Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 126(4): 437-44, 2015 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-26012567

RESUMO

Inhibition of the tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK)/fibroblast growth factor-inducible 14 (Fn14) system reduces intestinal cell death and disease development in several models of colitis. In view of the crucial role of TNF and intestinal cell death in graft-versus-host disease (GVHD) and the ability of TWEAK to enhance TNF-induced cell death, we tested here the therapeutic potential of Fn14 blockade on allogeneic hematopoietic cell transplantation (allo-HCT)-induced intestinal GVHD. An Fn14-specific blocking human immunoglobulin G1 antibody variant with compromised antibody-dependent cellular cytotoxicity (ADCC) activity strongly inhibited the severity of murine allo-HCT-induced GVHD. Treatment of the allo-HCT recipients with this monoclonal antibody reduced cell death of gastrointestinal cells but neither affected organ infiltration by donor T cells nor cytokine production. Fn14 blockade also inhibited intestinal cell death in mice challenged with TNF. This suggests that the protective effect of Fn14 blockade in allo-HCT is based on the protection of intestinal cells from TNF-induced apoptosis and not due to immune suppression. Importantly, Fn14 blockade showed no negative effect on graft-versus-leukemia/lymphoma (GVL) activity. Thus, ADCC-defective Fn14-blocking antibodies are not only possible novel GVL effect-sparing therapeutics for the treatment of GVHD but might also be useful for the treatment of other inflammatory bowel diseases where TNF-induced cell death is of relevance.


Assuntos
Anticorpos Monoclonais Murinos/uso terapêutico , Apoptose , Doença Enxerto-Hospedeiro/prevenção & controle , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Intestinos/patologia , Receptores do Fator de Necrose Tumoral/antagonistas & inibidores , Inibidores do Fator de Necrose Tumoral , Animais , Citotoxicidade Celular Dependente de Anticorpos , Western Blotting , Células Cultivadas , Citocina TWEAK , Modelos Animais de Doenças , Feminino , Imunofluorescência , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/metabolismo , Doença Enxerto-Hospedeiro/patologia , Humanos , Imunoglobulina G/administração & dosagem , Imunoglobulina G/imunologia , Mucosa Intestinal/metabolismo , Intestinos/imunologia , Medições Luminescentes , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores de IgG/imunologia , Receptores de IgG/metabolismo , Receptores do Fator de Necrose Tumoral/genética , Receptores do Fator de Necrose Tumoral/imunologia , Receptores do Fator de Necrose Tumoral/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rituximab , Receptor de TWEAK , Fator de Necrose Tumoral alfa/farmacologia , Fatores de Necrose Tumoral/imunologia , Fatores de Necrose Tumoral/metabolismo
2.
J Immunol ; 191(5): 2308-18, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23918987

RESUMO

We found recently that TNF-like weak inducer of apoptosis (TWEAK) and fibroblast growth factor-inducible-14 (Fn14) by virtue of their strong capability to reduce the freely available cytoplasmic pool of TNFR-associated factor (TRAF)2 and cellular inhibitors of apoptosis (cIAPs) antagonize the functions of these molecules in TNFR1 signaling, resulting in sensitization for apoptosis and inhibition of classical NF-κB signaling. In this study, we demonstrate that priming of cells with TWEAK also interferes with activation of the classical NF-κB pathway by CD40. Likewise, there was strong inhibition of CD40 ligand (CD40L)-induced activation of MAPKs in TWEAK-primed cells. FACS analysis and CD40L binding studies revealed unchanged CD40 expression and normal CD40L-CD40 interaction in TWEAK-primed cells. CD40L immunoprecipitates, however, showed severely reduced amounts of CD40 and CD40-associated proteins, indicating impaired formation or reduced stability of CD40L-CD40 signaling complexes. The previously described inhibitory effect of TWEAK on TNFR1 signaling has been traced back to reduced activity of the TNFR1-associated TRAF2-cIAP1/2 ubiquitinase complex and did not affect the stability of the immunoprecipitable TNFR1 receptor complex. Thus, the inhibitory effect of TWEAK on CD40 signaling must be based at least partly on other mechanisms. In line with this, signaling by the CD40-related TRAF2-interacting receptor TNFR2 was also attenuated but still immunoprecipitable in TWEAK-primed cells. Collectively, we show that Fn14 activation by soluble TWEAK impairs CD40L-CD40 signaling complex formation and inhibits CD40 signaling and thus identify the Fn14-TWEAK system as a potential novel regulator of CD40-related cellular functions.


Assuntos
Antígenos CD40/metabolismo , Ligante de CD40/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais/fisiologia , Fator 2 Associado a Receptor de TNF/metabolismo , Fatores de Necrose Tumoral/metabolismo , Western Blotting , Antígenos CD40/imunologia , Ligante de CD40/imunologia , Linhagem Celular , Citocina TWEAK , Citometria de Fluxo , Humanos , Imunoprecipitação , Microscopia Confocal , Receptores do Fator de Necrose Tumoral/imunologia , Fator 2 Associado a Receptor de TNF/imunologia , Receptor de TWEAK , Fatores de Necrose Tumoral/imunologia
3.
J Biol Chem ; 288(19): 13455-66, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23532848

RESUMO

BACKGROUND: Fn14 is a therapeutic target in various diseases. RESULTS: Anti-Fn14 antibodies activate the alternative NFκB pathway but not other Fn14-related activities induced by soluble or membrane-bound TWEAK. FcγR-bound anti-Fn14 antibodies, however, activate the full spectrum of Fn14-associated activities. CONCLUSION: Anti-Fn14 antibodies elicit agonistic activities differing from those of the natural Fn14 ligand TWEAK. SIGNIFICANCE: These findings influence the rationale of designing Fn14-targeted therapies. The Fn14-specific monoclonal antibodies PDL192 and P4A8, which are under consideration in clinical trials, showed no agonistic activity with respect to IL8 production and cell death induction. However, oligomerization with protein G or binding to Fcγ receptors converted both anti-Fn14 antibodies into potent agonists. TNF-like weak inducer of apoptosis (TWEAK), the ligand of Fn14, occurs naturally in two forms with partly different signaling capabilities, as a membrane-bound ligand and as a soluble trimeric molecule. Although membrane TWEAK strongly triggers all Fn14-associated pathways, soluble TWEAK predominately triggers the alternative nuclear factor κB (NFκB) pathway and enhances TNF-induced cell death but has only a poor effect on the classical NFκB pathway and chemokine production. Thus, the oligomerized and FcγR-bound anti-Fn14 mAbs mimicked the activity of membrane TWEAK. Notably, both anti-Fn14 antibodies significantly triggered p100 processing, the hallmark of the alternative NFκB pathway, and therefore resembled soluble TWEAK. In contrast to the latter, however, the anti-Fn14s showed no effect on TNF receptor 1-induced cell death and P4A8 even blocked the corresponding TWEAK response. Thus, we showed that Fn14 antibodies display an alternative NFκB pathway-specific agonistic activity but fail to phenocopy other activities of soluble TWEAK, whereas oligomerized or FcγR-bound Fn14 antibodies fully mimic the activity of membrane TWEAK. In view of the trivalent nature of the TWEAK-Fn14 interaction, this suggests that the alternative NFκB pathway is uniquely responsive already to Fn14 dimerization enabling antibodies to elicit an unnatural response pattern distinct from that of the naturally occurring Fn14 ligands.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais/farmacologia , Receptores do Fator de Necrose Tumoral/imunologia , Transdução de Sinais/efeitos dos fármacos , Substituição de Aminoácidos , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais Humanizados/química , Proteínas de Bactérias/química , Linhagem Celular Tumoral , Citocina TWEAK , Endonucleases , Células HEK293 , Humanos , Interleucina-8/biossíntese , Macaca fascicularis , Camundongos , Mutagênese Sítio-Dirigida , NF-kappa B/metabolismo , Proteínas Nucleares/metabolismo , Ligação Proteica , Multimerização Proteica , Receptores de IgG/agonistas , Receptores de IgG/metabolismo , Receptores do Fator de Necrose Tumoral/genética , Receptores do Fator de Necrose Tumoral/metabolismo , Receptor de TWEAK , Inibidores do Fator de Necrose Tumoral , Fator de Necrose Tumoral alfa/fisiologia , Fatores de Necrose Tumoral/fisiologia
4.
Mol Cancer ; 13: 85, 2014 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-24741998

RESUMO

BACKGROUND: Stimulation of CD40 can augment anti-cancer T cell immune responses by triggering effective activation and maturation of antigen-presenting cells (APCs). Although CD40 agonists have clinical activity in humans, the associated systemic activation of the immune system triggers dose-limiting side-effects. METHODS: To increase the tumor selectivity of CD40 agonist-based therapies, we developed an approach in which soluble trimeric CD40L (sCD40L) is genetically fused to tumor targeting antibody fragments, yielding scFv:CD40L fusion proteins. We hypothesized that scFv:CD40L fusion proteins would have reduced CD40 agonist activity similar to sCD40L but will be converted to a highly agonistic membrane CD40L-like form of CD40L upon anchoring to cell surface exposed antigen via the scFv domain. RESULTS: Targeted delivery of CD40L to the carcinoma marker EpCAM on carcinoma cells induced dose-dependent paracrine maturation of DCs ~20-fold more effective than a non-targeted control scFv:CD40L fusion protein. Similarly, targeted delivery of CD40L to the B cell leukemia marker CD20 induced effective paracrine maturation of DCs. Of note, the CD20-selective delivery of CD40L also triggered loss of cell viability in certain B cell leukemic cell lines as a result of CD20-induced apoptosis. CONCLUSIONS: Targeted delivery of CD40L to cancer cells is a promising strategy that may help to trigger cancer-localized activation of CD40 and can be modified to exert additional anti-cancer activity via the targeting domain.


Assuntos
Linfócitos B/efeitos dos fármacos , Ligante de CD40/genética , Células Dendríticas/efeitos dos fármacos , Proteínas Recombinantes de Fusão/farmacologia , Anticorpos de Cadeia Única/genética , Anticorpos Monoclonais Murinos/farmacologia , Antígenos CD20/genética , Antígenos CD20/metabolismo , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Antineoplásicos/farmacologia , Linfócitos B/metabolismo , Linfócitos B/patologia , Ligante de CD40/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Molécula de Adesão da Célula Epitelial , Expressão Gênica , Células HEK293 , Humanos , Terapia de Alvo Molecular , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Rituximab , Anticorpos de Cadeia Única/metabolismo
5.
Bioengineered ; 15(1): 2302246, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38214443

RESUMO

Most anti-CD40 antibodies show robust agonism only upon binding to FcγR+ cells, such as B cells, macrophages, or DCs, but a few anti-CD40 antibodies display also strong intrinsic agonism dependent on the recognized epitope and/or isotype. It is worth mentioning, however, that also the anti-CD40 antibodies with intrinsic agonism can show a further increase in agonistic activity when bound by FcγR-expressing cells. Thus, conventional antibodies appear not to be sufficient to trigger the maximum possible CD40 activation independent from FcγR-binding. We proved here the hypothesis that oligomeric and oligovalent anti-CD40 antibody variants generated by genetic engineering display high intrinsic, thus FcγR-independent, agonistic activity. We generated tetra-, hexa- and dodecavalent variants of six anti-CD40 antibodies and a CD40-specific nanobody. All these oligovalent variants, even when derived of bivalent antagonistic anti-CD40 antibodies, showed strongly enhanced CD40 agonism compared to their conventional counterparts. In most cases, the CD40 agonism reached the maximum response induced by FcγR-bound anti-CD40 antibodies or membrane CD40L, the natural engager of CD40. In sum, our data show that increasing the valency of anti-CD40 antibody constructs by genetic engineering regularly results in molecules with high intrinsic agonism and level out the specific limitations of the parental antibodies.


Assuntos
Imunoglobulina G , Receptores de IgG , Imunoglobulina G/genética , Receptores de IgG/genética , Antígenos CD40/genética , Ligante de CD40/genética , Engenharia Genética
6.
J Biol Chem ; 287(28): 24026-42, 2012 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-22645131

RESUMO

The capability of soluble CD95L trimers to trigger CD95-associated signaling pathways is drastically increased by oligomerization. The latter can be achieved, for example, by antibodies recognizing a N-terminal epitope tag in recombinant CD95L variants or by genetic engineering-enforced formation of hexamers. Using highly sensitive and accurate binding studies with recombinant CD95L variants equipped with a Gaussia princeps luciferase reporter domain, we found that oligomerization of CD95L has no major effect on CD95 occupancy. This indicates that the higher activity of oligomerized CD95L trimers is not related to an avidity-related increase in apparent affinity and points instead to a crucial role of aggregation of initially formed trimeric CD95L-CD95 complexes in CD95 activation. Furthermore, binding of soluble CD95L trimers was found to be insufficient to increase the association of CD95 with the lipid raft-containing membrane fraction. However, when Gaussia princeps luciferase-CD95L trimers were used as tracers to "mark" inactive CD95 molecules, increased association of these inactive receptors was observed upon activation of the remaining CD95 molecules by help of highly active hexameric Fc-CD95L or membrane CD95L. Moreover, in cells expressing endogenous CD95 and chimeric CD40-CD95 receptors, triggering of CD95 signaling via endogenous CD95 resulted in co-translocation of CD40-CD95 to the lipid raft fraction, whereas vice versa activation of CD95-associated pathways with Fc-CD40L via CD40-CD95 resulted in co-translocation of endogenous CD95. In sum, this shows that signaling-active CD95 molecules not only enhance their own association with the lipid raft-containing membrane fraction but also those of inactive CD95 molecules.


Assuntos
Proteína Ligante Fas/metabolismo , Microdomínios da Membrana/metabolismo , Transdução de Sinais , Receptor fas/metabolismo , Apoptose/efeitos dos fármacos , Western Blotting , Antígenos CD40/química , Antígenos CD40/genética , Antígenos CD40/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Cicloeximida/farmacologia , Proteína Ligante Fas/química , Proteína Ligante Fas/genética , Células HEK293 , Humanos , Células Jurkat , Cinética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Ligação Proteica/efeitos dos fármacos , Multimerização Proteica , Inibidores da Síntese de Proteínas/farmacologia , Transporte Proteico , Solubilidade , Receptor fas/química , Receptor fas/genética
7.
Nat Rev Rheumatol ; 19(9): 576-591, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37542139

RESUMO

The cytokine TNF signals via two distinct receptors, TNF receptor 1 (TNFR1) and TNFR2, and is a central mediator of various immune-mediated diseases. Indeed, TNF-neutralizing biologic drugs have been in clinical use for the treatment of many inflammatory pathological conditions, including various rheumatic diseases, for decades. TNF has pleiotropic effects and can both promote and inhibit pro-inflammatory processes. The integrated net effect of TNF in vivo is a result of cytotoxic TNFR1 signalling and the stimulation of pro-inflammatory processes mediated by TNFR1 and TNFR2 and also TNFR2-mediated anti-inflammatory and tissue-protective activities. Inhibition of the beneficial activities of TNFR2 might explain why TNF-neutralizing drugs, although highly effective in some diseases, have limited benefit in the treatment of other TNF-associated pathological conditions (such as graft-versus-host disease) or even worsen the pathological condition (such as multiple sclerosis). Receptor-specific biologic drugs have the potential to tip the balance from TNFR1-mediated activities to TNFR2-mediated activities and enable the treatment of diseases that do not respond to current TNF inhibitors. Accordingly, a variety of reagents have been developed that either selectively inhibit TNFR1 or selectively activate TNFR2. Several of these reagents have shown promise in preclinical studies and are now in, or approaching, clinical trials.


Assuntos
Receptores Tipo II do Fator de Necrose Tumoral , Doenças Reumáticas , Humanos , Receptores Tipo I de Fatores de Necrose Tumoral , Fator de Necrose Tumoral alfa/fisiologia , Citocinas , Doenças Reumáticas/tratamento farmacológico
8.
Front Cell Dev Biol ; 11: 1267837, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38020877

RESUMO

Tumor necrosis factor (TNF) receptor 1 (TNFR1), TNFR2 and fibroblast growth factor-inducible 14 (Fn14) belong to the TNF receptor superfamily (TNFRSF). From a structural point of view, TNFR1 is a prototypic death domain (DD)-containing receptor. In contrast to other prominent death receptors, such as CD95/Fas and the two TRAIL death receptors DR4 and DR5, however, liganded TNFR1 does not instruct the formation of a plasma membrane-associated death inducing signaling complex converting procaspase-8 into highly active mature heterotetrameric caspase-8 molecules. Instead, liganded TNFR1 recruits the DD-containing cytoplasmic signaling proteins TRADD and RIPK1 and empowers these proteins to trigger cell death signaling by cytosolic complexes after their release from the TNFR1 signaling complex. The activity and quality (apoptosis versus necroptosis) of TNF-induced cell death signaling is controlled by caspase-8, the caspase-8 regulatory FLIP proteins, TRAF2, RIPK1 and the RIPK1-ubiquitinating E3 ligases cIAP1 and cIAP2. TNFR2 and Fn14 efficiently recruit TRAF2 along with the TRAF2 binding partners cIAP1 and cIAP2 and can thereby limit the availability of these molecules for other TRAF2/cIAP1/2-utilizing proteins including TNFR1. Accordingly, at the cellular level engagement of TNFR2 or Fn14 inhibits TNFR1-induced RIPK1-mediated effects reaching from activation of the classical NFκB pathway to induction of apoptosis and necroptosis. In this review, we summarize the effects of TNFR2- and Fn14-mediated depletion of TRAF2 and the cIAP1/2 on TNFR1 signaling at the molecular level and discuss the consequences this has in vivo.

9.
J Biol Chem ; 286(19): 16631-46, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21454681

RESUMO

Death receptors (DRs) induce apoptosis but also stimulate proinflammatory "non-apoptotic" signaling (e.g. NF-κB and mitogen-activated protein kinase (MAPK) activation) and inhibit distinct steps of DR-activated maturation of procaspase-8. To examine whether isoforms of cellular FLIP (cFLIP) or its cleavage products differentially regulate DR signaling, we established HaCaT cells expressing cFLIP(S), cFLIP(L), or mutants of cFLIP(L) (cFLIP(D376N) and cFLIP(p43)). cFLIP variants blocked TRAIL- and CD95L-induced apoptosis, but the cleavage pattern of caspase-8 in the death inducing signaling complex was different: cFLIP(L) induced processing of caspase-8 to the p43/41 fragments irrespective of cFLIP cleavage. cFLIP(S) or cFLIP(p43) blocked procaspase-8 cleavage. Analyzing non-apoptotic signaling pathways, we found that TRAIL and CD95L activate JNK and p38 within 15 min. cFLIP variants and different caspase inhibitors blocked late death ligand-induced JNK or p38 MAPK activation suggesting that these responses are secondary to cell death. cFLIP isoforms/mutants also blocked death ligand-mediated gene induction of CXCL-8 (IL-8). Knockdown of caspase-8 fully suppressed apoptotic and non-apoptotic signaling. Knockdown of cFLIP isoforms in primary human keratinocytes enhanced CD95L- and TRAIL-induced NF-κB activation, and JNK and p38 activation, underscoring the regulatory role of cFLIP for these DR-mediated signals. Whereas the presence of caspase-8 is critical for apoptotic and non-apoptotic signaling, cFLIP isoforms are potent inhibitors of TRAIL- and CD95L-induced apoptosis, NF-κB activation, and the late JNK and p38 MAPK activation. cFLIP-mediated inhibition of CD95 and TRAIL DR could be of crucial importance during keratinocyte skin carcinogenesis and for the activation of innate and/or adaptive immune responses triggered by DR activation in the skin.


Assuntos
Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Caspase 8/metabolismo , Receptores de Morte Celular/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Receptor fas/química , Apoptose , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Separação Celular , Humanos , Queratinócitos/citologia , Isoformas de Proteínas , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
10.
Cancers (Basel) ; 14(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36011046

RESUMO

Tumor necrosis factor (TNF) receptor associated factor-2 (TRAF2) has been originally identified as a protein interacting with TNF receptor 2 (TNFR2) but also binds to several other receptors of the TNF receptor superfamily (TNFRSF). TRAF2, often in concert with other members of the TRAF protein family, is involved in the activation of the classical NFκB pathway and the stimulation of various mitogen-activated protein (MAP) kinase cascades by TNFRSF receptors (TNFRs), but is also required to inhibit the alternative NFκB pathway. TRAF2 has also been implicated in endoplasmic reticulum (ER) stress signaling, the regulation of autophagy, and the control of cell death programs. TRAF2 fulfills its functions by acting as a scaffold, bringing together the E3 ligase cellular inhibitor of apoptosis-1 (cIAP1) and cIAP2 with their substrates and various regulatory proteins, e.g., deubiquitinases. Furthermore, TRAF2 can act as an E3 ligase by help of its N-terminal really interesting new gene (RING) domain. The finding that TRAF2 (but also several other members of the TRAF family) interacts with the latent membrane protein 1 (LMP1) oncogene of the Epstein-Barr virus (EBV) indicated early on that TRAF2 could play a role in the oncogenesis of B-cell malignancies and EBV-associated non-keratinizing nasopharyngeal carcinoma (NPC). TRAF2 can also act as an oncogene in solid tumors, e.g., in colon cancer by promoting Wnt/ß-catenin signaling. Moreover, tumor cell-expressed TRAF2 has been identified as a major factor-limiting cancer cell killing by cytotoxic T-cells after immune checkpoint blockade. However, TRAF2 can also be context-dependent as a tumor suppressor, presumably by virtue of its inhibitory effect on the alternative NFκB pathway. For example, inactivating mutations of TRAF2 have been associated with tumor development, e.g., in multiple myeloma and mantle cell lymphoma. In this review, we summarize the various TRAF2-related signaling pathways and their relevance for the oncogenic and tumor suppressive activities of TRAF2. Particularly, we discuss currently emerging concepts to target TRAF2 for therapeutic purposes.

11.
J Biol Chem ; 285(10): 7394-404, 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-20038584

RESUMO

Tumor necrosis factor (TNF) elicits its biological activities by stimulation of two receptors, TNFR1 and TNFR2, both belonging to the TNF receptor superfamily. Whereas TNFR1-mediated signal transduction has been intensively studied and is understood in detail, especially with respect to activation of the classical NFkappaB pathway, cell death induction, and MAP kinase signaling, TNFR2-associated signal transduction is poorly defined. Here, we demonstrate in various tumor cell lines and primary T-cells that TNFR2, but not TNFR1, induces activation of the alternative NFkappaB pathway. In accord with earlier findings demonstrating that only membrane TNF, but not soluble TNF, properly activates TNFR2, we further show by use of TNFR1- and TNFR2-specific mutants of soluble TNF and membrane TNF that soluble ligand trimers fail to activate the alternative NFkappaB pathway. In accord with the known inhibitory role of TRAF2 in the alternative NFkappaB pathway, TNFR2-, but not TNFR1-specific TNF induced depletion of cytosolic TRAF2. Thus, we identified activation of the alternative NFkappaB pathway as a TNF signaling effect that can be specifically assigned to TNFR2 and membrane TNF.


Assuntos
Subunidade p52 de NF-kappa B/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais/fisiologia , Fatores de Necrose Tumoral/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Linhagem Celular Tumoral , Células Cultivadas , Humanos , Subunidade p52 de NF-kappa B/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/genética , Linfócitos T/citologia , Linfócitos T/metabolismo , Fator de Transcrição RelB/genética , Fator de Transcrição RelB/metabolismo , Fatores de Necrose Tumoral/genética
12.
Cell Death Dis ; 12(4): 360, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824270

RESUMO

In the early 1990s, it has been described that LTα and LTß form LTα2ß and LTαß2 heterotrimers, which bind to TNFR1 and LTßR, respectively. Afterwards, the LTαß2-LTßR system has been intensively studied while the LTα2ß-TNFR1 interaction has been ignored to date, presumably due to the fact that at the time of identification of the LTα2ß-TNFR1 interaction one knew already two ligands for TNFR1, namely TNF and LTα. Here, we show that LTα2ß interacts not only with TNFR1 but also with TNFR2. We furthermore demonstrate that membrane-bound LTα2ß (memLTα2ß), despite its asymmetric structure, stimulates TNFR1 and TNFR2 signaling. Not surprising in view of its ability to interact with TNFR2, LTα2ß is inhibited by Etanercept, which is approved for the treatment of rheumatoid arthritis and also inhibits TNF and LTα.


Assuntos
Linfotoxina-alfa/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/agonistas , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais/fisiologia , Fator de Necrose Tumoral alfa/metabolismo , Humanos , Membranas/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/agonistas , Receptores Tipo I de Fatores de Necrose Tumoral/efeitos dos fármacos , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais/imunologia
13.
J Cell Biol ; 166(3): 369-80, 2004 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-15289496

RESUMO

Fas (APO-1/CD95) is the prototypic death receptor, and the molecular mechanisms of Fas-induced apoptosis are comparably well understood. Here, we show that Fas activates NFkappaB via a pathway involving RIP, FADD, and caspase-8. Remarkably, the enzymatic activity of the latter was dispensable for Fas-induced NFkappaB signaling pointing to a scaffolding-related function of caspase-8 in nonapoptotic Fas signaling. NFkappaB was activated by overexpressed FLIPL and FLIPS in a cell type-specific manner. However, in the context of Fas signaling both isoforms blocked FasL-induced NFkappaB activation. Moreover, down-regulation of both endogenous FLIP isoforms or of endogenous FLIPL alone was sufficient to enhance FasL-induced expression of the NFkappaB target gene IL8. As NFkappaB signaling is inhibited during apoptosis, FasL-induced NFkappaB activation was most prominent in cells that were protected by Bcl2 expression or caspase inhibitors and expressed no or minute amounts of FLIP. Thus, protection against Fas-induced apoptosis in a FLIP-independent manner converted a proapoptotic Fas signal into an inflammatory NFkappaB-related response.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Transporte/metabolismo , Caspases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , NF-kappa B/metabolismo , Proteínas/metabolismo , Receptor fas/metabolismo , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD , Caspase 8 , Proteína de Domínio de Morte Associada a Fas , Regulação da Expressão Gênica/fisiologia , Humanos , Proteínas I-kappa B/metabolismo , Inibidor de NF-kappaB alfa , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2 , Proteína Serina-Treonina Quinases de Interação com Receptores , Regulação para Cima
14.
Front Cell Dev Biol ; 7: 91, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31192209

RESUMO

Macrophages stand in the first line of defense against a variety of pathogens but are also involved in the maintenance of tissue homeostasis. To fulfill their functions macrophages sense a broad range of pathogen- and damage-associated molecular patterns (PAMPs/DAMPs) by plasma membrane and intracellular pattern recognition receptors (PRRs). Intriguingly, the overwhelming majority of PPRs trigger the production of the pleiotropic cytokine tumor necrosis factor-alpha (TNF). TNF affects almost any type of cell including macrophages themselves. TNF promotes the inflammatory activity of macrophages but also controls macrophage survival and death. TNF exerts its activities by stimulation of two different types of receptors, TNF receptor-1 (TNFR1) and TNFR2, which are both expressed by macrophages. The two TNF receptor types trigger distinct and common signaling pathways that can work in an interconnected manner. Based on a brief general description of major TNF receptor-associated signaling pathways, we focus in this review on research of recent years that revealed insights into the molecular mechanisms how the TNFR1-TNFR2 signaling network controls the life and death balance of macrophages. In particular, we discuss how the TNFR1-TNFR2 signaling network is integrated into PRR signaling.

15.
Front Immunol ; 10: 2024, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31555268

RESUMO

Tumor necrosis factor (TNF) receptor associated factor-2 (TRAF2) knockout (KO) cells were generated to investigate the role of TRAF2 in signaling by TNFR1 and the CD95-type death receptors (DRs) TRAILR1/2 and CD95. To prevent negative selection effects arising from the increased cell death sensitivity of TRAF2-deficient cells, cell lines were used for the generation of the TRAF2 KO variants that were protected from DR-induced apoptosis downstream of caspase-8 activation. As already described in the literature, TRAF2 KO cells displayed enhanced constitutive alternative NFκB signaling and reduced TNFR1-induced activation of the classical NFκB pathway. There was furthermore a significant but only partial reduction in CD95-type DR-induced upregulation of the proinflammatory NFκB-regulated cytokine interleukin-8 (IL8), which could be reversed by reexpression of TRAF2. In contrast, expression of the TRAF2-related TRAF1 protein failed to functionally restore TRAF2 deficiency. TRAF2 deficiency resulted furthermore in enhanced procaspase-8 processing by DRs, but this surprisingly came along with a reduction in net caspase-8 activity. In sum, our data argue for (i) a non-obligate promoting function of TRAF2 in proinflammatory DR signaling and (ii) a yet unrecognized stabilizing effect of TRAF2 on caspase-8 activity.


Assuntos
Caspase 8/metabolismo , Receptores de Morte Celular/metabolismo , Fator 2 Associado a Receptor de TNF/metabolismo , Receptor fas/metabolismo , Apoptose/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Células HCT116 , Células HEK293 , Humanos , Inflamação , Interleucina-8/metabolismo , NF-kappa B/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais , Regulação para Cima/fisiologia
16.
Cell Death Dis ; 10(2): 122, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30741924

RESUMO

We evaluated redundant and receptor-specific activities of TRADD, RIPK1, and FADD in RIPK3-expressing HeLa cells lacking expression of these proteins or any combination of two of these factors. We confirmed the opposing role of FADD in TNF- and TRAIL-induced necroptosis and observed an anti-necroptotic function of TRADD. RIPK1 and TRADD act in a redundant manner in TNF- but not TRAIL-induced apoptosis. Complementary, FADD proved to be sufficient for TRAIL- but not for TNF-induced apoptosis. TRADD and RIPK1, however, redundantly mediated proinflammatory signaling in response to TNF and TRAIL. FADD deficiency sensitized more efficiently for TNFR1-mediated necroptosis than caspase-8 deficiency pointing to a caspase-8 independent inhibitory activity of FADD on TNF-induced necroptosis. Based on these characteristics, we propose a model in which the death receptor-specific activities of TRADD, RIPK1, and FADD are traced back to their hierarchically different position in TNFR1- and TRAIL death receptor signaling.


Assuntos
Proteína de Domínio de Morte Associada a Fas/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais , Proteína de Domínio de Morte Associada a Receptor de TNF/metabolismo , Apoptose/efeitos dos fármacos , Caspase 8/metabolismo , Células HeLa , Humanos , NF-kappa B/metabolismo , Oligopeptídeos/farmacologia , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Transdução de Sinais/efeitos dos fármacos , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Fator de Necrose Tumoral alfa/farmacologia
17.
Sci Rep ; 9(1): 18062, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31792264

RESUMO

Recent advances in molecular diagnostics have shown that lesions affecting both copies of the gene for tumor suppressor protein 53 (TP53) count among the most powerful predictors for high-risk disease in multiple myeloma (MM). However, the functional relevance and potential therapeutic implications of single hits to TP53 remain less well understood. Here, we have for the first time approximated the different constellations of mono- and bi-allelic TP53 lesions observed in MM patients within the frame of a single MM cell line model and assessed their potential to disrupt p53 system functionality and to impart drug resistance. Both types of common first hit: point mutation with expression of mutant p53 protein or complete loss of contribution from one of two wildtype alleles strongly impaired p53 system functionality and increased resistance to melphalan. Second hits abolished remaining p53 activity and increased resistance to genotoxic drugs even further. These results fit well with the clinical drive to TP53 single- and double-hit disease in MM patients, provide a rationale for the most commonly observed double-hit constellation (del17p+ TP53 point mutation), and underscore the potential increases in MM cell malignancy associated with any type of initial TP53 lesion.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Mieloma Múltiplo/genética , Proteína Supressora de Tumor p53/genética , Alelos , Antineoplásicos Alquilantes/uso terapêutico , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Edição de Genes , Heterozigoto , Homozigoto , Humanos , Melfalan/farmacologia , Melfalan/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Mutação Puntual , Transdução de Sinais/genética , Proteína Supressora de Tumor p53/metabolismo
18.
Cell Death Dis ; 10(8): 611, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31406107

RESUMO

The NEDD8-activating enzyme (NAE) inhibitor MLN4924 inhibits cullin-RING ubiquitin ligase complexes including the SKP1-cullin-F-box E3 ligase ßTrCP. MLN4924 therefore inhibits also the ßTrCP-dependent activation of the classical and the alternative NFĸB pathway. In this work, we found that a subgroup of multiple myeloma cell lines (e.g., RPMI-8226, MM.1S, KMS-12BM) and about half of the primary myeloma samples tested are sensitized to TNF-induced cell death by MLN4924. This correlated with MLN4924-mediated inhibition of TNF-induced activation of the classical NFκB pathway and reduced the efficacy of TNF-induced TNFR1 signaling complex formation. Interestingly, binding studies revealed a straightforward correlation between cell surface TNFR1 expression in multiple myeloma cell lines and their sensitivity for MLN4924/TNF-induced cell death. The cell surface expression levels of TNFR1 in the investigated MM cell lines largely correlated with TNFR1 mRNA expression. This suggests that the variable levels of cell surface expression of TNFR1 in myeloma cell lines are decisive for TNF/MLN4924 sensitivity. Indeed, introduction of TNFR1 into TNFR1-negative TNF/MLN4924-resistant KMS-11BM cells, was sufficient to sensitize this cell line for TNF/MLN4924-induced cell death. Thus, MLN4924 might be especially effective in myeloma patients with TNFR1+ myeloma cells and a TNFhigh tumor microenvironment.


Assuntos
Apoptose/efeitos dos fármacos , Ciclopentanos/farmacologia , Mieloma Múltiplo/patologia , Pirimidinas/farmacologia , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Enzimas Ativadoras de Ubiquitina/antagonistas & inibidores , Adulto , Idoso , Bortezomib/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Necrose , Oligopeptídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Enzimas Ativadoras de Ubiquitina/metabolismo
19.
Cell Signal ; 19(6): 1172-84, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17291719

RESUMO

The CD95 and TRAIL death receptors can potently stimulate proinflammatory signalling, especially in apoptosis resistant cells. Here, we show that caspases are of cell type-specific relevance for non-apoptotic death receptor signalling in pancreatic tumour cells. Inhibition of caspases by zVAD-fmk strongly enhanced the proinflammatory response in PancTuI, BxPc3 and Panc89 cells, but inhibited this response in Colo357 cells as well as in apoptosis-resistant Colo357-BclxL cells overexpressing BclxL. To characterize the role of caspases in non-apoptotic death receptor signalling, we analysed CD95L- and TRAIL-induced signalling pathways in Colo357-BclxL cells in comparison with PancTuI cells. Both death ligands induced NFkappaB, ERKs, JNK and p38 in Colo357-BclxL cells and except for ERKs also in PancTuI cells. However, inhibition of caspases with zVAD-fmk resulted in strong inhibition of all these signalling pathways in Colo357-BclxL, but enhanced NFkappaB and JNK signalling in PancTuI cells. Caspase-mediated activation of NFkappaB and ERKs were involved in CD95L- and TRAIL-induced up-regulation of proinflammatory genes in Colo357-BclxL cells. At the level of the DISC we did not observe any significant differences in recruitment or processing of FADD, caspase-8, FLIP, TRAF2 and RIP between PancTuI and Colo357-BclxL cells. Consequently, an NFkappaB and ERK stimulating, caspase-dependent factor must operate downstream of the DISC in Colo357-BclxL cells.


Assuntos
Apoptose/efeitos dos fármacos , Caspases/metabolismo , Proteína Ligante Fas/farmacologia , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/patologia , Transdução de Sinais/efeitos dos fármacos , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Clorometilcetonas de Aminoácidos/farmacologia , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Caspase 8/metabolismo , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , NF-kappa B/metabolismo , Fator 2 Associado a Receptor de TNF/metabolismo , Proteína bcl-X/metabolismo
20.
Mol Cell Biol ; 25(15): 6363-79, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16024776

RESUMO

FasL and gamma interferon (IFN-gamma) are produced by activated T cells and NK cells and synergistically induce apoptosis. Although both cytokines can also elicit proinflammatory responses, a possible cross talk of these ligands with respect to nonapoptotic signaling has been poorly addressed. Here, we show that IFN-gamma sensitizes KB cells for apoptosis induction by facilitating death-inducing signaling complex (DISC)-mediated caspase 8 processing. Moreover, after protection against death receptor-induced apoptosis by caspase inhibition or Bcl2 overexpression, IFN-gamma also sensitized for Fas- and TRAIL death receptor-mediated NF-kappaB activation leading to synergistic upregulation of a variety of proinflammatory genes. In contrast, Fas-mediated activation of JNK, p38, and p42/44 occurred essentially independent from IFN-gamma sensitization, indicating that the apoptosis- and NF-kappaB-related FasL-IFN-gamma cross talk was not due to a simple global enhancement of Fas signaling. Overexpression of FLIP(L) and FLIP(S) inhibited Fas- as well as TRAIL-mediated NF-kappaB activation and apoptosis induction in IFN-gamma-primed cells suggesting that both responses are coregulated at the level of the DISC.


Assuntos
Caspases/metabolismo , Interferon gama/fisiologia , Glicoproteínas de Membrana/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Receptores do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais/fisiologia , Apoptose/fisiologia , Caspase 8 , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte , Proteína Ligante Fas , Humanos , Células KB , Glicoproteínas de Membrana/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA