Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Chaos ; 32(1): 013107, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35105109

RESUMO

The emergence of order in collective dynamics is a fascinating phenomenon that characterizes many natural systems consisting of coupled entities. Synchronization is such an example where individuals, usually represented by either linear or nonlinear oscillators, can spontaneously act coherently with each other when the interactions' configuration fulfills certain conditions. However, synchronization is not always perfect, and the coexistence of coherent and incoherent oscillators, broadly known in the literature as chimera states, is also possible. Although several attempts have been made to explain how chimera states are created, their emergence, stability, and robustness remain a long-debated question. We propose an approach that aims to establish a robust mechanism through which cluster synchronization and chimera patterns originate. We first introduce a stability-breaking method where clusters of synchronized oscillators can emerge. At variance with the standard approach where synchronization arises as a collective behavior of coupled oscillators, in our model, the system initially sets on a homogeneous fixed-point regime, and, only due to a global instability principle, collective oscillations emerge. Following a combination of the network modularity and the model's parameters, one or more clusters of oscillators become incoherent within yielding a particular class of patterns that we here name cluster chimera states.

2.
Phys Rev E ; 102(5-1): 052306, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33327105

RESUMO

Interconnected ensembles of biological entities are perhaps some of the most complex systems that modern science has encountered so far. In particular, scientists have concentrated on understanding how the complexity of the interacting structure between different neurons, proteins, or species influences the functioning of their respective systems. It is well established that many biological networks are constructed in a highly hierarchical way with two main properties: short average paths that join two apparently distant nodes (neuronal, species, or protein patches) and a high proportion of nodes in modular aggregations. Although several hypotheses have been proposed so far, still little is known about the relation of the modules with the dynamical activity in such biological systems. Here we show that network modularity is a key ingredient for the formation of self-organizing patterns of functional activity, independently of the topological peculiarities of the structure of the modules. In particular, we propose a self-organizing mechanism which explains the formation of macroscopic spatial patterns, which are homogeneous within modules. This may explain how spontaneous order in biological networks follows their modular structural organization. We test our results on real-world networks to confirm the important role of modularity in creating macroscale patterns.


Assuntos
Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA