Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(40): e2302996120, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37748053

RESUMO

Plant roots explore the soil for water and nutrients, thereby determining plant fitness and agricultural yield, as well as determining ground substructure, water levels, and global carbon sequestration. The colonization of the soil requires investment of carbon and energy, but how sugar and energy signaling are integrated with root branching is unknown. Here, we show through combined genetic and chemical modulation of signaling pathways that the sugar small-molecule signal, trehalose-6-phosphate (T6P) regulates root branching through master kinases SNF1-related kinase-1 (SnRK1) and Target of Rapamycin (TOR) and with the involvement of the plant hormone auxin. Increase of T6P levels both via genetic targeting in lateral root (LR) founder cells and through light-activated release of the presignaling T6P-precursor reveals that T6P increases root branching through coordinated inhibition of SnRK1 and activation of TOR. Auxin, the master regulator of LR formation, impacts this T6P function by transcriptionally down-regulating the T6P-degrader trehalose phosphate phosphatase B in LR cells. Our results reveal a regulatory energy-balance network for LR formation that links the 'sugar signal' T6P to both SnRK1 and TOR downstream of auxin.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fosfatos Açúcares , Arabidopsis/genética , Trealose , Ácidos Indolacéticos , Proteínas Serina-Treonina Quinases/genética , Proteínas de Arabidopsis/genética
2.
Org Biomol Chem ; 14(27): 6390-3, 2016 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-27180870

RESUMO

Gamma-butyrolactones (GBLs) are signalling molecules that control antibiotic production in Streptomyces bacteria. The genetically engineered strain S. coelicolor M1152 was found to overproduce GBLs SCB1-3 as well as five novel GBLs named SCB4-8. Incorporation experiments using isotopically-labelled precursors confirmed the chemical structures of SCB1-3 and established those of SCB4-8.


Assuntos
4-Butirolactona/química , 4-Butirolactona/metabolismo , Antibacterianos/biossíntese , Streptomyces coelicolor/metabolismo , Engenharia Genética , Espectrometria de Massas , Streptomyces coelicolor/genética
3.
Front Microbiol ; 14: 1092166, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007481

RESUMO

Heme is best known for its role as a versatile prosthetic group in prokaryotic and eukaryotic proteins with diverse biological functions including gas and electron transport, as well as a wide array of redox chemistry. However, free heme and related tetrapyrroles also have important roles in the cell. In several bacterial strains, heme biosynthetic precursors and degradation products have been proposed to function as signaling molecules, ion chelators, antioxidants and photoprotectants. While the uptake and degradation of heme by bacterial pathogens is well studied, less is understood about the physiological role of these processes and their products in non-pathogenic bacteria. Streptomyces are slow growing soil bacteria known for their extraordinary capacity to produce complex secondary metabolites, particularly many clinically used antibiotics. Here we report the unambiguous identification of three tetrapyrrole metabolites from heme metabolism, coproporphyrin III, biliverdin and bilirubin, in culture extracts of the rufomycin antibiotic producing Streptomyces atratus DSM41673. We propose that biliverdin and bilirubin may combat oxidative stress induced by nitric oxide production during rufomycin biosynthesis, and indicate the genes involved in their production. This is, to our knowledge, the first report of the production of all three of these tetrapyrroles by a Streptomycete.

4.
Sci Adv ; 9(11): eade8487, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36930706

RESUMO

Toll/interleukin-1 receptor (TIR) domain proteins function in cell death and immunity. In plants and bacteria, TIR domains are often enzymes that produce isomers of cyclic adenosine 5'-diphosphate-ribose (cADPR) as putative immune signaling molecules. The identity and functional conservation of cADPR isomer signals is unclear. A previous report found that a plant TIR could cross-activate the prokaryotic Thoeris TIR-immune system, suggesting the conservation of plant and prokaryotic TIR-immune signals. Here, we generate autoactive Thoeris TIRs and test the converse hypothesis: Do prokaryotic Thoeris TIRs also cross-activate plant TIR immunity? Using in planta and in vitro assays, we find that Thoeris and plant TIRs generate overlapping sets of cADPR isomers and further clarify how plant and Thoeris TIRs activate the Thoeris system via producing 3'cADPR. This study demonstrates that the TIR signaling requirements for plant and prokaryotic immune systems are distinct and that TIRs across kingdoms generate a diversity of small-molecule products.


Assuntos
ADP-Ribose Cíclica , NAD+ Nucleosidase , NAD+ Nucleosidase/metabolismo , Receptores de Interleucina-1 , Transdução de Sinais , Bactérias/metabolismo , Plantas/metabolismo
5.
Chem Commun (Camb) ; 57(89): 11795-11798, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34676855

RESUMO

The antimycobacterial peptides, rufomycins, have their antibiotic activity conferred by oxidative tailoring of the cyclic peptide. Here we elucidate the roles of cytochrome P450s RufS and RufM in regioselective epoxidation and alkyl oxidation respectively and demonstrate how RufM and RufS create a complex product profile dependent on redox partner availability. Finally, we report the in vitro one pot conversion of rufomycin B to rufomycin C.


Assuntos
Antituberculosos/síntese química , Peptídeos Cíclicos/síntese química , Sequência de Aminoácidos , Antituberculosos/metabolismo , Proteínas de Bactérias/química , Sistema Enzimático do Citocromo P-450/química , Oxirredução , Peptídeos Cíclicos/biossíntese , Streptomyces/química
6.
Sci Rep ; 10(1): 19566, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177633

RESUMO

Secoiridoid glycosides are anti-feeding deterrents of the Oleaceae family recently highlighted as potential biomarkers in Danish ash trees to differentiate between those tolerant and susceptible to the fungal disease ash dieback. With the knowledge that emerald ash borer has recently entered Europe from Russia, and that extensive selection trials are ongoing in Europe for ash dieback tolerant European ash (Fraxinus excelsior), we undertook comprehensive screening of secoiridoid glycosides in leaf extracts of trees tolerant and susceptible to ash dieback sampled from sites in the UK and Denmark. Here we report an unexpected diversity of secoiridoid glycosides in UK trees and higher levels of secoiridoid glycosides in the UK sample group. While it is unlikely that secoiridoid glycosides generally can serve as reliable markers for ash dieback susceptibility, there are differences between tolerant and susceptible groups for specific secoiridoids. We predict that the high levels-and structural diversity-of secoiridoids present in the UK group may provide a robust reservoir of anti-feeding deterrents to mitigate future herbivore threats such as the Emerald ash borer.

7.
Methods Enzymol ; 517: 71-87, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23084934

RESUMO

Streptomyces bacteria produce different classes of diffusible signaling molecules that trigger secondary metabolite production and/or morphological development within the cell population. The biosynthesis of gamma-butyrolactones (GBLs) and 2-alkyl-4-hydroxymethylfuran-3-carboxylic acids (AHFCAs) signaling molecules is related and involves an essential AfsA-like butenolide synthase. This chapter first describes the catalytic role of AfsA-like enzyme then provides details about methods for the discovery and characterization of potentially novel signaling molecules. In section 4, one approach for establishing the biological role of these signaling molecules is presented.


Assuntos
4-Butirolactona/biossíntese , Furanos/metabolismo , Transdução de Sinais , Streptomyces/metabolismo , Antibacterianos/biossíntese , Antibacterianos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ácidos Carboxílicos/metabolismo , Clonagem Molecular , Fosfato de Di-Hidroxiacetona/metabolismo , Ensaios Enzimáticos , Regulação Bacteriana da Expressão Gênica , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Metaboloma , Família Multigênica , Streptomyces/enzimologia , Streptomyces/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA