Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
PLoS Pathog ; 17(11): e1010033, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34780568

RESUMO

Contagious cancers are a rare pathogenic phenomenon in which cancer cells gain the ability to spread between genetically distinct hosts. Nine examples have been identified across marine bivalves, dogs and Tasmanian devils, but the Tasmanian devil is the only mammalian species known to have given rise to two distinct lineages of contagious cancer, termed Devil Facial Tumour 1 (DFT1) and 2 (DFT2). Remarkably, DFT1 and DFT2 arose independently from the same cell type, a Schwann cell, and while their ultra-structural features are highly similar they exhibit variation in their mutational signatures and infection dynamics. As such, DFT1 and DFT2 provide a unique framework for investigating how a common progenitor cell can give rise to distinct contagious cancers. Using a proteomics approach, we show that DFT1 and DFT2 are derived from Schwann cells in different differentiation states, with DFT2 carrying a molecular signature of a less well differentiated Schwann cell. Under inflammatory signals DFT1 and DFT2 have different gene expression profiles, most notably involving Schwann cell markers of differentiation, reflecting the influence of their distinct origins. Further, DFT2 cells express immune cell markers typically expressed during nerve repair, consistent with an ability to manipulate their extracellular environment, facilitating the cell's ability to transmit between individuals. The emergence of two contagious cancers in the Tasmanian devil suggests that the inherent plasticity of Schwann cells confers a vulnerability to the formation of contagious cancers.


Assuntos
Doenças dos Animais/patologia , Diferenciação Celular , Doenças Transmissíveis/patologia , Neoplasias Faciais/veterinária , Regulação Neoplásica da Expressão Gênica , Proteoma/metabolismo , Células de Schwann/patologia , Doenças dos Animais/genética , Doenças dos Animais/metabolismo , Animais , Variação Biológica da População , Doenças Transmissíveis/genética , Doenças Transmissíveis/metabolismo , Neoplasias Faciais/classificação , Perfilação da Expressão Gênica , Marsupiais , Proteoma/análise , Células de Schwann/metabolismo , Transcriptoma
2.
Immunology ; 163(2): 169-184, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33460454

RESUMO

Transmissible cancers are malignant cells that can spread between individuals of a population, akin to both a parasite and a mobile graft. The survival of the Tasmanian devil, the largest remaining marsupial carnivore, is threatened by the remarkable emergence of two independent lineages of transmissible cancer, devil facial tumour (DFT) 1 and devil facial tumour 2 (DFT2). To aid the development of a vaccine and to interrogate how histocompatibility barriers can be overcome, we analysed the peptides bound to major histocompatibility complex class I (MHC-I) molecules from Tasmanian devil cells and representative cell lines of each transmissible cancer. Here, we show that DFT1 + IFN-γ and DFT2 cell lines express a restricted repertoire of MHC-I allotypes compared with fibroblast cells, potentially reducing the breadth of peptide presentation. Comparison of the peptidomes from DFT1 + IFNγ, DFT2 and host fibroblast cells demonstrates a dominant motif, despite differences in MHC-I allotypes between the cell lines, with preference for a hydrophobic leucine residue at position 3 and position Ω of peptides. DFT1 and DFT2 both present peptides derived from neural proteins, which reflects a shared cellular origin that could be exploited for vaccine design. These results suggest that polymorphisms in MHC-I molecules between tumours and host can be 'hidden' by a common peptide motif, providing the potential for permissive passage of infectious cells and demonstrating complexity in mammalian histocompatibility barriers.


Assuntos
Antígenos de Neoplasias/metabolismo , Vacinas Anticâncer/imunologia , Neoplasias Faciais/imunologia , Imunoterapia/métodos , Marsupiais/imunologia , Células Neoplásicas Circulantes/patologia , Peptídeos/metabolismo , Motivos de Aminoácidos/genética , Animais , Apresentação de Antígeno , Antígenos de Neoplasias/genética , Linhagem Celular Tumoral , Histocompatibilidade , Antígenos de Histocompatibilidade Classe I/metabolismo , Peptídeos/genética , Polimorfismo Genético , Ligação Proteica
3.
Immunol Invest ; 48(7): 719-736, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31161832

RESUMO

The Tasmanian devil is the only mammalian species to harbour two independent lineages of contagious cancer. Devil facial tumour 1 (DFT1) emerged in the 1990s and has caused significant population declines. Devil facial tumour 2 (DFT2) was identified in 2014, and evidence indicates that this new tumour has emerged independently of DFT1. While DFT1 is widespread across Tasmania, DFT2 is currently found only on the Channel Peninsula in south east Tasmania. Allograft transmission of cancer cells should be prevented by major histocompatibility complex (MHC) molecules. DFT1 avoids immune detection by downregulating MHC class I expression, which can be reversed by treatment with interferon-gamma (IFNγ), while DFT2 currently circulates in hosts with a similar MHC class I genotype to the tumour. Wild Tasmanian devil numbers have not recovered from the emergence of DFT1, and it is feared that widespread transmission of DFT2 will be devastating to the remaining wild population. A preventative solution for the management of the disease is needed. Here, we review the current research on immune responses to devil facial tumours and vaccine strategies against DFT1 and outline our plans moving forward to develop a specific, effective vaccine to support the wild Tasmanian devil population against the threat of these two transmissible tumours.


Assuntos
Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Neoplasias Faciais/imunologia , Neoplasias Faciais/veterinária , Animais , Vacinas Anticâncer/uso terapêutico , Neoplasias Faciais/genética , Neoplasias Faciais/terapia , Regulação Neoplásica da Expressão Gênica , Antígenos de Histocompatibilidade Classe I/genética , Imunoterapia , Marsupiais , Vacinação , Vacinas de Subunidades Antigênicas
4.
Proc Natl Acad Sci U S A ; 113(2): 374-9, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26711993

RESUMO

Clonally transmissible cancers are somatic cell lineages that are spread between individuals via the transfer of living cancer cells. There are only three known naturally occurring transmissible cancers, and these affect dogs, soft-shell clams, and Tasmanian devils, respectively. The Tasmanian devil transmissible facial cancer was first observed in 1996, and is threatening its host species with extinction. Until now, this disease has been consistently associated with a single aneuploid cancer cell lineage that we refer to as DFT1. Here we describe a second transmissible cancer, DFT2, in five devils located in southern Tasmania in 2014 and 2015. DFT2 causes facial tumors that are grossly indistinguishable but histologically distinct from those caused by DFT1. DFT2 bears no detectable cytogenetic similarity to DFT1 and carries a Y chromosome, which contrasts with the female origin of DFT1. DFT2 shows different alleles to both its hosts and DFT1 at microsatellite, structural variant, and major histocompatibility complex (MHC) loci, confirming that it is a second cancer that can be transmitted between devils as an allogeneic, MHC-discordant graft. These findings indicate that Tasmanian devils have spawned at least two distinct transmissible cancer lineages and suggest that transmissible cancers may arise more frequently in nature than previously considered. The discovery of DFT2 presents important challenges for the conservation of Tasmanian devils and raises the possibility that this species is particularly prone to the emergence of transmissible cancers. More generally, our findings highlight the potential for cancer cells to depart from their hosts and become dangerous transmissible pathogens.


Assuntos
Marsupiais/fisiologia , Neoplasias/veterinária , Alelos , Animais , Quebra Cromossômica , Análise Citogenética , Éxons/genética , Genoma , Geografia , Haplótipos/genética , Cariotipagem , Repetições de Microssatélites/genética , Dados de Sequência Molecular , Neoplasias/genética , Neoplasias/patologia , Polimorfismo de Nucleotídeo Único/genética , Tasmânia , Cromossomo X/genética
5.
Immunogenetics ; 69(8-9): 537-545, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28695294

RESUMO

The Tasmanian devil, a marsupial species endemic to the island of Tasmania, harbours two contagious cancers, Devil Facial Tumour 1 (DFT1) and Devil Facial Tumour 2 (DFT2). These cancers pass between individuals in the population via the direct transfer of tumour cells, resulting in the growth of large tumours around the face and neck of affected animals. While these cancers are rare, a contagious cancer also exists in dogs and five contagious cancers circulate in bivalves. The ability of tumour cells to emerge and transmit in mammals is surprising as these cells are an allograft and should be rejected due to incompatibility between Major Histocompatibility Complex (MHC) genes. As such, considerable research has focused on understanding how DFT1 cells evade the host immune system with particular reference to MHC molecules. This review evaluates the role that MHC class I expression and genotype plays in allowing DFT1 to circumvent histocompatibility barriers in Tasmanian devils. We also examine recent research that suggests that Tasmanian devils can mount an immune response to DFT1 and may form the basis of a protective vaccine against the tumour.


Assuntos
Genes MHC Classe I/fisiologia , Marsupiais/imunologia , Neoplasias/veterinária , Animais , Genótipo , Neoplasias/genética , Neoplasias/imunologia , Tasmânia
6.
Biol Lett ; 12(10)2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28120799

RESUMO

Devil facial tumour disease (DFTD) is a recently emerged fatal transmissible cancer decimating the wild population of Tasmanian devils (Sarcophilus harrisii). Biting transmits the cancer cells and the tumour develops in the new host as an allograft. The literature reports that immune escape mechanisms employed by DFTD inevitably result in host death. Here we present the first evidence that DFTD regression can occur and that wild devils can mount an immune response against the disease. Of the 52 devils tested, six had serum antibodies against DFTD cells and, in one case, prominent T lymphocyte infiltration in its tumour. Notably, four of the six devils with serum antibody had histories of DFTD regression. The novel demonstration of an immune response against DFTD in wild Tasmanian devils suggests that a proportion of wild devils can produce a protective immune response against naturally acquired DFTD. This has implications for tumour-host coevolution and vaccine development.


Assuntos
Neoplasias Faciais/veterinária , Marsupiais/imunologia , Animais , Neoplasias Faciais/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos T/imunologia
7.
Proc Natl Acad Sci U S A ; 110(13): 5103-8, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23479617

RESUMO

Contagious cancers that pass between individuals as an infectious cell line are highly unusual pathogens. Devil facial tumor disease (DFTD) is one such contagious cancer that emerged 16 y ago and is driving the Tasmanian devil to extinction. As both a pathogen and an allograft, DFTD cells should be rejected by the host-immune response, yet DFTD causes 100% mortality among infected devils with no apparent rejection of tumor cells. Why DFTD cells are not rejected has been a question of considerable confusion. Here, we show that DFTD cells do not express cell surface MHC molecules in vitro or in vivo, due to down-regulation of genes essential to the antigen-processing pathway, such as ß2-microglobulin and transporters associated with antigen processing. Loss of gene expression is not due to structural mutations, but to regulatory changes including epigenetic deacetylation of histones. Consequently, MHC class I molecules can be restored to the surface of DFTD cells in vitro by using recombinant devil IFN-γ, which is associated with up-regulation of the MHC class II transactivator, a key transcription factor with deacetylase activity. Further, expression of MHC class I molecules by DFTD cells can occur in vivo during lymphocyte infiltration. These results explain why T cells do not target DFTD cells. We propose that MHC-positive or epigenetically modified DFTD cells may provide a vaccine to DFTD. In addition, we suggest that down-regulation of MHC molecules using regulatory mechanisms allows evolvability of transmissible cancers and could affect the evolutionary trajectory of DFTD.


Assuntos
Espécies em Perigo de Extinção , Epigênese Genética/imunologia , Regulação Neoplásica da Expressão Gênica/imunologia , Antígenos de Histocompatibilidade/imunologia , Marsupiais/imunologia , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/veterinária , Evasão Tumoral , Animais , Apresentação de Antígeno/imunologia , Linhagem Celular Tumoral , Interferon gama/imunologia , Neoplasias Cutâneas/patologia
8.
Immunology ; 144(1): 11-20, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25187312

RESUMO

Naturally transmissible tumours can emerge when a tumour cell gains the ability to pass as an infectious allograft between individuals. The ability of these tumours to colonize a new host and to cross histocompatibility barriers contradicts our understanding of the vertebrate immune response to allografts. Two naturally occurring contagious cancers are currently active in the animal kingdom, canine transmissible venereal tumour (CTVT), which spreads among dogs, and devil facial tumour disease (DFTD), among Tasmanian devils. CTVT are generally not fatal as a tumour-specific host immune response controls or clears the tumours after transmission and a period of growth. In contrast, the growth of DFTD tumours is not controlled by the Tasmanian devil's immune system and the disease causes close to 100% mortality, severely impacting the devil population. To avoid the immune response of the host both DFTD and CTVT use a variety of immune escape strategies that have similarities to many single organism tumours, including MHC loss and the expression of immunosuppressive cytokines. However, both tumours appear to have a complex interaction with the immune system of their respective host, which has evolved over the relatively long life of these tumours. The Tasmanian devil is struggling to survive with the burden of this disease and it is only with an understanding of how DFTD passes between individuals that a vaccine might be developed. Further, an understanding of how these tumours achieve natural transmissibility should provide insights into general mechanisms of immune escape that emerge during tumour evolution.


Assuntos
Doenças do Cão/imunologia , Evasão Tumoral , Tumores Venéreos Veterinários/imunologia , Animais , Doenças do Cão/patologia , Cães , Tumores Venéreos Veterinários/patologia
9.
Evol Appl ; 17(3): e13670, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38468711

RESUMO

Since the emergence of a transmissible cancer, devil facial tumour disease (DFT1), in the 1980s, wild Tasmanian devil populations have been in decline. In 2016, a second, independently evolved transmissible cancer (DFT2) was discovered raising concerns for survival of the host species. Here, we applied experimental and modelling frameworks to examine competition dynamics between the two transmissible cancers in vitro. Using representative cell lines for DFT1 and DFT2, we have found that in monoculture, DFT2 grows twice as fast as DFT1 but reaches lower maximum cell densities. Using co-cultures, we demonstrate that DFT2 outcompetes DFT1: the number of DFT1 cells decreasing over time, never reaching exponential growth. This phenomenon could not be replicated when cells were grown separated by a semi-permeable membrane, consistent with exertion of mechanical stress on DFT1 cells by DFT2. A logistic model and a Lotka-Volterra competition model were used to interrogate monoculture and co-culture growth curves, respectively, suggesting DFT2 is a better competitor than DFT1, but also showing that competition outcomes might depend on the initial number of cells, at least in the laboratory. We provide theories how the in vitro results could be translated to observations in the wild and propose that these results may indicate that although DFT2 is currently in a smaller geographic area than DFT1, it could have the potential to outcompete DFT1. Furthermore, we provide a framework for improving the parameterization of epidemiological models applied to these cancer lineages, which will inform future disease management.

10.
Parasit Vectors ; 16(1): 274, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563668

RESUMO

Bovine babesiosis, caused by different Babesia spp. such as B. bovis, B. bigemina, B. divergens, and B. major, is a global disease that poses a serious threat to livestock production. Babesia bovis infections are associated with severe disease and increased mortality in adult cattle, making it the most virulent agent of bovine babesiosis. Babesia bovis parasites undergo asexual reproduction within bovine red blood cells, followed by sexual reproduction within their tick vectors, which transmit the parasite transovarially. Current control methods, including therapeutic drugs (i.e., imidocarb) have been found to lead to drug resistance. Moreover, changing environmental factors add complexity to efficient parasite control. Understanding the fundamental biology, host immune responses, and host-parasite interactions of Babesia parasites is critical for developing next-generation vaccines to control acute disease and parasite transmission. This systematic review analyzed available research papers on vaccine development and the associated immune responses to B. bovis. We compiled and consolidated the reported vaccine strategies, considering the study design and rationale of each study, to provide a systematic review of knowledge and insights for further research. Thirteen studies published since 2014 (inclusive) represented various vaccine strategies developed against B. bovis such as subunit, live attenuated, and viral vector vaccines. Such strategies incorporated B. bovis proteins or whole live parasites with the latter providing the most effective prophylaxis against bovine babesiosis. Incorporating novel research approaches, such as "omics" will enhance our understanding of parasite vulnerabilities.


Assuntos
Babesia bovis , Babesia , Babesiose , Doenças dos Bovinos , Vacinas , Animais , Bovinos , Babesiose/parasitologia , Doenças dos Bovinos/parasitologia
11.
Pathogens ; 11(3)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35335675

RESUMO

Devil facial tumour disease (DFTD) is a transmissible cancer that has circulated in the Tasmanian devil population for >25 years. Like other contagious cancers in dogs and devils, the way DFTD escapes the immune response of its host is a central question to understanding this disease. DFTD has a low major histocompatibility complex class I (MHC-I) expression due to epigenetic modifications, preventing host immune recognition of mismatched MHC-I molecules by T cells. However, the total MHC-I loss should result in natural killer (NK) cell activation due to the 'missing self'. Here, we have investigated the expression of the nonclassical MHC-I, Saha-UD as a potential regulatory or suppressive mechanism for DFTD. A monoclonal antibody was generated against the devil Saha-UD that binds recombinant Saha-UD by Western blot, with limited crossreactivity to the classical MHC-I, Saha-UC and nonclassical Saha-UK. Using this antibody, we confirmed the expression of Saha-UD in 13 DFTD tumours by immunohistochemistry (n = 15) and demonstrated that Saha-UD expression is heterogeneous, with 12 tumours showing intratumour heterogeneity. Immunohistochemical staining for the Saha-UD showed distinct patterns of expression when compared with classical MHC-I molecules. The nonclassical Saha-UD expression by DFTD tumours in vivo may be a mechanism for immunosuppression, and further work is ongoing to characterise its ligand on immune cells.

12.
Open Biol ; 12(10): 220208, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36259237

RESUMO

MHC-I and MHC-II molecules are critical components of antigen presentation and T cell immunity to pathogens and cancer. The two monoclonal transmissible devil facial tumours (DFT1, DFT2) exploit MHC-I pathways to overcome immunological anti-tumour and allogeneic barriers. This exploitation underpins the ongoing transmission of DFT cells across the wild Tasmanian devil population. We have previously shown that the overexpression of NLRC5 in DFT1 and DFT2 cells can regulate components of the MHC-I pathway but not MHC-II, establishing the stable upregulation of MHC-I on the cell surface. As MHC-II molecules are crucial for CD4+ T cell activation, MHC-II expression in tumour cells is beginning to gain traction in the field of immunotherapy and cancer vaccines. The overexpression of Class II transactivator in transfected DFT1 and DFT2 cells induced the transcription of several genes of the MHC-I and MHC-II pathways. This was further supported by the upregulation of MHC-I protein on DFT1 and DFT2 cells, but interestingly MHC-II protein was upregulated only in DFT1 cells. This new insight into the regulation of MHC-I and MHC-II pathways in cells that naturally overcome allogeneic barriers can inform vaccine, immunotherapy and tissue transplant strategies for human and veterinary medicine.


Assuntos
Neoplasias Faciais , Marsupiais , Animais , Neoplasias Faciais/genética , Neoplasias Faciais/veterinária , Neoplasias Faciais/patologia , Antígenos de Histocompatibilidade Classe II , Peptídeos e Proteínas de Sinalização Intracelular , Marsupiais/genética
13.
BMC Genomics ; 12: 421, 2011 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-21854592

RESUMO

BACKGROUND: The major histocompatibility complex (MHC) is a group of genes with a variety of roles in the innate and adaptive immune responses. MHC genes form a genetically linked cluster in eutherian mammals, an organization that is thought to confer functional and evolutionary advantages to the immune system. The tammar wallaby (Macropus eugenii), an Australian marsupial, provides a unique model for understanding MHC gene evolution, as many of its antigen presenting genes are not linked to the MHC, but are scattered around the genome. RESULTS: Here we describe the 'core' tammar wallaby MHC region on chromosome 2q by ordering and sequencing 33 BAC clones, covering over 4.5 MB and containing 129 genes. When compared to the MHC region of the South American opossum, eutherian mammals and non-mammals, the wallaby MHC has a novel gene organization. The wallaby has undergone an expansion of MHC class II genes, which are separated into two clusters by the class III genes. The antigen processing genes have undergone duplication, resulting in two copies of TAP1 and three copies of TAP2. Notably, Kangaroo Endogenous Retroviral Elements are present within the region and may have contributed to the genomic instability. CONCLUSIONS: The wallaby MHC has been extensively remodeled since the American and Australian marsupials last shared a common ancestor. The instability is characterized by the movement of antigen presenting genes away from the core MHC, most likely via the presence and activity of retroviral elements. We propose that the movement of class II genes away from the ancestral class II region has allowed this gene family to expand and diversify in the wallaby. The duplication of TAP genes in the wallaby MHC makes this species a unique model organism for studying the relationship between MHC gene organization and function.


Assuntos
Evolução Molecular , Instabilidade Genômica , Macropodidae/genética , Complexo Principal de Histocompatibilidade/genética , Família Multigênica , Sequência de Aminoácidos , Animais , Cromossomos Artificiais Bacterianos/genética , Etiquetas de Sequências Expressas , Duplicação Gênica , Genes MHC da Classe II , Macropodidae/imunologia , Masculino , Dados de Sequência Molecular , Filogenia , Mapeamento Físico do Cromossomo , Alinhamento de Sequência , Análise de Sequência de DNA
14.
Proc Biol Sci ; 277(1690): 2001-6, 2010 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-20219742

RESUMO

Tasmanian devils face extinction owing to the emergence of a contagious cancer. Devil facial tumour disease (DFTD) is a clonal cancer spread owing to a lack of major histocompatibility complex (MHC) barriers in Tasmanian devil populations. We present a comprehensive screen of MHC diversity in devils and identify 25 MHC types and 53 novel sequences, but conclude that overall levels of MHC diversity at the sequence level are low. The majority of MHC Class I variation can be explained by allelic copy number variation with two to seven sequence variants identified per individual. MHC sequences are divided into two distinct groups based on sequence similarity. DFTD cells and most devils have sequences from both groups. Twenty per cent of individuals have a restricted MHC repertoire and contain only group I or only group II sequences. Counterintuitively, we postulate that the immune system of individuals with a restricted MHC repertoire may recognize foreign MHC antigens on the surface of the DFTD cell. The implication of these results for management of DFTD and this endangered species are discussed.


Assuntos
Doenças dos Animais/transmissão , Neoplasias Faciais/veterinária , Dosagem de Genes/genética , Variação Genética , Complexo Principal de Histocompatibilidade/genética , Marsupiais/genética , Doenças dos Animais/genética , Doenças dos Animais/imunologia , Animais , Mordeduras e Picadas , Espécies em Perigo de Extinção , Neoplasias Faciais/genética , Neoplasias Faciais/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Marsupiais/imunologia , Dados de Sequência Molecular , Análise de Sequência de DNA
15.
BMC Genomics ; 10: 310, 2009 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-19602235

RESUMO

BACKGROUND: MHC class I antigens are encoded by a rapidly evolving gene family comprising classical and non-classical genes that are found in all vertebrates and involved in diverse immune functions. However, there is a fundamental difference between the organization of class I genes in mammals and non-mammals. Non-mammals have a single classical gene responsible for antigen presentation, which is linked to the antigen processing genes, including TAP. This organization allows co-evolution of advantageous class Ia/TAP haplotypes. In contrast, mammals have multiple classical genes within the MHC, which are separated from the antigen processing genes by class III genes. It has been hypothesized that separation of classical class I genes from antigen processing genes in mammals allowed them to duplicate. We investigated this hypothesis by characterizing the class I genes of the tammar wallaby, a model marsupial that has a novel MHC organization, with class I genes located within the MHC and 10 other chromosomal locations. RESULTS: Sequence analysis of 14 BACs containing 15 class I genes revealed that nine class I genes, including one to three classical class I, are not linked to the MHC but are scattered throughout the genome. Kangaroo Endogenous Retroviruses (KERVs) were identified flanking the MHC un-linked class I. The wallaby MHC contains four non-classical class I, interspersed with antigen processing genes. Clear orthologs of non-classical class I are conserved in distant marsupial lineages. CONCLUSION: We demonstrate that classical class I genes are not linked to antigen processing genes in the wallaby and provide evidence that retroviral elements were involved in their movement. The presence of retroviral elements most likely facilitated the formation of recombination hotspots and subsequent diversification of class I genes. The classical class I have moved away from antigen processing genes in eutherian mammals and the wallaby independently, but both lineages appear to have benefited from this loss of linkage by increasing the number of classical genes, perhaps enabling response to a wider range of pathogens. The discovery of non-classical orthologs between distantly related marsupial species is unusual for the rapidly evolving class I genes and may indicate an important marsupial specific function.


Assuntos
Genes MHC Classe I , Ligação Genética , Macropodidae/genética , Animais , Sequência de Bases , Cromossomos Artificiais Bacterianos , Sequência Conservada , Retrovirus Endógenos/genética , Evolução Molecular , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Filogenia , Polimorfismo Genético , Regiões Promotoras Genéticas , Análise de Sequência de DNA , Especificidade da Espécie
16.
Immunogenetics ; 61(2): 111-8, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19082823

RESUMO

High levels of MHC diversity are crucial for immunological fitness of populations, with island populations particularly susceptible to loss of genetic diversity. In this study, the level of MHC class II DBB diversity was examined in tammar wallabies (Macropus eugenii) from Kangaroo Island by genotyping class II-linked microsatellite loci and sequencing of DBB genes. Here we show that the tammar wallaby has at least four expressed MHC class II DBB loci and extensive genetic variation in the peptide-binding region of the DBB genes. These results contradict early studies which suggested that wallabies lacked MHC class II diversity and demonstrate that, in spite of the long-term isolation on an offshore island, this population of wallabies has a high level of DBB diversity.


Assuntos
Genes MHC da Classe II , Macropodidae/genética , Sequência de Aminoácidos , Animais , Deriva Genética , Variação Genética , Humanos , Macropodidae/imunologia , Mamíferos/genética , Repetições de Microssatélites/genética , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Xenopus laevis/genética
17.
PLoS Biol ; 4(3): e46, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16435885

RESUMO

The first sequenced marsupial genome promises to reveal unparalleled insights into mammalian evolution. We have used the Monodelphis domestica (gray short-tailed opossum) sequence to construct the first map of a marsupial major histocompatibility complex (MHC). The MHC is the most gene-dense region of the mammalian genome and is critical to immunity and reproductive success. The marsupial MHC bridges the phylogenetic gap between the complex MHC of eutherian mammals and the minimal essential MHC of birds. Here we show that the opossum MHC is gene dense and complex, as in humans, but shares more organizational features with non-mammals. The Class I genes have amplified within the Class II region, resulting in a unique Class I/II region. We present a model of the organization of the MHC in ancestral mammals and its elaboration during mammalian evolution. The opossum genome, together with other extant genomes, reveals the existence of an ancestral "immune supercomplex" that contained genes of both types of natural killer receptors together with antigen processing genes and MHC genes.


Assuntos
Evolução Molecular , Complexo Principal de Histocompatibilidade/genética , Complexo Principal de Histocompatibilidade/imunologia , Marsupiais/genética , Marsupiais/imunologia , Animais , Cromossomos/genética , Expressão Gênica/genética , Humanos , Hibridização In Situ , Metáfase , Modelos Genéticos , Dados de Sequência Molecular , Filogenia , RNA Mensageiro/genética
18.
Cancer Cell ; 36(4): 385-401.e8, 2019 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-31564637

RESUMO

Loss of MHC class I (MHC-I) antigen presentation in cancer cells can elicit immunotherapy resistance. A genome-wide CRISPR/Cas9 screen identified an evolutionarily conserved function of polycomb repressive complex 2 (PRC2) that mediates coordinated transcriptional silencing of the MHC-I antigen processing pathway (MHC-I APP), promoting evasion of T cell-mediated immunity. MHC-I APP gene promoters in MHC-I low cancers harbor bivalent activating H3K4me3 and repressive H3K27me3 histone modifications, silencing basal MHC-I expression and restricting cytokine-induced upregulation. Bivalent chromatin at MHC-I APP genes is a normal developmental process active in embryonic stem cells and maintained during neural progenitor differentiation. This physiological MHC-I silencing highlights a conserved mechanism by which cancers arising from these primitive tissues exploit PRC2 activity to enable immune evasion.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Regulação Neoplásica da Expressão Gênica/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Neoplasias/imunologia , Complexo Repressor Polycomb 2/metabolismo , Evasão Tumoral/genética , Animais , Apresentação de Antígeno/efeitos dos fármacos , Apresentação de Antígeno/imunologia , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linhagem Celular Tumoral , Metilação de DNA/imunologia , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Regulação para Baixo/imunologia , Resistencia a Medicamentos Antineoplásicos/genética , Repressão Epigenética/efeitos dos fármacos , Repressão Epigenética/imunologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Código das Histonas/efeitos dos fármacos , Humanos , Camundongos , Pessoa de Meia-Idade , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Complexo Repressor Polycomb 2/antagonistas & inibidores , Linfócitos T/imunologia , Evasão Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Cancer Cell ; 35(1): 125-139.e9, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30645971

RESUMO

The marsupial Tasmanian devil (Sarcophilus harrisii) faces extinction due to transmissible devil facial tumor disease (DFTD). To unveil the molecular underpinnings of this transmissible cancer, we combined pharmacological screens with an integrated systems-biology characterization. Sensitivity to inhibitors of ERBB tyrosine kinases correlated with their overexpression. Proteomic and DNA methylation analyses revealed tumor-specific signatures linked to the evolutionary conserved oncogenic STAT3. ERBB inhibition blocked phosphorylation of STAT3 and arrested cancer cells. Pharmacological blockade of ERBB or STAT3 prevented tumor growth in xenograft models and restored MHC class I expression. This link between the hyperactive ERBB-STAT3 axis and major histocompatibility complex class I-mediated tumor immunosurveillance provides mechanistic insights into horizontal transmissibility and puts forward a dual chemo-immunotherapeutic strategy to save Tasmanian devils from DFTD. VIDEO ABSTRACT.


Assuntos
Receptores ErbB/metabolismo , Neoplasias Faciais/tratamento farmacológico , Neoplasias Faciais/veterinária , Proteômica/métodos , Fator de Transcrição STAT3/metabolismo , Bibliotecas de Moléculas Pequenas/administração & dosagem , Animais , Metilação de DNA , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias Faciais/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Antígenos de Histocompatibilidade Classe I/metabolismo , Marsupiais , Camundongos , Fosforilação , Transdução de Sinais , Bibliotecas de Moléculas Pequenas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Cancer Cell ; 33(4): 607-619.e15, 2018 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-29634948

RESUMO

Transmissible cancers are clonal lineages that spread through populations via contagious cancer cells. Although rare in nature, two facial tumor clones affect Tasmanian devils. Here we perform comparative genetic and functional characterization of these lineages. The two cancers have similar patterns of mutation and show no evidence of exposure to exogenous mutagens or viruses. Genes encoding PDGF receptors have copy number gains and are present on extrachromosomal double minutes. Drug screening indicates causative roles for receptor tyrosine kinases and sensitivity to inhibitors of DNA repair. Y chromosome loss from a male clone infecting a female host suggests immunoediting. These results imply that Tasmanian devils may have inherent susceptibility to transmissible cancers and present a suite of therapeutic compounds for use in conservation.


Assuntos
Neoplasias Faciais/veterinária , Marsupiais/genética , Mutação , Receptores do Fator de Crescimento Derivado de Plaquetas/genética , Animais , Linhagem Celular Tumoral , Cromossomos de Mamíferos/genética , Células Clonais/imunologia , Células Clonais/patologia , Neoplasias Faciais/genética , Neoplasias Faciais/imunologia , Feminino , Dosagem de Genes , Edição de Genes , Imunidade , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA