-risk groups and compared with each other. For the first time, we demonstrated a novel signature composed of eight immune-associated RBPs that was valuable in predicting the survival of glioma patients and directing immunotherapy and chemotherapy.

20.
Mol Pharmacol ; 75(4): 812-9, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19158360

RESUMO

Anaplastic thyroid carcinoma (ATC) is among the most aggressive malignancies known and is characterized with rapid growth, early invasion, and complete refractoriness to current therapies. Here we report that triptolide, a small molecule from a Chinese herb, could potently inhibit proliferation in vitro, angiogenesis in vivo, and invasion in a Matrigel model in human ATC cell line TA-K cells at nanomolar concentrations. We further elucidate that triptolide inhibits the nuclear factor-kappaB (NF-kappaB) transcriptional activity via blocking the association of p65 subunit with CREB-binding protein (CBP)/p300 in the early stage and via decreasing the protein level of p65 in the late stage. Expression of the NF-kappaB targeting genes cyclin D1, vascular endothelial growth factor, and urokinase-type plasminogen activator is significantly reduced by triptolide in both TA-K and 8505C human ATC cell lines, which are well known to be critical for proliferation, angiogenesis, and invasion in solid tumors. Our findings suggest that triptolide may function as a small molecule inhibitor of tumor angiogenesis and invasion and may provide novel mechanistic insights into the potential therapy for human ATC.


Assuntos
Inibidores da Angiogênese/farmacologia , Carcinoma/patologia , Diterpenos/farmacologia , Regulação para Baixo/fisiologia , NF-kappa B/antagonistas & inibidores , Neovascularização Patológica/prevenção & controle , Fenantrenos/farmacologia , Transdução de Sinais/fisiologia , Neoplasias da Glândula Tireoide/patologia , Antineoplásicos Fitogênicos/farmacologia , Carcinoma/fisiopatologia , Carcinoma/prevenção & controle , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Compostos de Epóxi/farmacologia , Humanos , NF-kappa B/fisiologia , Invasividade Neoplásica , Neovascularização Patológica/patologia , Neovascularização Patológica/fisiopatologia , Transdução de Sinais/efeitos dos fármacos , Neoplasias da Glândula Tireoide/fisiopatologia , Neoplasias da Glândula Tireoide/prevenção & controle , Tripterygium
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA