Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Microbiol ; 112(2): 605-619, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31087720

RESUMO

Fungi defend their ecological niche against antagonists by producing antibiosis molecules. Some of these molecules are only produced upon confrontation with the antagonist. The basidiomycete Coprinopsis cinerea induces the expression of the sesquiterpene synthase-encoding gene cop6 and its two neighboring genes coding for cytochrome P450 monooxygenases in response to bacteria. We further investigated this regulation of cop6 and examined if the gene product is involved in the production of antibacterials. Cell-free supernatants of axenic cultures of the Gram-positive bacterium Bacillus subtilis were sufficient to induce cop6 transcription assessed using a fluorescent reporter strain. Use of this strain in a microfluidic device revealed that the cop6 gene was induced in all hyphae directly exposed to the supernatant and that induction occurred within less than one hour. Targeted replacement of the cop6 gene demonstrated the requirement of the encoded synthase for the biosynthesis of the sesquiterpene lagopodin B, a previously reported antibacterial compound from related species. Accordingly, lagopodin B from C. cinerea inhibited the growth of several Gram-positive bacteria including B. subtilis but not Gram-negative bacteria. Our results demonstrate that the C. cinerea vegetative mycelium responds to soluble compounds of a bacterial culture supernatant by local production of an antibacterial secondary metabolite.


Assuntos
Agaricales/metabolismo , Antibacterianos/metabolismo , Bacillus subtilis/fisiologia , Sesquiterpenos/metabolismo , Agaricales/enzimologia , Agaricales/genética , Antibacterianos/farmacologia , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/crescimento & desenvolvimento , Sesquiterpenos/farmacologia
2.
Glycobiology ; 27(5): 486-500, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27980000

RESUMO

Lectins are used as defense effector proteins against predators, parasites and pathogens by animal, plant and fungal innate defense systems. These proteins bind to specific glycoepitopes on the cell surfaces and thereby interfere with the proper cellular functions of the various antagonists. The exact cellular toxicity mechanism is in many cases unclear. Lectin CCL2 of the mushroom Coprinopsis cinerea was previously shown to be toxic for Caenorhabditis elegans and Drosophila melanogaster. This toxicity is dependent on a single, high-affinity binding site for the trisaccharide GlcNAc(Fucα1,3)ß1,4GlcNAc, which is a hallmark of nematode and insect N-glycan cores. The carbohydrate-binding site is located at an unusual position on the protein surface when compared to other ß-trefoil lectins. Here, we show that CCL2 forms a compact dimer in solution and in crystals. Substitution of two amino acid residues at the dimer interface, R18A and F133A, interfered with dimerization of CCL2 and reduced toxicity but left carbohydrate-binding unaffected. These results, together with the positioning of the two carbohydrate-binding sites on the surface of the protein dimer, suggest that crosslinking of N-glycoproteins on the surface of intestinal cells of invertebrates is a crucial step in the mechanism of CCL2-mediated toxicity. Comparisons of the number and positioning of carbohydrate-binding sites among different dimerizing fungal ß-trefoil lectins revealed a considerable variability in the carbohydrate-binding patterns of these proteins, which are likely to correlate with their respective functions.


Assuntos
Agaricales/química , Lectinas Tipo C/química , Trissacarídeos/química , Substituição de Aminoácidos , Animais , Sítios de Ligação , Caenorhabditis elegans/patogenicidade , Dimerização , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Lectinas Tipo C/metabolismo , Polissacarídeos/genética , Polissacarídeos/metabolismo , Trissacarídeos/genética
3.
Fungal Genet Biol ; 102: 49-62, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27475110

RESUMO

Biofilm formation on fungal hyphae and production of antifungal molecules are strategies of bacteria in their competition with fungi for nutrients. Since these strategies are often coordinated and under control of quorum sensing by the bacteria, interference with this bacterial communication system can be used as a counter-strategy by the fungi in this competition. Hydrolysis of N-acyl-homoserine lactones (HSL), a quorum sensing molecule used by Gram-negative bacteria, by fungal cultures has been demonstrated. However, the enzymes that are responsible for this activity, have not been identified. In this study, we identified and characterized two paralogous HSL hydrolyzing enzymes from the coprophilous fungus Coprinopsis cinerea. The C. cinerea HSL lactonases belong to the metallo-ß-lactamase family and show sequence homology to and a similar biochemical activity as the well characterized lactonase AiiA from Bacillus thuringiensis. We show that the fungal lactonases, similar to the bacterial enzymes, are kept intracellularly and act as a sink for the bacterial quorum sensing signals both in C. cinerea and in Saccharomyces cerevisiae expressing C. cinerea lactonases, due to the ability of these signal molecules to diffuse over the fungal cell wall and plasma membrane. The two isogenes coding for the C. cinerea HSL lactonases are arranged in the genome as a tandem repeat and expressed preferentially in vegetative mycelium. The occurrence of orthologous genes in genomes of other basidiomycetes appears to correlate with a saprotrophic lifestyle.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Coprinus/enzimologia , Coprinus/metabolismo , Bactérias Gram-Negativas/metabolismo , Percepção de Quorum , Hidrolases de Éster Carboxílico/genética , Coprinus/classificação , Coprinus/genética , Bactérias Gram-Negativas/genética , Hidrólise , Filogenia , Homologia de Sequência do Ácido Nucleico
4.
Sci Adv ; 4(8): eaat2720, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30151425

RESUMO

The peptide bond, the defining feature of proteins, governs peptide chemistry by abolishing nucleophilicity of the nitrogen. This and the planarity of the peptide bond arise from the delocalization of the lone pair of electrons on the nitrogen atom into the adjacent carbonyl. While chemical methylation of an amide bond uses a strong base to generate the imidate, OphA, the precursor protein of the fungal peptide macrocycle omphalotin A, self-hypermethylates amides at pH 7 using S-adenosyl methionine (SAM) as cofactor. The structure of OphA reveals a complex catenane-like arrangement in which the peptide substrate is clamped with its amide nitrogen aligned for nucleophilic attack on the methyl group of SAM. Biochemical data and computational modeling suggest a base-catalyzed reaction with the protein stabilizing the reaction intermediate. Backbone N-methylation of peptides enhances their protease resistance and membrane permeability, a property that holds promise for applications to medicinal chemistry.


Assuntos
Amidas/metabolismo , Metiltransferases/metabolismo , Nitrogênio/metabolismo , Fragmentos de Peptídeos/metabolismo , S-Adenosil-Homocisteína/metabolismo , S-Adenosilmetionina/metabolismo , Catálise , Cristalografia por Raios X , Elétrons , Metilação , Metiltransferases/química , Nitrogênio/química , Fragmentos de Peptídeos/química , Conformação Proteica , S-Adenosil-Homocisteína/química , S-Adenosilmetionina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA