Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
2.
Pharmaceutics ; 15(3)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36986800

RESUMO

Biocompatible poly(lactide-co-glycolide) scaffolds fabricated via electrospinning are having promising properties as implants for the regeneration of fast-growing tissues, which are able to degrade in the body. The hereby-presented research work investigates the surface modification of these scaffolds in order to improve antibacterial properties of this type of scaffolds, as it can increase their application possibilities in medicine. Therefore, the scaffolds were surface-modified by means of pulsed direct current magnetron co-sputtering of copper and titanium targets in an inert atmosphere of argon. In order to obtain different amounts of copper and titanium in the resulting coatings, three different surface-modified scaffold samples were produced by changing the magnetron sputtering process parameters. The success of the antibacterial properties' improvement was tested with the methicillin-resistant bacterium Staphylococcus aureus. In addition, the resulting cell toxicity of the surface modification by copper and titanium was examined using mouse embryonic and human gingival fibroblasts. As a result, the scaffold samples surface-modified with the highest copper to titanium ratio show the best antibacterial properties and no toxicity against mouse fibroblasts, but have a toxic effect to human gingival fibroblasts. The scaffold samples with the lowest copper to titanium ratio display no antibacterial effect and toxicity. The optimal poly(lactide-co-glycolide) scaffold sample is surface-modified with a medium ratio of copper and titanium that has antibacterial properties and is non-toxic to both cell cultures.

3.
Polymers (Basel) ; 14(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36433049

RESUMO

In this study, polymer scaffolds were fabricated from biodegradable poly(lactide-co-glycolide) (PLGA) and from non-biodegradable vinylidene fluoride-tetrafluoroethylene (VDF-TeFE) by electrospinning. These polymer scaffolds were subsequently surface-modified by sputtering titanium targets in an argon atmosphere. Direct current pulsed magnetron sputtering was applied to prevent a significant influence of discharge plasma on the morphology and mechanical properties of the nonwoven polymer scaffolds. The scaffolds with initially hydrophobic properties show higher hydrophilicity and absorbing properties after surface modification with titanium. The surface modification by titanium significantly increases the cell adhesion of both the biodegradable and the non-biodegradable scaffolds. Immunocytochemistry investigations of human gingival fibroblast cells on the surface-modified scaffolds indicate that a PLGA scaffold exhibits higher cell adhesion than a VDF-TeFE scaffold.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA