Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36834854

RESUMO

Zinc oxide (ZnO) tetrapods as microparticles with nanostructured surfaces show peculiar physical properties and anti-infective activities. The aim of this study was to investigate the antibacterial and bactericidal properties of ZnO tetrapods in comparison to spherical, unstructured ZnO particles. Additionally, killing rates of either methylene blue-treated or untreated tetrapods and spherical ZnO particles for Gram-negative and Gram-positive bacteria species were determined. ZnO tetrapods showed considerable bactericidal activity against Staphylococcus aureus, and Klebsiella pneumoniae isolates, including multi-resistant strains, while Pseudomonas aeruginosa and Enterococcus faecalis remained unaffected. Almost complete elimination was reached after 24 h for Staphylococcus aureus at 0.5 mg/mL and Klebsiella pneumoniae at 0.25 mg/mL. Surface modifications of spherical ZnO particles by treatment with methylene blue even improved the antibacterial activity against Staphylococcus aureus. Nanostructured surfaces of ZnO particles provide active and modifiable interfaces for the contact with and killing of bacteria. The application of solid state chemistry, i.e., the direct matter-to-matter interaction between active agent and bacterium, in the form of ZnO tetrapods and non-soluble ZnO particles, can add an additional principle to the spectrum of antibacterial mechanisms, which is, in contrast to soluble antibiotics, depending on the direct local contact with the microorganisms on tissue or material surfaces.


Assuntos
Anti-Infecciosos , Infecções Estafilocócicas , Óxido de Zinco , Humanos , Óxido de Zinco/química , Azul de Metileno , Antibacterianos/química , Bactérias , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana
2.
Adv Funct Mater ; 31(22)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-36213489

RESUMO

Advanced wound scaffolds that integrate active substances to treat chronic wounds have gained significant recent attention. While wound scaffolds and advanced functionalities have previously been incorporated into one medical device, the wirelessly triggered release of active substances has remained the focus of many research endeavors. To combine multiple functions including light-triggered activation, anti-septic, angiogenic, and moisturizing properties, we have developed a 3D printed hydrogel patch encapsulating vascular endothelial growth factor (VEGF) decorated with photoactive and antibacterial tetrapodal zinc oxide (t-ZnO) microparticles. To achieve the smart release of VEGF, t-ZnO was modified by chemical treatment and activated through UV/visible light exposure. This process would also make the surface rough and improve protein adhesion. The elastic modulus and degradation behavior of the composite hydrogels, which must match the wound healing process, were adjusted by changing t-ZnO concentrations. The t-ZnO-laden composite hydrogels can be printed with any desired micropattern to potentially create a modular elution of various growth factors. The VEGF decorated t-ZnO-laden hydrogel patches showed low cytotoxicity and improved angiogenic properties while maintaining antibacterial functions in vitro. In vivo tests showed promising results for the printed wound patches, with less immunogenicity and enhanced wound healing.

3.
Biosensors (Basel) ; 14(6)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38920597

RESUMO

Zinc oxide (ZnO) is considered to be one of the most explored and reliable sensing materials for UV detection due to its excellent properties, like a wide band gap and high exciton energy. Our current study on a photodetector based on tetrapodal ZnO (t-ZnO) reported an extremely high UV response of ~9200 for 394 nm UV illumination at 25 °C. The t-ZnO network structure and morphology were investigated using XRD and SEM. The sensor showed a UV/visible ratio of ~12 at 25 °C for 394 nm UV illumination and 443 nm visible illumination. By increasing the temperature, monotonic decreases in response and recovery time were observed. By increasing the bias voltage, the response time was found to decrease while the recovery time was increased. The maximum responsivity shifted to higher wavelengths from 394 nm to 400 nm by increasing the operating temperature from 25 °C to 100 °C. The t-ZnO networks exhibited gas-sensing performances at temperatures above 250 °C, and a maximum response of ~1.35 was recorded at 350 °C with a good repeatability and fast recovery in 16 s for 100 ppm of n-butanol vapor. This study demonstrated that t-ZnO networks are good biosensors that can be used for diverse biomedical applications like the sensing of VOCs (volatile organic compounds) and ultraviolet detection under a wide range of temperatures, and may find new possibilities in biosensing applications.


Assuntos
Técnicas Biossensoriais , Raios Ultravioleta , Compostos Orgânicos Voláteis , Óxido de Zinco , Óxido de Zinco/química , Compostos Orgânicos Voláteis/análise , Bioengenharia
4.
ACS Mater Lett ; 6(10): 4847-4853, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39391745

RESUMO

Medical phantoms mimic aspects of procedures like computed tomography (CT), ultrasound (US) imaging, and surgical practices. However, the materials for current commercial phantoms are expensive and the fabrication with these is complex and lacks versatility. Therefore, existing material solutions are not suitable for creating patient-specific phantoms. We present a novel and cost-effective material system (utilizing ubiquitous sodium alginate hydrogel and coconut fat) with independently and accurately tailorable CT, US, and mechanical properties. By varying the concentration of alginate, cross-linker, and coconut fat, the radiological parameters and the elastic modulus were adjusted independently in a wide range. The independence was demonstrated by creating phantoms with features hidden in US, while visible in CT imaging and vice versa. This system is particularly beneficial in resource-scarce areas since the materials are cheap (<$ 1 USD/kg) and easy to obtain, offering realistic and versatile phantoms to practice surgeries and ultimately enhance patient care.

5.
ACS Appl Mater Interfaces ; 15(32): 38674-38681, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37527811

RESUMO

As the necessary transition to a supply of renewable energy moves forward rapidly, hydrogen (H2) becomes increasingly important as a green chemical energy carrier. The manifold applications associated with the use of hydrogen in the energy sector require sensor materials that can efficiently detect H2 in small quantities and in gas mixtures. As a possible candidate, we here present a metal-organic framework (MOF, namely ZIF-8) functionalized metal-oxide gas sensor (MOS, namely ZnO). The gas sensor is based on single-crystalline tetrapodal ZnO (t-ZnO) microparticles, which are coated with a thin layer of ZIF-8 ([Zn(C4H5N2)2]) by a ZnO conversion reaction to obtain t-ZnO@ZIF-8 (core@shell) composites. The vapor-phase synthesis enables ZIF-8 thickness control as shown by powder X-ray diffraction, thermogravimetric analysis, and N2 sorption measurements. Gas-sensing measurements of a single microrod of t-ZnO@ZIF-8 composite demonstrate the synergistic benefits of both MOS sensors and MOFs, resulting in an outstanding high selectivity, sensitivity (S ≅ 546), and response times (1-2 s) to 100 ppm H2 in the air at a low operation temperature of 100 °C. Under these conditions, no response to acetone, n-butanol, methane, ethanol, ammonia, 2-propanol, and carbon dioxide was observed. Thereby, the sensor is able to reliably detect H2 in mixtures with air and even methane, with the latter being highly important for determining the H2 dilution level in natural gas pipelines, which is of great importance to the energy sector.

6.
Dent Mater ; 39(7): 669-676, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37230861

RESUMO

OBJECTIVES: The aim of this study was to evaluate the mechanical properties and cost efficiency of direct ink writing (DIW) printing of two different zirconia inks compared to casting and subtractive manufacturing. METHODS: Zirconia disks were manufactured by DIW printing and the casting process and divided into six subgroups (n = 20) according to sintering temperatures (1350 °C, 1450 °C and 1550 °C) and two different ink compositions (Ink 1, Ink 2). A CAD/CAM-milled high strength zirconia (3Y-TZP) was added as reference group. The biaxial flexural strength (BFS) was measured using the piston-on-three-balls test. X-ray-diffraction (XRD) was used for microstructural analysis. The cost efficiency was compared for DIW printing and subtractive manufacturing by calculation of the manufacturing costs of one dental crown. RESULTS: Using XRD, monoclinic and tetragonal phases were detected for Ink 1, for all other groups no monoclinic phase was detected. The CAD/CAM-milled ceramic showed a significantly higher BFS than all other groups. The BFS of Ink 2 was significantly higher than the BFS of Ink 1. At a sintering temperature of 1550 °C the mean BFS of the printed Ink 2 was 822 ± 174 MPa. The BFS of the cast materials did not show a significantly higher BFS than the corresponding printed group for any tested parameter-set. The manufacturing costs of DIW printed crowns are lower than the manufacturing costs of CAD/CAM-milled crowns. CONCLUSION: DIW has a high potential to replace subtractive processes for dental applications, as it shows promising mechanical properties for appropriate ink compositions and facilitates a highly cost effective production.


Assuntos
Cerâmica , Tinta , Teste de Materiais , Propriedades de Superfície , Cerâmica/química , Zircônio/química , Desenho Assistido por Computador , Impressão Tridimensional , Materiais Dentários/química
7.
ACS Appl Mater Interfaces ; 15(22): 27340-27356, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37233739

RESUMO

Batteries play a critical role in achieving zero-emission goals and in the transition toward a more circular economy. Ensuring battery safety is a top priority for manufacturers and consumers alike, and hence is an active topic of research. Metal-oxide nanostructures have unique properties that make them highly promising for gas sensing in battery safety applications. In this study, we investigate the gas-sensing capabilities of semiconducting metal oxides for detecting vapors produced by common battery components, such as solvents, salts, or their degassing products. Our main objective is to develop sensors capable of early detection of common vapors produced by malfunctioning batteries to prevent explosions and further safety hazards. Typical electrolyte components and degassing products for the Li-ion, Li-S, or solid-state batteries that were investigated in this study include 1,3-dioxololane (C3H6O2─DOL), 1,2-dimethoxyethane (C4H10O2─DME), ethylene carbonate (C3H4O3─EC), dimethyl carbonate (C4H10O2─DMC), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), lithium nitrate (LiNO3) salts in a mixture of DOL and DME, lithium hexafluorophosphate (LiPF6), nitrogen dioxide (NO2), and phosphorous pentafluoride (PF5). Our sensing platform was based on ternary and binary heterostructures consisting of TiO2(111)/CuO(1̅11)/Cu2O(111) and CuO(1̅11)/Cu2O(111), respectively, with various CuO layer thicknesses (10, 30, and 50 nm). We have analyzed these structures using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), micro-Raman spectroscopy, and ultraviolet-visible (UV-vis) spectroscopy. We found that the sensors reliably detected DME C4H10O2 vapors up to a concentration of 1000 ppm with a gas response of 136%, and concentrations as low as 1, 5, and 10 ppm with response values of approximately 7, 23, and 30%, respectively. Our devices can serve as 2-in-1 sensors, functioning as a temperature sensor at low operating temperatures and as a gas sensor at temperatures above 200 °C. Density functional theory calculations were also employed to study the adsorption of the vapors produced by battery solvents or their degassing products, as well as water, to investigate the impact of humidity. PF5 and C4H10O2 showed the most exothermic molecular interactions, which are consistent with our gas response investigations. Our results indicate that humidity does not impact the performance of the sensors, which is crucial for the early detection of thermal runaway under harsh conditions in Li-ion batteries. We show that our semiconducting metal-oxide sensors can detect the vapors produced by battery solvents and degassing products with high accuracy and can serve as high-performance battery safety sensors to prevent explosions in malfunctioning Li-ion batteries. Despite the fact that the sensors work independently of the type of battery, the work presented here is of particular interest for the monitoring of solid-state batteries, since DOL is a solvent typically used in this type of batteries.

8.
Nano Converg ; 10(1): 53, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37971675

RESUMO

Wound treatment requires a plethora of independent properties. Hydration, anti-bacterial properties, oxygenation and patient-specific drug delivery all contribute to the best possible wound healing. Three-dimensional (3D) printing has emerged as a set of techniques to realize individually adapted wound dressings with open porous structure from biomedically optimized materials. To include all the desired properties into the so-called bioinks is still challenging. In this work, a bioink system based on anti-bacterial zinc oxide tetrapods (t-ZnO) and biocompatible sodium alginate is presented. Additive manufacturing of these hydrogels with high t-ZnO content (up to 15 wt.%) could be realized. Additionally, protein adsorption on the t-ZnO particles was evaluated to test their suitability as carriers for active pharmaceutical ingredients (APIs). Open porous and closed cell printed wound dressings were tested for their cell and skin compatibility and anti-bacterial properties. In these categories, the open porous constructs exhibited protruding t-ZnO arms and proved to be anti-bacterial. Dermatological tests on ex vivo skin showed no negative influence of the alginate wound dressing on the skin, making this bioink an ideal carrier and evaluation platform for APIs in wound treatment and healing.

9.
Sci Rep ; 12(1): 6035, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35410428

RESUMO

Resistive Field Grading Materials (RFGM) are used in critical regions in the electrical insulation system of high-voltage direct-current cable systems. Here, we describe a novel type of RFGM, based on a percolated network of zinc oxide (ZnO) tetrapods in a rubber matrix. The electrical conductivity of the composite increases by a factor of 108 for electric fields > 1 kV mm-1, as a result of the highly anisotropic shape of the tetrapods and their significant bandgap (3.37 eV). We demonstrate that charge transport at fields < 1 kV mm-1 is dominated by thermally activated hopping of charge carriers across spatially, as well as energetically, localized states at the ZnO-polymer interface. At higher electric fields (> 1 kV mm-1) band transport in the semiconductive tetrapods triggers a large increase in conductivity. These geometrically enhanced ZnO semiconductors outperform standard additives such as SiC particles and ZnO micro varistors, providing a new class of additives to achieve variable conductivity in high-voltage cable system applications.

10.
Metabolites ; 12(12)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36557259

RESUMO

Neurodegenerative diseases such as Parkinson's (PD) and Alzheimer's disease (AD), the prevalence of which is rapidly rising due to an aging world population and westernization of lifestyles, are expected to put a strong socioeconomic burden on health systems worldwide. Clinical trials of therapies against PD and AD have only shown limited success so far. Therefore, research has extended its scope to a systems medicine point of view, with a particular focus on the gastrointestinal-brain axis as a potential main actor in disease development and progression. Microbiome and metabolome studies have already revealed important insights into disease mechanisms. Both the microbiome and metabolome can be easily manipulated by dietary and lifestyle interventions, and might thus offer novel, readily available therapeutic options to prevent the onset as well as the progression of PD and AD. This review summarizes our current knowledge on the interplay between microbiota, metabolites, and neurodegeneration along the gastrointestinal-brain axis. We further illustrate state-of-the art methods of microbiome and metabolome research as well as metabolic modeling that facilitate the identification of disease pathomechanisms. We conclude with therapeutic options to modulate microbiome composition to prevent or delay neurodegeneration and illustrate potential future research directions to fight PD and AD.

11.
Nat Commun ; 11(1): 1437, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32188852

RESUMO

Laser diodes are efficient light sources. However, state-of-the-art laser diode-based lighting systems rely on light-converting inorganic phosphor materials, which strongly limit the efficiency and lifetime, as well as achievable light output due to energy losses, saturation, thermal degradation, and low irradiance levels. Here, we demonstrate a macroscopically expanded, three-dimensional diffuser composed of interconnected hollow hexagonal boron nitride microtubes with nanoscopic wall-thickness, acting as an artificial solid fog, capable of withstanding ~10 times the irradiance level of remote phosphors. In contrast to phosphors, no light conversion is required as the diffuser relies solely on strong broadband (full visible range) lossless multiple light scattering events, enabled by a highly porous (>99.99%) non-absorbing nanoarchitecture, resulting in efficiencies of ~98%. This can unleash the potential of lasers for high-brightness lighting applications, such as automotive headlights, projection technology or lighting for large spaces.

12.
ACS Biomater Sci Eng ; 5(4): 1784-1792, 2019 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-30984820

RESUMO

Porous hydrogel scaffolds are ideal candidates for mimicking cellular microenvironments, regarding both structural and mechanical aspects. We present a novel strategy to use uniquely designed ceramic networks as templates for generating hydrogels with a network of interconnected pores in the form of microchannels. The advantages of this new approach are the high and guaranteed interconnectivity of the microchannels, as well as the possibility to produce channels with diameters smaller than 7 µm. Neither of these assets can be ensured with other established techniques. Experiments using the polyacrylamide substrates produced with our approach have shown that the migration of human pathogenic Acanthamoeba castellanii trophozoites is manipulated by the microchannel structure in the hydrogels. The parasites can even be captured inside the microchannel network and removed from their incubation medium by the porous polyacrylamide, indicating the huge potential of our new technique for medical, pharmaceutical, and tissue engineering applications.

13.
ACS Appl Mater Interfaces ; 11(28): 25508-25515, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31260251

RESUMO

In this work, the one-step three-dimensional (3D) printing of 20 nm nanowire (NW)-covered CuO/Cu2O/Cu microparticles (MPs) with diameters of 15-25 µm on the surface of the glass substrate forming an ordered net is successfully reported for the first time. 3D-printed Cu MP-based stripes formed nonplanar CuO/Cu2O/Cu heterojunctions after thermal annealing at 425 °C for 2 h in air and were fully covered with a 20 nm NW net bridging MPs with external Au contacts. The morphological, vibrational, chemical, and structural investigations were performed in detail, showing the high crystallinity of the NWs and 3D-printed CuO/Cu2O/Cu heterojunction lines, as well as the growth of CuO NWs on the surface of MPs. The gas-sensing measurements showed excellent selectivity to acetone vapor at an operating temperature of 350 °C with a high gas response about 150% to 100 ppm. The combination of the possibility of fast acetone vapor detection, low power consumption, and controllable size and geometry makes these 3D-printed devices ideal candidates for fast detection, as well as for acetone vapor monitoring (down to 100 ppm). This 3D-printing approach will pave a new way for many different devices through the simplicity and versatility of the fabrication method for the exact detection of acetone vapors in various atmospheres.

15.
Nanoscale ; 10(21): 10050-10062, 2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-29781017

RESUMO

Buckminster fullerene (C60) based hybrid metal oxide materials are receiving considerable attention because of their excellent fundamental and applied aspects, like semiconducting, electron transfer, luminescent behaviors, etc. and this work briefly discusses the successful fabrication of C60 decorated ZnO tetrapod materials and their detailed structure-property relationships including device sensing applications. The electron microscopy investigations indicate that a quite dense surface coverage of ZnO tetrapods with C60 clusters is achieved. The spectroscopy studies confirmed the identification of the C60 vibrational modes and the C60 induced changes in the absorption and luminescence properties of the ZnO tetrapods. An increased C60 concentration on ZnO results in steeper ZnO bandgap absorption followed by well-defined free exciton and 3.31 eV line emissions. As expected, higher amounts of C60 increase the intensity of C60-related visible absorption bands. Pumping the samples with photons with an energy corresponding to these absorption band maxima leads to additional emission from ZnO showing an effective charge transfer phenomenon from C60 to the ZnO host. The density of states model obtained from DFT studies for pure and C60 coated ZnO surfaces confirms the experimental observations. The fabricated C60-ZnO hybrid tetrapod based micro- and nanodevices showed interesting ethanol gas sensing characteristics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA