Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(14): e2315509121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38547055

RESUMO

Dysregulation of polyamine metabolism has been implicated in cancer initiation and progression; however, the mechanism of polyamine dysregulation in cancer is not fully understood. In this study, we investigated the role of MUC1, a mucin protein overexpressed in pancreatic cancer, in regulating polyamine metabolism. Utilizing pancreatic cancer patient data, we noted a positive correlation between MUC1 expression and the expression of key polyamine metabolism pathway genes. Functional studies revealed that knockdown of spermidine/spermine N1-acetyltransferase 1 (SAT1), a key enzyme involved in polyamine catabolism, attenuated the oncogenic functions of MUC1, including cell survival and proliferation. We further identified a regulatory axis whereby MUC1 stabilized hypoxia-inducible factor (HIF-1α), leading to increased SAT1 expression, which in turn induced carbon flux into the tricarboxylic acid cycle. MUC1-mediated stabilization of HIF-1α enhanced the promoter occupancy of the latter on SAT1 promoter and corresponding transcriptional activation of SAT1, which could be abrogated by pharmacological inhibition of HIF-1α or CRISPR/Cas9-mediated knockout of HIF1A. MUC1 knockdown caused a significant reduction in the levels of SAT1-generated metabolites, N1-acetylspermidine and N8-acetylspermidine. Given the known role of MUC1 in therapy resistance, we also investigated whether inhibiting SAT1 would enhance the efficacy of FOLFIRINOX chemotherapy. By utilizing organoid and orthotopic pancreatic cancer mouse models, we observed that targeting SAT1 with pentamidine improved the efficacy of FOLFIRINOX, suggesting that the combination may represent a promising therapeutic strategy against pancreatic cancer. This study provides insights into the interplay between MUC1 and polyamine metabolism, offering potential avenues for the development of treatments against pancreatic cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Pancreáticas , Camundongos , Animais , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Poliaminas/metabolismo , Transdução de Sinais , Acetiltransferases/genética , Acetiltransferases/metabolismo , Mucina-1
2.
Gastroenterology ; 161(5): 1584-1600, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34245764

RESUMO

BACKGROUND & AIMS: SIRT5 plays pleiotropic roles via post-translational modifications, serving as a tumor suppressor, or an oncogene, in different tumors. However, the role SIRT5 plays in the initiation and progression of pancreatic ductal adenocarcinoma (PDAC) remains unknown. METHODS: Published datasets and tissue arrays with SIRT5 staining were used to investigate the clinical relevance of SIRT5 in PDAC. Furthermore, to define the role of SIRT5 in the carcinogenesis of PDAC, we generated autochthonous mouse models with conditional Sirt5 knockout. Moreover, to examine the mechanistic role of SIRT5 in PDAC carcinogenesis, SIRT5 was knocked down in PDAC cell lines and organoids, followed by metabolomics and proteomics studies. A novel SIRT5 activator was used for therapeutic studies in organoids and patient-derived xenografts. RESULTS: SIRT5 expression negatively regulated tumor cell proliferation and correlated with a favorable prognosis in patients with PDAC. Genetic ablation of Sirt5 in PDAC mouse models promoted acinar-to-ductal metaplasia, precursor lesions, and pancreatic tumorigenesis, resulting in poor survival. Mechanistically, SIRT5 loss enhanced glutamine and glutathione metabolism via acetylation-mediated activation of GOT1. A selective SIRT5 activator, MC3138, phenocopied the effects of SIRT5 overexpression and exhibited antitumor effects on human PDAC cells. MC3138 also diminished nucleotide pools, sensitizing human PDAC cell lines, organoids, and patient-derived xenografts to gemcitabine. CONCLUSIONS: Collectively, we identify SIRT5 as a key tumor suppressor in PDAC, whose loss promotes tumorigenesis through increased noncanonic use of glutamine via GOT1, and that SIRT5 activation is a novel therapeutic strategy to target PDAC.


Assuntos
Carcinoma Ductal Pancreático/enzimologia , Metabolismo Energético , Neoplasias Pancreáticas/enzimologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Sirtuínas/deficiência , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Aspartato Aminotransferase Citoplasmática/genética , Aspartato Aminotransferase Citoplasmática/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Progressão da Doença , Metabolismo Energético/efeitos dos fármacos , Ativação Enzimática , Ativadores de Enzimas/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Mutação , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais , Sirtuínas/genética , Carga Tumoral , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
3.
J Proteome Res ; 16(10): 3536-3546, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28809118

RESUMO

Pancreatic cancer cells overexpressing Mucin 1 (MUC1) rely on aerobic glycolysis and, correspondingly, are dependent on glucose for survival. Our NMR metabolomics comparative analysis of control (S2-013.Neo) and MUC1-overexpressing (S2-013.MUC1) cells demonstrates that MUC1 reprograms glutamine metabolism upon glucose limitation. The observed alteration in glutamine metabolism under glucose limitation was accompanied by a relative decrease in the proliferation of MUC1-overexpressing cells compared with steady-state conditions. Moreover, glucose limitation induces G1 phase arrest where S2-013.MUC1 cells fail to enter S phase and synthesize DNA because of a significant disruption in pyrimidine nucleotide biosynthesis. Our metabolomics analysis indicates that glutamine is the major source of oxaloacetate in S2-013.Neo and S2-013.MUC1 cells, where oxaloacetate is converted to aspartate, an important metabolite for pyrimidine nucleotide biosynthesis. However, glucose limitation impedes the flow of glutamine carbons into the pyrimidine nucleotide rings and instead leads to a significant accumulation of glutamine-derived aspartate in S2-013.MUC1 cells.


Assuntos
Glucose/metabolismo , Glutamina/metabolismo , Mucina-1/genética , Neoplasias Pancreáticas/metabolismo , Ácido Aspártico , Linhagem Celular Tumoral , Proliferação de Células/genética , Ciclo do Ácido Cítrico , Replicação do DNA/genética , Glucose/genética , Glutamina/genética , Glicólise/genética , Humanos , Espectroscopia de Ressonância Magnética , Metabolômica , Mucina-1/metabolismo , Ácido Oxaloacético/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia
4.
Biomacromolecules ; 17(1): 301-13, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26626700

RESUMO

The objective of this study was to design GE11 peptide (YHWYGYTPQNVI) linked micelles of poly(ethylene glycol)-block-poly(2-methyl-2-carboxyl-propylene carbonate-graft-gemcitabine-graft-dodecanol (PEG-b-PCC-g-GEM-g-DC) for enhanced stability and target specificity of gemcitabine (GEM) to EGFR-positive pancreatic cancer cells. GE11-PEG-PCD/mPEG-b-PCC-g-GEM-g-DC mixed micelles showed EGFR-dependent enhanced cellular uptake, and cytotoxicity as compared to scrambled peptide HW12-PEG-PCD/mPEG-b-PCC-g-GEM-g-DC mixed micelles and unmodified mPEG-b-PCC-g-GEM-g-DC micelles. Importantly, GE11-linked mixed micelles preferentially accumulated in orthotopic pancreatic tumor and tumor vasculature at 24 h post systemic administration. GE11-linked mixed micelles inhibited orthotopic pancreatic tumor growth compared to HW12-linked mixed micelles, unmodified mPEG-b-PCC-g-GEM-g-DC micelles, and free GEM formulations. Tumor growth inhibition was mediated by apoptosis of tumor cells and endothelial cells as determined by immunohistochemical staining. In summary, GE11-linked mixed micelles is a promising approach to treat EGFR overexpressing cancers.


Assuntos
Antimetabólitos Antineoplásicos/uso terapêutico , Carcinoma Ductal Pancreático/tratamento farmacológico , Desoxicitidina/análogos & derivados , Portadores de Fármacos/uso terapêutico , Receptores ErbB/antagonistas & inibidores , Micelas , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Antimetabólitos Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Desoxicitidina/administração & dosagem , Desoxicitidina/uso terapêutico , Modelos Animais de Doenças , Portadores de Fármacos/síntese química , Humanos , Camundongos , Peptídeos/química , Poliésteres/química , Polietilenoglicóis/química , Polímeros/química , Gencitabina
5.
Eur J Med Chem ; 275: 116598, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38925013

RESUMO

Lactate dehydrogenase-A (LDHA) is the major isoform of lactate dehydrogenases (LDH) that is overexpressed and linked to poor survival in pancreatic ductal adenocarcinoma (PDAC). Despite some progress, current LDH inhibitors have poor structural and physicochemical properties or exhibit unfavorable pharmacokinetics that have hampered their development. The present study reports the synthesis and biological evaluation of a novel class of LDHA inhibitors comprising a succinic acid monoamide motif. Compounds 6 and 21 are structurally related analogs that demonstrated potent inhibition of LDHA with IC50s of 46 nM and 72 nM, respectively. We solved cocrystal structures of compound 21-bound to LDHA that showed that the compound binds to a distinct allosteric site between the two subunits of the LDHA tetramer. Inhibition of LDHA correlated with reduced lactate production and reduction of glycolysis in MIA PaCa-2 pancreatic cancer cells. The lead compounds inhibit the proliferation of human pancreatic cancer cell lines and patient-derived 3D organoids and exhibit a synergistic cytotoxic effect with the OXPHOS inhibitor phenformin. Unlike current LDHA inhibitors, 6 and 21 have appropriate pharmacokinetics and ligand efficiency metrics, exhibit up to 73% oral bioavailability, and a cumulative half-life greater than 4 h in mice.


Assuntos
Antineoplásicos , Proliferação de Células , Inibidores Enzimáticos , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Animais , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Proliferação de Células/efeitos dos fármacos , Administração Oral , Camundongos , Relação Estrutura-Atividade , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Disponibilidade Biológica , Relação Dose-Resposta a Droga , L-Lactato Desidrogenase/antagonistas & inibidores , L-Lactato Desidrogenase/metabolismo , Linhagem Celular Tumoral , Modelos Moleculares
6.
bioRxiv ; 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-37066260

RESUMO

Pyrimidine nucleotide biosynthesis is a druggable metabolic dependency of cancer cells, and chemotherapy agents targeting pyrimidine metabolism are the backbone of treatment for many cancers. Dihydroorotate dehydrogenase (DHODH) is an essential enzyme in the de novo pyrimidine biosynthesis pathway that can be targeted by clinically approved inhibitors. However, despite robust preclinical anticancer efficacy, DHODH inhibitors have shown limited single-agent activity in phase 1 and 2 clinical trials. Therefore, novel combination therapy strategies are necessary to realize the potential of these drugs. To search for therapeutic vulnerabilities induced by DHODH inhibition, we examined gene expression changes in cancer cells treated with the potent and selective DHODH inhibitor brequinar (BQ). This revealed that BQ treatment causes upregulation of antigen presentation pathway genes and cell surface MHC class I expression. Mechanistic studies showed that this effect is 1) strictly dependent on pyrimidine nucleotide depletion, 2) independent of canonical antigen presentation pathway transcriptional regulators, and 3) mediated by RNA polymerase II elongation control by positive transcription elongation factor B (P-TEFb). Furthermore, BQ showed impressive single-agent efficacy in the immunocompetent B16F10 melanoma model, and combination treatment with BQ and dual immune checkpoint blockade (anti-CTLA-4 plus anti-PD-1) significantly prolonged mouse survival compared to either therapy alone. Our results have important implications for the clinical development of DHODH inhibitors and provide a rationale for combination therapy with BQ and immune checkpoint blockade.

7.
Cancer Discov ; 14(1): 176-193, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-37931287

RESUMO

Nutritional factors play crucial roles in immune responses. The tumor-caused nutritional deficiencies are known to affect antitumor immunity. Here, we demonstrate that pancreatic ductal adenocarcinoma (PDAC) cells can suppress NK-cell cytotoxicity by restricting the accessibility of vitamin B6 (VB6). PDAC cells actively consume VB6 to support one-carbon metabolism, and thus tumor cell growth, causing VB6 deprivation in the tumor microenvironment. In comparison, NK cells require VB6 for intracellular glycogen breakdown, which serves as a critical energy source for NK-cell activation. VB6 supplementation in combination with one-carbon metabolism blockage effectively diminishes tumor burden in vivo. Our results expand the understanding of the critical role of micronutrients in regulating cancer progression and antitumor immunity, and open new avenues for developing novel therapeutic strategies against PDAC. SIGNIFICANCE: The nutrient competition among the different tumor microenvironment components drives tumor growth, immune tolerance, and therapeutic resistance. PDAC cells demand a high amount of VB6, thus competitively causing NK-cell dysfunction. Supplying VB6 with blocking VB6-dependent one-carbon metabolism amplifies the NK-cell antitumor immunity and inhibits tumor growth in PDAC models. This article is featured in Selected Articles from This Issue, p. 5.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Vitamina B 6 , Microambiente Tumoral , Células Matadoras Naturais , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Carbono
8.
Elife ; 122024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973593

RESUMO

Pyrimidine nucleotide biosynthesis is a druggable metabolic dependency of cancer cells, and chemotherapy agents targeting pyrimidine metabolism are the backbone of treatment for many cancers. Dihydroorotate dehydrogenase (DHODH) is an essential enzyme in the de novo pyrimidine biosynthesis pathway that can be targeted by clinically approved inhibitors. However, despite robust preclinical anticancer efficacy, DHODH inhibitors have shown limited single-agent activity in phase 1 and 2 clinical trials. Therefore, novel combination therapy strategies are necessary to realize the potential of these drugs. To search for therapeutic vulnerabilities induced by DHODH inhibition, we examined gene expression changes in cancer cells treated with the potent and selective DHODH inhibitor brequinar (BQ). This revealed that BQ treatment causes upregulation of antigen presentation pathway genes and cell surface MHC class I expression. Mechanistic studies showed that this effect is (1) strictly dependent on pyrimidine nucleotide depletion, (2) independent of canonical antigen presentation pathway transcriptional regulators, and (3) mediated by RNA polymerase II elongation control by positive transcription elongation factor B (P-TEFb). Furthermore, BQ showed impressive single-agent efficacy in the immunocompetent B16F10 melanoma model, and combination treatment with BQ and dual immune checkpoint blockade (anti-CTLA-4 plus anti-PD-1) significantly prolonged mouse survival compared to either therapy alone. Our results have important implications for the clinical development of DHODH inhibitors and provide a rationale for combination therapy with BQ and immune checkpoint blockade.


Assuntos
Apresentação de Antígeno , Di-Hidro-Orotato Desidrogenase , Inibidores de Checkpoint Imunológico , Animais , Camundongos , Humanos , Apresentação de Antígeno/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidores de Checkpoint Imunológico/farmacologia , Quinoxalinas/farmacologia , Inibidores Enzimáticos/farmacologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Camundongos Endogâmicos C57BL , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/imunologia , Compostos de Bifenilo , Quinaldinas
9.
Nat Cell Biol ; 26(4): 613-627, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38429478

RESUMO

The ability of tumour cells to thrive in harsh microenvironments depends on the utilization of nutrients available in the milieu. Here we show that pancreatic cancer-associated fibroblasts (CAFs) regulate tumour cell metabolism through the secretion of acetate, which can be blocked by silencing ATP citrate lyase (ACLY) in CAFs. We further show that acetyl-CoA synthetase short-chain family member 2 (ACSS2) channels the exogenous acetate to regulate the dynamic cancer epigenome and transcriptome, thereby facilitating cancer cell survival in an acidic microenvironment. Comparative H3K27ac ChIP-seq and RNA-seq analyses revealed alterations in polyamine homeostasis through regulation of SAT1 gene expression and enrichment of the SP1-responsive signature. We identified acetate/ACSS2-mediated acetylation of SP1 at the lysine 19 residue that increased SP1 protein stability and transcriptional activity. Genetic or pharmacologic inhibition of the ACSS2-SP1-SAT1 axis diminished the tumour burden in mouse models. These results reveal that the metabolic flexibility imparted by the stroma-derived acetate enabled cancer cell survival under acidosis via the ACSS2-SP1-SAT1 axis.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Pancreáticas , Animais , Camundongos , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Acetatos/farmacologia , Acetatos/metabolismo , Neoplasias Pancreáticas/genética , Poliaminas , Microambiente Tumoral
10.
Cancer Lett ; 552: 215981, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36341997

RESUMO

Inhibitors of dihydroorotate dehydrogenase (DHODH), a key enzyme for de novo synthesis of pyrimidine nucleotides, have failed in clinical trials for various cancers despite robust efficacy in preclinical animal models. To probe for druggable mediators of DHODH inhibitor resistance, we performed a combination screen with a small molecule library against pancreatic cancer cell lines that are highly resistant to the DHODH inhibitor brequinar (BQ). The screen revealed that CNX-774, a preclinical Bruton tyrosine kinase (BTK) inhibitor, sensitizes resistant cell lines to BQ. Mechanistic studies showed that this effect is independent of BTK and instead results from inhibition of equilibrative nucleoside transporter 1 (ENT1) by CNX-774. We show that ENT1 mediates BQ resistance by taking up extracellular uridine, which is salvaged to generate pyrimidine nucleotides in a DHODH-independent manner. In BQ-resistant cell lines, BQ monotherapy slowed proliferation and caused modest pyrimidine nucleotide depletion, whereas combination treatment with BQ and CNX-774 led to profound cell viability loss and pyrimidine starvation. We also identify N-acetylneuraminic acid accumulation as a potential marker of the therapeutic efficacy of DHODH inhibitors. In an aggressive, immunocompetent pancreatic cancer mouse model, combined targeting of DHODH and ENT1 dramatically suppressed tumor growth and prolonged mouse survival. Overall, our study defines CNX-774 as a previously uncharacterized ENT1 inhibitor and provides strong proof of concept support for dual targeting of DHODH and ENT1 in pancreatic cancer.


Assuntos
Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Neoplasias Pancreáticas , Camundongos , Animais , Di-Hidro-Orotato Desidrogenase , Transportador Equilibrativo 1 de Nucleosídeo/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Pirimidinas/farmacologia , Inibidores Enzimáticos/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Nucleotídeos de Pirimidina , Neoplasias Pancreáticas
11.
Sci Rep ; 12(1): 1659, 2022 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-35102236

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) patients display distinct phenotypes of cachexia development, with either adipose tissue loss preceding skeletal muscle wasting or loss of only adipose tissue. Activin A levels were measured in serum and analyzed in tumor specimens of both a cohort of Stage IV PDAC patients and the genetically engineered KPC mouse model. Our data revealed that serum activin A levels were significantly elevated in Stage IV PDAC patients in comparison to age-matched non-cancer patients. Little is known about the role of activin A in adipose tissue wasting in the setting of PDAC cancer cachexia. We established a correlation between elevated activin A and remodeling of visceral adipose tissue. Atrophy and fibrosis of visceral adipose tissue was examined in omental adipose tissue of Stage IV PDAC patients and gonadal adipose tissue of an orthotopic mouse model of PDAC. Remarkably, white visceral adipose tissue from both PDAC patients and mice exhibited decreased adipocyte diameter and increased fibrotic deposition. Strikingly, expression of thermogenic marker UCP1 in visceral adipose tissues of PDAC patients and mice remained unchanged. Thus, we propose that activin A signaling could be relevant to the acceleration of visceral adipose tissue wasting in PDAC-associated cachexia.


Assuntos
Ativinas/metabolismo , Adipócitos Brancos/metabolismo , Adiposidade , Carcinoma Ductal Pancreático/metabolismo , Subunidades beta de Inibinas/metabolismo , Gordura Intra-Abdominal/metabolismo , Neoplasias Pancreáticas/metabolismo , Ativinas/genética , Adipócitos Brancos/patologia , Animais , Atrofia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Estudos de Casos e Controles , Linhagem Celular , Fibrose , Humanos , Subunidades beta de Inibinas/genética , Gordura Intra-Abdominal/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Estadiamento de Neoplasias , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Transdução de Sinais , Proteína Desacopladora 1/metabolismo
12.
Oncogene ; 41(7): 971-982, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35001076

RESUMO

Metabolic alterations regulate cancer aggressiveness and immune responses. Given the poor response of pancreatic ductal adenocarcinoma (PDAC) to conventional immunotherapies, we investigated the link between metabolic alterations and immunosuppression. Our metabolic enzyme screen indicated that elevated expression of CD73, an ecto-5'-nucleotidase that generates adenosine, correlates with increased aggressiveness. Correspondingly, we observed increased interstitial adenosine levels in tumors from spontaneous PDAC mouse models. Diminishing CD73 by genetic manipulations ablated in vivo tumor growth, and decreased myeloid-derived suppressor cells (MDSC) in orthotopic mouse models of PDAC. A high-throughput cytokine profiling demonstrated decreased GM-CSF in mice implanted with CD73 knockdowns. Furthermore, we noted increased IFN-γ expression by intratumoral CD4+ and CD8+ T cells in pancreatic tumors with CD73 knockdowns. Depletion of CD4+ T cells, but not CD8+ T cells abrogated the beneficial effects of decreased CD73. We also observed that splenic MDSCs from Nt5e knockdown tumor-bearing mice were incompetent in suppressing T cell activation in the ex vivo assays. Replenishing GM-CSF restored tumor growth in Nt5e knockout tumors, which was reverted by MDSC depletion. Finally, anti-CD73 antibody treatment significantly improved gemcitabine efficacy in orthotopic models. Thus, targeting the adenosine axis presents a novel therapeutic opportunity for improving the anti-tumoral immune response against PDAC.


Assuntos
Células Supressoras Mieloides
13.
Mol Cancer Res ; 20(9): 1391-1404, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35675041

RESUMO

Ecdysoneless (ECD) protein is essential for embryogenesis, cell-cycle progression, and cellular stress mitigation with an emerging role in mRNA biogenesis. We have previously shown that ECD protein as well as its mRNA are overexpressed in breast cancer and ECD overexpression predicts shorter survival in patients with breast cancer. However, the genetic evidence for an oncogenic role of ECD has not been established. Here, we generated transgenic mice with mammary epithelium-targeted overexpression of an inducible human ECD transgene (ECDTg). Significantly, ECDTg mice develop mammary hyperplasia, preneoplastic lesions, and heterogeneous tumors with occasional lung metastasis. ECDTg tumors exhibit epithelial to mesenchymal transition and cancer stem cell characteristics. Organoid cultures of ECDTg tumors showed ECD dependency for in vitro oncogenic phenotype and in vivo growth when implanted in mice. RNA sequencing (RNA-seq) analysis of ECDTg tumors showed a c-MYC signature, and alterations in ECD levels regulated c-MYC mRNA and protein levels as well as glucose metabolism. ECD knockdown-induced decrease in glucose uptake was rescued by overexpression of mouse ECD as well as c-MYC. Publicly available expression data analyses showed a significant correlation of ECD and c-MYC overexpression in breast cancer, and ECD and c-MYC coexpression exhibits worse survival in patients with breast cancer. Taken together, we establish a novel role of overexpressed ECD as an oncogenesis driver in the mouse mammary gland through upregulation of c-MYC-mediated glucose metabolism. IMPLICATIONS: We demonstrate ECD overexpression in the mammary gland of mice led to the development of a tumor progression model through upregulation of c-MYC signaling and glucose metabolism.


Assuntos
Neoplasias da Mama , Carcinogênese , Carcinógenos , Proteínas de Transporte , Glucose , Proteínas Proto-Oncogênicas c-myc , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinogênese/genética , Carcinogênese/patologia , Proteínas de Transporte/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Glucose/metabolismo , Humanos , Hiperplasia/genética , Hiperplasia/patologia , Neoplasias Pulmonares/secundário , Glândulas Mamárias Animais/patologia , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Transgênicos , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Mensageiro , Transdução de Sinais , Regulação para Cima
14.
Mol Cancer Ther ; 20(12): 2457-2468, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34625505

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) represents 3% of all cancer cases and 7% of all cancer deaths in the United States. Late diagnosis and inadequate response to standard chemotherapies contribute to an unfavorable prognosis and an overall 5-year survival rate of less than 10% in PDAC. Despite recent advances in tumor immunology, tumor-induced immunosuppression attenuates the immunotherapy response in PDAC. To date, studies have focused on IgG-based therapeutic strategies in PDAC. With the recent interest in IgE-based therapies in multiple solid tumors, we explored the MUC1-targeted IgE potential against pancreatic cancer. Our study demonstrates the notable expression of FceRI (receptor for IgE antibody) in tumors from PDAC patients. Our study showed that administration of MUC1 targeted-IgE (mouse/human chimeric anti-MUC1.IgE) antibody at intermittent levels in combination with checkpoint inhibitor (anti-PD-L1) and TLR3 agonist (PolyICLC) induces a robust antitumor response that is dependent on NK and CD8 T cells in pancreatic tumor-bearing mice. Subsequently, our study showed that the antigen specificity of the IgE antibody plays a vital role in executing the antitumor response as nonspecific IgE, induced by ovalbumin (OVA), failed to restrict tumor growth in pancreatic tumor-bearing mice. Utilizing the OVA-induced allergic asthma-PDAC model, we demonstrate that allergic phenotype induced by OVA cannot restrain pancreatic tumor growth in orthotopic tumor-bearing mice. Together, our data demonstrate the novel tumor protective benefits of tumor antigen-specific IgE-based therapeutics in a preclinical model of pancreatic cancer, which can open new avenues for future clinical interventions.


Assuntos
Adenocarcinoma/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Imunoglobulina E/uso terapêutico , Animais , Humanos , Imunoglobulina E/farmacologia , Camundongos
15.
Curr Dev Nutr ; 4(9): nzaa131, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32908958

RESUMO

BACKGROUND: The mechanistic target of rapamycin complex 1 (mTORC1) is a nutrient-sensing pathway and a key regulator of amino acid and glucose metabolism. Dysregulation of the mTOR pathways is implicated in the pathogenesis of metabolic syndrome, obesity, type 2 diabetes, and pancreatic cancer. OBJECTIVES: We investigated the impact of inhibition of mTORC1/mTORC2 and synergism with metformin on pancreatic tumor growth and metabolomics. METHODS: Cell lines derived from pancreatic tumors of the KPC (KrasG12D/+; p53R172H/+; Pdx1-Cre) transgenic mice model were implanted into the pancreas of C57BL/6 albino mice (n = 10/group). Two weeks later, the mice were injected intraperitoneally with daily doses of 1) Torin 2 (mTORC1/mTORC2 inhibitor) at a high concentration (TH), 2) Torin 2 at a low concentration (TL), 3) metformin at a low concentration (ML), 4) a combination of Torin 2 and metformin at low concentrations (TLML), or 5) DMSO vehicle (control) for 12 d. Tissues and blood samples were collected for targeted xenometabolomics analysis, drug concentration, and cell signaling. RESULTS: Metabolomic analysis of the control and treated plasma samples showed differential metabolite profiles. Phenylalanine was significantly elevated in the TLML group compared with the control (+426%, P = 0.0004), whereas uracil was significantly lower (-38%, P = 0.009). The combination treatment reduced tumor growth in the orthotopic mouse model. TLML significantly decreased pancreatic tumor volume (498 ± 104 mm3; 37%; P < 0.0004) compared with control (1326 ± 134 mm3; 100%), ML (853 ± 67 mm3; 64%), TL (745 ± 167 mm3; 54%), and TH (665 ± 182 mm3; 50%) (ANOVA and post hoc tests). TLML significantly decreased tumor weights (0.66 ± 0.08 g; 52%) compared with the control (1.28 ± 0.19 g; 100%) (P < 0.002). CONCLUSIONS: The combination of mTOR dual inhibition by Torin 2 and metformin is associated with an altered metabolomic profile and a significant reduction in pancreatic tumor burden compared with single-agent therapy, and it is better tolerated.

16.
Cancer Lett ; 491: 70-77, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-32735910

RESUMO

Cancer cachexia patients experience significant muscle wasting, which impairs the quality of life and treatment efficacy for patients. Skeletal muscle protein turnover is imparted by increased expression of ubiquitin-proteasome pathway components. Mitogen-activated protein kinases p38 and ERK have been shown to augment E3 ubiquitin ligase expression. Utilizing reverse-phase protein arrays, we identified pancreatic cancer cell-conditioned media-induced activation of JNK signaling in myotubes differentiated from C2C12 myoblasts. Inhibition of JNK signaling with SP600125 reduced cancer cell-conditioned media-induced myotube atrophy, myosin heavy chain protein turnover, and mRNA expression of cachexia-specific ubiquitin ligases Trim63 and Fbxo32. Furthermore, utilizing an orthotopic pancreatic cancer cachexia mouse model, we demonstrated that treatment of tumor-bearing mice with SP600125 improved longitudinal measurements of forelimb grip strength. Post-necropsy measurements demonstrated that SP600125 treatment rescued body weight, carcass weight, and gastrocnemius muscle weight loss without impacting tumor growth. JNK inhibitor treatment also rescued myofiber degeneration and reduced the muscle expression of Trim63 and Fbxo32. These data demonstrate that JNK signaling contributes to muscle wasting in cancer cachexia, and its inhibition has the potential to be utilized as an anti-cachectic therapy.


Assuntos
Caquexia/etiologia , Proteínas Quinases JNK Ativadas por Mitógeno/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Neoplasias Pancreáticas/complicações , Animais , Antracenos/farmacologia , Antracenos/uso terapêutico , Caquexia/tratamento farmacológico , Caquexia/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Camundongos , Fibras Musculares Esqueléticas/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo
17.
Cancer Lett ; 484: 29-39, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32344015

RESUMO

Incidence of cachexia is highly prevalent in pancreatic ductal adenocarcinoma (PDAC); advanced disease stage directly correlates with decreased muscle and fat mass in PDAC patients. The pancreatic tumor microenvironment is central to the release of systemic factors that govern lipolysis, proteolysis, and muscle and fat degeneration leading to the cachectic phenotype in cancer patients. The current study explores the role of macrophages, a key immunosuppressive player in the pancreatic tumor microenvironment, in regulating cancer cachexia. We observed a negative correlation between CD163-positive macrophage infiltration and muscle-fiber cross sectional area in human PDAC patients. To investigate the role of macrophages in myodegeneration, we utilized conditioned media transplant assays and orthotopic models of PDAC-induced cachexia in immune-competent mice with and without macrophage depletion. We observed that macrophage-derived conditioned medium, in combination with tumor cell-conditioned medium, promoted muscle atrophy through STAT3 signaling. Furthermore, macrophage depletion attenuated systemic inflammation and muscle wasting in pancreatic tumor-bearing mice. Targeting macrophage-mediated STAT3 activation or macrophage-derived interleukin-1 alpha or interleukin-6 diminished myofiber atrophy. Taken together, the current study identified the critical association between macrophages and cachexia phenotype in pancreatic cancer.


Assuntos
Caquexia/imunologia , Macrófagos/imunologia , Músculo Esquelético/imunologia , Neoplasias Pancreáticas/imunologia , Fator de Transcrição STAT3/imunologia , Transdução de Sinais/imunologia , Animais , Caquexia/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Citocinas/sangue , Citocinas/imunologia , Citocinas/metabolismo , Humanos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/imunologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Neoplasias Pancreáticas/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
18.
J Exp Med ; 217(7)2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32441762

RESUMO

Approximately one third of cancer patients die due to complexities related to cachexia. However, the mechanisms of cachexia and the potential therapeutic interventions remain poorly studied. We observed a significant positive correlation between SIRT1 expression and muscle fiber cross-sectional area in pancreatic cancer patients. Rescuing Sirt1 expression by exogenous expression or pharmacological agents reverted cancer cell-induced myotube wasting in culture conditions and mouse models. RNA-seq and follow-up analyses showed cancer cell-mediated SIRT1 loss induced NF-κB signaling in cachectic muscles that enhanced the expression of FOXO transcription factors and NADPH oxidase 4 (Nox4), a key regulator of reactive oxygen species production. Additionally, we observed a negative correlation between NOX4 expression and skeletal muscle fiber cross-sectional area in pancreatic cancer patients. Knocking out Nox4 in skeletal muscles or pharmacological blockade of Nox4 activity abrogated tumor-induced cachexia in mice. Thus, we conclude that targeting the Sirt1-Nox4 axis in muscles is an effective therapeutic intervention for mitigating pancreatic cancer-induced cachexia.


Assuntos
Caquexia/complicações , Caquexia/metabolismo , NADPH Oxidase 4/metabolismo , Neoplasias/complicações , Neoplasias/metabolismo , Transdução de Sinais , Sirtuína 1/metabolismo , Tecido Adiposo/patologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Modelos Animais de Doenças , Progressão da Doença , Fatores de Transcrição Forkhead/metabolismo , Células HEK293 , Humanos , Metaboloma/efeitos dos fármacos , Camundongos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , NF-kappa B/metabolismo , Oxirredução , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Estabilidade Proteica/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Resveratrol/farmacologia , Transdução de Sinais/efeitos dos fármacos , Síndrome de Emaciação/patologia
19.
Methods Mol Biol ; 1882: 221-228, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30378058

RESUMO

Metabolic reprograming is an established hallmark of cancer cells. Pancreatic cancer cells, by virtue of the underlying oncogenic drivers, demonstrate metabolic reprograming to sustain growth, invasiveness, and therapy resistance. The increased demands of the growing tumor cells alter the metabolic and signaling pathways to meet the growing nutrient requirements. Investigating the metabolic vulnerabilities of tumor cells can help in developing effective therapeutics to target pancreatic cancer. In this chapter, we explain in detail the methods to evaluate the metabolic changes occurring in the tumor. This includes the glucose/glutamine uptake assays and the measurement of reactive oxygen species, extracellular acidification rate, and oxygen consumption rate in the tumor cells. All these physiological assays help in understanding the metabolic nature of the tumor.


Assuntos
Metabolômica/métodos , Pâncreas/metabolismo , Neoplasias Pancreáticas/metabolismo , Trifosfato de Adenosina/metabolismo , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Proliferação de Células , Glucose/análise , Glucose/metabolismo , Glutamina/análise , Glutamina/metabolismo , Glicólise , Humanos , Metabolômica/instrumentação , Mitocôndrias/patologia , Consumo de Oxigênio , Pâncreas/patologia , Neoplasias Pancreáticas/patologia , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo
20.
Methods Mol Biol ; 1882: 321-333, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30378066

RESUMO

Cachexia, a complex metabolic syndrome, is characterized by involuntary weight loss along with muscle wasting and fat depletion leading to poor quality of life of patients. About 80% of pancreatic cancer patients exhibit cachectic phenotype at the time of diagnosis. Here, we present the several molecular and physiological parameters, which we utilize to study the pancreatic cancer-induced cachexia in in vitro models and preclinical mice models of pancreatic cancer. We have described myotube and adipocyte-based in vitro models of muscle and fat wasting, including methods of cell culture, differentiation, and treatment with cancer cell-conditioned medium. Furthermore, we have explained the methods of evaluation of key cachectic markers for muscles. Next, we have detailed the orthotopic implantation mouse models of pancreatic cancer and evaluation of different physiological parameters, including body weight, food intake, body composition analysis, glucose tolerance test, insulin resistance test, grip strength measurement, and rotarod performance test. We have also explained morphological parameters and molecular markers to evaluate the muscle wasting in pancreatic cancer-induced cachexia.


Assuntos
Caquexia/patologia , Técnicas de Cultura de Células/métodos , Neoplasias Pancreáticas/complicações , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Células 3T3-L1 , Absorciometria de Fóton , Adipócitos/fisiologia , Animais , Caquexia/diagnóstico , Caquexia/etiologia , Caquexia/fisiopatologia , Técnicas de Cultura de Células/instrumentação , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Meios de Cultivo Condicionados/farmacologia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Nus , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Neoplasias Pancreáticas/patologia , Teste de Desempenho do Rota-Rod/instrumentação , Teste de Desempenho do Rota-Rod/métodos , Ensaios Antitumorais Modelo de Xenoenxerto/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA