Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hepatology ; 60(1): 334-48, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24619965

RESUMO

UNLABELLED: Activation of the renin angiotensin system resulting in stimulation of angiotensin-II (AngII) type I receptor (AT1R) is an important factor in the development of liver fibrosis. Here, we investigated the role of Janus kinase 2 (JAK2) as a newly described intracellular effector of AT1R in mediating liver fibrosis. Fibrotic liver samples from rodents and humans were compared to respective controls. Transcription, protein expression, activation, and localization of JAK2 and downstream effectors were analyzed by real-time polymerase chain reaction, western blotting, immunohistochemistry, and confocal microscopy. Experimental fibrosis was induced by bile duct ligation (BDL), CCl4 intoxication, thioacetamide intoxication or continuous AngII infusion. JAK2 was inhibited by AG490. In vitro experiments were performed with primary rodent hepatic stellate cells (HSCs), Kupffer cells (KCs), and hepatocytes as well as primary human and human-derived LX2 cells. JAK2 expression and activity were increased in experimental rodent and human liver fibrosis, specifically in myofibroblastic HSCs. AT1R stimulation in wild-type animals led to activation of HSCs and fibrosis in vivo through phosphorylation of JAK2 and subsequent RhoA/Rho-kinase activation. These effects were prevented in AT1R(-/-) mice. Pharmacological inhibition of JAK2 attenuated liver fibrosis in rodent fibrosis models. In vitro, JAK2 and downstream effectors showed increased expression and activation in activated HSCs, when compared to quiescent HSCs, KCs, and hepatocytes isolated from rodents. In primary human and LX2 cells, AG490 blocked AngII-induced profibrotic gene expression. Overexpression of JAK2 led to increased profibrotic gene expression in LX2 cells, which was blocked by AG490. CONCLUSION: Our study substantiates the important cell-intrinsic role of JAK2 in HSCs for development of liver fibrosis. Inhibition of JAK2 might therefore offer a promising therapy for liver fibrosis.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Janus Quinase 2/metabolismo , Cirrose Hepática/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Angiotensina II/toxicidade , Animais , Ductos Biliares , Tetracloreto de Carbono/toxicidade , Modelos Animais de Doenças , Células Estreladas do Fígado/metabolismo , Humanos , Ligadura , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miofibroblastos/metabolismo , Fosforilação/fisiologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Tioacetamida/toxicidade
2.
Biochem Biophys Res Commun ; 437(1): 48-54, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23806692

RESUMO

The endogenous cannabinoids anandamide (N-arachidonoylethanolamide, AEA) and 2-arachidonoyl glycerol (2-AG) are upregulated during liver fibrogenesis and selectively induce cell death in hepatic stellate cells (HSCs), the major fibrogenic cells in the liver, but not in hepatocytes. In contrast to HSCs, hepatocytes highly express the AEA-degrading enzyme fatty acid amide hydrolase (FAAH) that protects them from AEA-induced injury. However, the role of the major 2-AG-degrading enzyme monoacylglycerol lipase (MGL) in 2-AG-induced hepatic cell death has not been investigated. In contrast to FAAH, MGL protein expression did not significantly differ in primary mouse hepatocytes and HSCs. Hepatocytes pretreated with selective MGL inhibitors were not sensitized towards 2-AG-mediated death, indicating a minor role for MGL in the cellular resistance against 2-AG. Moreover, while adenoviral MGL overexpression failed to render HSCs resistant towards 2-AG, FAAH overexpression prevented 2-AG-induced death in HSCs. Accordingly, 2-AG caused cell death in hepatocytes pretreated with the FAAH inhibitor URB597, FAAH(-/-) hepatocytes, or hepatocytes depleted of the antioxidant glutathione (GSH). Moreover, 2-AG increased reactive oxygen species production in hepatocytes after FAAH inhibition, indicating that hepatocytes are more resistant to 2-AG treatment due to high GSH levels and FAAH expression. However, 2-AG was not significantly elevated in FAAH(-/-) mouse livers in contrast to AEA. Thus, FAAH exerts important protective actions against 2-AG-induced cellular damage, even though it is not the major 2-AG degradation enzyme in vivo. In conclusion, FAAH-mediated resistance of hepatocytes against endocannabinoid-induced cell death may provide a new physiological concept allowing the specific targeting of HSCs in liver fibrosis.


Assuntos
Amidoidrolases/metabolismo , Ácidos Araquidônicos/farmacologia , Endocanabinoides/farmacologia , Glicerídeos/farmacologia , Células Estreladas do Fígado/enzimologia , Hepatócitos/citologia , Hepatócitos/enzimologia , Monoacilglicerol Lipases/metabolismo , Amidoidrolases/genética , Animais , Morte Celular/efeitos dos fármacos , Células Cultivadas , Citoproteção/efeitos dos fármacos , Células Estreladas do Fígado/citologia , Células Estreladas do Fígado/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo
3.
Am J Physiol Gastrointest Liver Physiol ; 302(8): G873-87, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22301114

RESUMO

The endocannabinoid system is a crucial regulator of hepatic fibrogenesis. We have previously shown that the endocannabinoid anandamide (AEA) is a lipid mediator that blocks proliferation and induces death in hepatic stellate cells (HSCs), the main fibrogenic cell type in the liver, but not in hepatocytes. However, the effects of other endocannabinoids such as N-arachidonoyl dopamine (NADA) have not yet been investigated. The NADA-synthesizing enzyme tyrosine hydroxylase was mainly expressed in sympathetic neurons in portal tracts. Its expression pattern stayed unchanged in normal or fibrotic liver. NADA dose dependently induced cell death in culture-activated primary murine or human HSCs after 2-4 h, starting from 5 µM. Despite caspase 3 cleavage, NADA-mediated cell death showed typical features of necrosis, including ATP depletion. Although the cannabinoid receptors CB1, CB2, or transient receptor potential cation channel subfamily V, member 1 were expressed in HSCs, their pharmacological or genetic blockade failed to inhibit NADA-mediated death, indicating a cannabinoid-receptor-independent mechanism. Interestingly, membrane cholesterol depletion with methyl-ß-cyclodextrin inhibited AEA- but not NADA-induced death. NADA significantly induced reactive oxygen species formation in HSCs. The antioxidant glutathione (GSH) significantly decreased NADA-induced cell death. Similar to AEA, primary hepatocytes were highly resistant against NADA-induced death. Resistance to NADA in hepatocytes was due to high levels of GSH, since GSH depletion significantly increased NADA-induced death. Moreover, high expression of the AEA-degrading enzyme fatty acid amide hydrolase (FAAH) in hepatocytes also conferred resistance towards NADA-induced death, since pharmacological or genetic FAAH inhibition significantly augmented hepatocyte death. Thus the selective induction of cell death in HSCs proposes NADA as a novel antifibrogenic mediator.


Assuntos
Ácidos Araquidônicos/farmacologia , Moduladores de Receptores de Canabinoides/farmacologia , Morte Celular/efeitos dos fármacos , Dopamina/análogos & derivados , Endocanabinoides , Células Estreladas do Fígado/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Adenoviridae/genética , Fibras Adrenérgicas/efeitos dos fármacos , Fibras Adrenérgicas/enzimologia , Amidoidrolases/metabolismo , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Western Blotting , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Dopamina/farmacologia , Células Endoteliais/efeitos dos fármacos , Gânglios Espinais/citologia , Gânglios Espinais/efeitos dos fármacos , Humanos , Técnicas In Vitro , Células de Kupffer/efeitos dos fármacos , Cirrose Hepática/patologia , Cirrose Hepática/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Tirosina 3-Mono-Oxigenase/biossíntese , Cicatrização/efeitos dos fármacos
4.
Hepatology ; 54(1): 262-72, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21488077

RESUMO

UNLABELLED: The liver has a role in T cell tolerance induction, which is mainly achieved through the functions of tolerogenic hepatic antigen-presenting cells (APCs) and regulatory T cells. Hepatic stellate cells (HSCs) are known to have various immune functions, which range from immunogenic antigen presentation to the induction of T cell apoptosis. Here we report a novel role for stellate cells in vetoing the priming of naive CD8 T cells. Murine and human HSCs and stromal cells (but not hepatocytes) prevented the activation of naive T cells by dendritic cells, artificial APCs, and phorbol 12-myristate 13-acetate/ionomycin by a cell contact-dependent mechanism. The veto function for inhibiting T cell activation was directly correlated with the activation state of HSCs and was most pronounced in HSCs from fibrotic livers. Mechanistically, high expression levels of CD54 simultaneously restricted the expression of interleukin-2 (IL-2) receptor and IL-2 in T cells, and this was responsible for the inhibitory effect because exogenous IL-2 overcame the HSC veto function. CONCLUSION: Our results demonstrate a novel function of HSCs in the local skewing of immune responses in the liver through the prevention of local stimulation of naive T cells. These results not only indicate a beneficial role in hepatic fibrosis, for which increased CD54 expression on HSCs could attenuate further T cell activation, but also identify IL-2 as a key cytokine in mediating local T cell immunity to overcome hepatic tolerance.


Assuntos
Linfócitos T CD8-Positivos/patologia , Comunicação Celular/fisiologia , Células Estreladas do Fígado/patologia , Molécula 1 de Adesão Intercelular/fisiologia , Animais , Células Apresentadoras de Antígenos/patologia , Células Apresentadoras de Antígenos/fisiologia , Apoptose/fisiologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/fisiologia , Linhagem Celular , Células Cultivadas , Células Dendríticas/patologia , Células Dendríticas/fisiologia , Modelos Animais de Doenças , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/fisiologia , Humanos , Interleucina-2/farmacologia , Cirrose Hepática/patologia , Cirrose Hepática/fisiopatologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Linfócitos T Reguladores/patologia , Linfócitos T Reguladores/fisiologia
5.
Liver Int ; 31(6): 860-70, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21645218

RESUMO

BACKGROUND: Alcohol is a common cause of hepatic liver injury with steatosis and fibrosis. Cannabinoid receptors (CB) modulate steatosis, inflammation and fibrogenesis. To investigate the differences between CB(1) and CB(2) in the hepatic response to chronic alcohol intake, we examined CB knockout mice (CB(1)(-/-), CB(2)(-/-)). METHODS: Eight- to 10-week-old CB(1)(-/-), CB(2)(-/-) and wild-type mice received 16% ethanol for 35 weeks. Animals receiving water served as controls. We analysed triglyceride and hydroxyproline contents in liver homogenates. mRNA levels of CBs, pro-inflammatory cytokines [tumour necrosis factor (TNF)-α, monocyte chemotactic protein (MCP)-1, interleukin (IL)-1ß] and profibrotic factors [α-smooth muscle actin (α-SMA), procollagen-Ia, platelet-derived growth factor ß receptor (PDGFß-R)] were analysed by reverse transcription-polymerase chain reaction (RT-PCR). Histology (hemalaun and eosin, oil-red O, CD3, CD45R, CD45, F4/80, Sirius red) characterized hepatic steatosis, inflammation and fibrosis. Activation of lipogenic pathways, activation and proliferation of hepatic stellate cell (HSC) were assessed by western blot [fatty acid synthase (FAS), sterol regulatory element binding protein 1c (SREBP-1c), α-SMA, proliferating cell nuclear antigen (PCNA), cathepsin D]. RESULTS: Hepatic mRNA levels of the respective CBs were increased in wild-type animals and in CB(1)(-/-) mice after ethanol intake. Ethanol intake in CB(2)(-/-) mice induced much higher steatosis (SREBP-1c mediated) and inflammation (B-cell predominant infiltrates) compared with wild-type animals and CB(1)(-/-) mice. HSC activation and collagen production were increased in all groups after forced ethanol intake, being most pronounced in CB(2)(-/-) mice and least pronounced in CB(1)(-/-) mice. DISCUSSION: The fact that CB(2) receptor knockout mice exhibited the most pronounced liver damage after ethanol challenge indicates a protective role of CB(2) receptor expression in chronic ethanol intake. By contrast, in CB(1) knockouts, the effect of ethanol was attenuated, suggesting aggravation of fibrogenesis and SREBP-1c-mediated steatosis via CB(1) receptor expression after ethanol intake.


Assuntos
Fígado Gorduroso Alcoólico/metabolismo , Hepatite Alcoólica/metabolismo , Cirrose Hepática Alcoólica/metabolismo , Fígado/metabolismo , Receptor CB1 de Canabinoide/deficiência , Receptor CB2 de Canabinoide/deficiência , Animais , Biomarcadores/metabolismo , Western Blotting , Proliferação de Células , Modelos Animais de Doenças , Etanol/sangue , Fígado Gorduroso Alcoólico/genética , Fígado Gorduroso Alcoólico/imunologia , Fígado Gorduroso Alcoólico/patologia , Feminino , Regulação da Expressão Gênica , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Hepatite Alcoólica/genética , Hepatite Alcoólica/imunologia , Hepatite Alcoólica/patologia , Hidroxiprolina/metabolismo , Mediadores da Inflamação/metabolismo , Fígado/imunologia , Fígado/patologia , Cirrose Hepática Alcoólica/genética , Cirrose Hepática Alcoólica/imunologia , Cirrose Hepática Alcoólica/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/metabolismo , Receptor CB1 de Canabinoide/genética , Receptor CB2 de Canabinoide/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Triglicerídeos/metabolismo
6.
FASEB J ; 21(11): 2798-806, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17440119

RESUMO

The endocannabinoid system is an important regulator of hepatic fibrogenesis. In this study, we determined the effects of 2-arachidonoyl glycerol (2-AG) on hepatic stellate cells (HSCs), the main fibrogenic cell type in the liver. Culture-activated HSCs were highly susceptible to 2-AG-induced cell death with >50% cell death at 10 microM after 18 h of treatment. 2-AG-induced HSC death showed typical features of apoptosis such as PARP- and caspase 3-cleavage and depended on reactive oxygen species (ROS) formation. Confocal microscopy revealed mitochondria as primary site of ROS production and demonstrated mitochondrial depolarization and increased mitochondrial permeability after 2-AG treatment. 2-AG-induced cell death was independent of cannabinoid receptors but required the presence of membrane cholesterol. Primary hepatocytes were resistant to 2-AG-induced ROS induction and cell death but became susceptible after GSH depletion suggesting antioxidant defenses as a critical determinant of 2-AG sensitivity. Hepatic levels of 2-AG were significantly elevated in two models of experimental fibrogenesis and reached concentrations that are sufficient to induce death in HSCs. These findings suggest that 2-AG may act as an antifibrogenic mediator in the liver by inducing cell death in activated HSCs but not hepatocytes.


Assuntos
Apoptose/efeitos dos fármacos , Ácidos Araquidônicos/farmacologia , Moduladores de Receptores de Canabinoides/farmacologia , Endocanabinoides , Glicerídeos/farmacologia , Hepatócitos/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Western Blotting , Caspases/metabolismo , Células Cultivadas , Embrião de Mamíferos/citologia , Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibrose , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Fígado/efeitos dos fármacos , Fígado/lesões , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Hepáticas/efeitos dos fármacos , Poli(ADP-Ribose) Polimerases/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/fisiologia , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
World J Gastroenterol ; 12(40): 6507-14, 2006 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-17072982

RESUMO

AIM: To investigate interleukin-18 (IL-18) in patients with chronic panreatitis (CP). METHODS: We studied 29 patients with CP and 30 healthy controls. Peripheral blood mononuclear cells (PBMC) were isolated and incubated with 50 mmol/L ethanol, lipopolysaccharide (LPS) (doses 25 g/L, 250 g/L, 2500 g/L) and both agents for 24 h. Levels of IL-18 in the supernatants, and levels of IL-18, IL-12, interferon (IFN)-gamma and soluble CD14 in the serum were analysed by ELISA technique. Expression of IL-18 in PBMC was investigated by reverse-transcription (RT)-PCR. IL-18 protein levels in CP tissue and in normal pancreas were studied by ELISA technique. IL-18 levels in PBMC and pancreatic tissue were determined by Western blot. Immunohistochemistry for pancreatic IL-18 expression was performed. RESULTS: In patients, IL-18 serum levels were significantly enhanced by 76% (mean: 289.9+/-167.7 ng/L) compared with controls (mean: 165.2+/-43.6 ng/L; P<0.0005). IL-12 levels were enhanced by 25% in patients (18.3+/-7.3 ng/L) compared with controls (14.7+/-6.8 ng/L, P=0.0576) although not reaching the statistical significance. IFN-gamma and soluble CD14 levels were not increased. In vitro, LPS stimulated significantly and dose-dependently IL-18 secretion from PBMC. Incubation with ethanol reduced LPS-stimulated IL-18 secretion by about 50%. The mRNA expression of IL-18 in PBMC and the response of PBMC to ethanol and LPS was similar in CP patients and controls. In PBMC, no significant differences in IL-18 protein levels were detected between patients and controls. IL-18 protein levels were increased in CP tissues compared to normal pancreatic tissues. IL-18 was expressed by pancreatic acinar cells and by infiltrating inflammatory cells within the pancreas. CONCLUSION: IL-18 originates from the chronically inflammed pancreas and appears to be involved in the fibrotic destruction of the organ.


Assuntos
Interleucina-18/metabolismo , Pâncreas/metabolismo , Pancreatite Crônica/metabolismo , Adulto , Estudos de Casos e Controles , Endotoxinas/genética , Endotoxinas/metabolismo , Feminino , Fibrose/metabolismo , Regulação da Expressão Gênica , Humanos , Interferons/genética , Interferons/metabolismo , Interleucina-12/genética , Interleucina-12/metabolismo , Interleucina-18/genética , Receptores de Lipopolissacarídeos/genética , Receptores de Lipopolissacarídeos/metabolismo , Masculino , Pessoa de Meia-Idade , Pâncreas/patologia , Estudos Prospectivos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
8.
PLoS One ; 11(3): e0150893, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26937641

RESUMO

Serum amyloid A (SAA) is an evolutionary highly conserved acute phase protein that is predominantly secreted by hepatocytes. However, its role in liver injury and fibrogenesis has not been elucidated so far. In this study, we determined the effects of SAA on hepatic stellate cells (HSCs), the main fibrogenic cell type of the liver. Serum amyloid A potently activated IκB kinase, c-Jun N-terminal kinase (JNK), Erk and Akt and enhanced NF-κB-dependent luciferase activity in primary human and rat HSCs. Serum amyloid A induced the transcription of MCP-1, RANTES and MMP9 in an NF-κB- and JNK-dependent manner. Blockade of NF-κB revealed cytotoxic effects of SAA in primary HSCs with signs of apoptosis such as caspase 3 and PARP cleavage and Annexin V staining. Serum amyloid A induced HSC proliferation, which depended on JNK, Erk and Akt activity. In primary hepatocytes, SAA also activated MAP kinases, but did not induce relevant cell death after NF-κB inhibition. In two models of hepatic fibrogenesis, CCl4 treatment and bile duct ligation, hepatic mRNA levels of SAA1 and SAA3 were strongly increased. In conclusion, SAA may modulate fibrogenic responses in the liver in a positive and negative fashion by inducing inflammation, proliferation and cell death in HSCs.


Assuntos
Colestase/genética , Células Estreladas do Fígado/efeitos dos fármacos , Cirrose Hepática/genética , Proteína Amiloide A Sérica/farmacologia , Animais , Tetracloreto de Carbono , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo , Colestase/metabolismo , Colestase/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Inflamação , Ligadura , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/metabolismo , Masculino , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Endogâmicos BALB C , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
9.
J Neurosci ; 22(19): 8676-83, 2002 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-12351742

RESUMO

In the present study, we describe a new role of the neuronal nitric oxide synthase (nNOS) gene in the regulation of alcohol drinking behavior. Mice deficient in the nNOS gene (nNOS -/-) and wild-type control mice were submitted to a two-bottle free-choice procedure with either water or increasing concentrations of alcohol (2-16%) for 6 weeks. nNOS -/- mice did not differ in consumption and preference for low alcohol concentrations from wild-type animals; however, nNOS -/- mice consumed sixfold more alcohol from highly concentrated alcohol solutions than wild-type mice. Taste studies with either sucrose or quinine solutions revealed that alcohol intake in nNOS -/- and wild-type mice is associated, at least in part, with sweet solution intake but not with the taste of bitterness. When compared with wild-type mice, the nNOS -/- mice were found to be less sensitive to the sedative effects of ethanol as measured by shorter recovery time from ethanol-induced sleep and did not develop rapid tolerance to ethanol-induced hypothermia, although plasma ethanol concentrations were not significantly different from those of controls. Our findings contrast with previous reports that showed that nonselective NOS inhibitors decrease alcohol consumption. However, because alcohol consumption was suppressed in wild-type as well as nNOS -/- mice by the NOS inhibitor N(G)-nitro-L-arginine methyl ester, we conclude that the effect of nonselective NOS inhibitors on alcohol drinking is not mediated by nNOS. Other NOS isoforms, most likely in the periphery or other splice variants of the NOS gene, might contribute to the effect of nonselective NOS inhibitors on alcohol drinking. In summary, the nNOS gene is critically involved in the regulation of neurobehavioral effects of alcohol.


Assuntos
Encéfalo/efeitos dos fármacos , Comportamento de Escolha/efeitos dos fármacos , Tolerância a Medicamentos/fisiologia , Etanol/farmacologia , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Administração Oral , Processamento Alternativo , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/enzimologia , Comportamento de Escolha/fisiologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Etanol/sangue , Homozigoto , Hipotermia/induzido quimicamente , Hibridização In Situ , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase Tipo I , Quinina/administração & dosagem , RNA Mensageiro/metabolismo , Reflexo/efeitos dos fármacos , Autoadministração , Sacarose/administração & dosagem , Paladar/efeitos dos fármacos
10.
Best Pract Res Clin Gastroenterol ; 17(4): 519-42, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12828953

RESUMO

Alcohol-related diseases of the gastrointestinal tract play an important role in clinical gastroenterology. However, the mechanisms and pathophysiology underlying the effects of ethanol on the organs of the digestive tract are not yet completely understood. Animal models represent an essential tool for investigating alcohol-related diseases because they give researchers the opportunity to use methods that cannot be used in humans, such as knockout technology. However, there is still a need for new animal models resembling the human condition, since for some alcohol-related diseases such as chronic alcoholic pancreatitis, the ideal animal model does not yet exist. In this chapter, we provide an overview of the most commonly used animal models in gastrointestinal alcohol research. We will also briefly discuss the current concepts of the pathophysiological mechanisms involved in acute and chronic alcoholic damage of the oesophagus, stomach, small and large intestine, pancreas and liver.


Assuntos
Consumo de Bebidas Alcoólicas/efeitos adversos , Transtornos Relacionados ao Uso de Álcool , Sistema Digestório/efeitos dos fármacos , Modelos Animais de Doenças , Etanol/efeitos adversos , Modelos Animais , Transtornos Relacionados ao Uso de Álcool/etiologia , Animais , Relação Dose-Resposta a Droga , Etanol/administração & dosagem , Humanos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fatores de Tempo
11.
Am J Physiol Gastrointest Liver Physiol ; 294(2): G357-62, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18006606

RESUMO

Hepatic fibrosis is the response of the liver to chronic injury and is associated with portal hypertension, progression to hepatic cirrhosis, liver failure, and high incidence of hepatocellular carcinoma. On a molecular level, a large number of signaling pathways have been shown to contribute to the activation of fibrogenic cell types and the subsequent accumulation of extracellular matrix in the liver. Recent evidence suggests that the endocannabinoid system is an important part of this complex signaling network. In the injured liver, the endocannabinoid system is upregulated both at the level of endocannabinoids and at the endocannabinoid receptors CB1 and CB2. The hepatic endocannabinoid system mediates both pro- and antifibrogenic effects by activating distinct signaling pathways that differentially affect proliferation and death of fibrogenic cell types. Here we will summarize current findings on the role of the hepatic endocannabinoid system in liver fibrosis and discuss emerging options for its therapeutic exploitation.


Assuntos
Moduladores de Receptores de Canabinoides/fisiologia , Endocanabinoides , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Animais , Morte Celular/fisiologia , Proliferação de Células , Humanos , Hipertensão Portal/patologia , Hipertensão Portal/fisiopatologia , Inflamação/patologia , Inflamação/fisiopatologia , Fígado/citologia , Fígado/enzimologia , Cirrose Hepática/enzimologia , Cirrose Hepática/fisiopatologia , Receptores de Canabinoides/fisiologia
12.
J Biol Chem ; 281(15): 10431-8, 2006 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-16418162

RESUMO

The endocannabinoid anandamide (AEA) induces cell death in many cell types, but determinants of AEA-induced cell death remain unknown. In this study, we investigated the role of the AEA-degrading enzyme fatty acid amide hydrolase (FAAH) in AEA-induced cell death in the liver. Primary hepatocytes expressed high levels of FAAH and were completely resistant to AEA-induced cell death, whereas primary hepatic stellate cells (HSCs) expressed low levels of FAAH and were highly sensitive to AEA-induced cell death. Hepatocytes that were pretreated or with the FAAH inhibitor URB597 isolated from FAAH(-/-) mice displayed increased AEA-induced reactive oxygen species (ROS) formation and were susceptible to AEA-mediated death. Conversely, overexpression of FAAH in HSCs prevented AEA-induced death. Since FAAH inhibition conferred only partial AEA sensitivity in hepatocytes, we analyzed additional factors that might regulate AEA-induced death. Hepatocytes contained significantly higher levels of glutathione (GSH) than HSCs. Glutathione depletion by dl-buthionine-(S,R)-sulfoximine rendered hepatocytes susceptible to AEA-mediated ROS production and cell death, whereas GSH ethyl ester prevented ROS production and cell death in HSCs. FAAH inhibition and GSH depletion had additive effects on AEA-mediated hepatocyte cell death resulting in almost 70% death after 24 h at 50 microm AEA and lowering the threshold for cell death to 500 nm. Following bile duct ligation, FAAH(-/-) mice displayed increased hepatocellular injury, suggesting that FAAH protects hepatocytes from AEA-induced cell death in vivo. In conclusion, FAAH and GSH are determinants of AEA-mediated cell death in the liver.


Assuntos
Amidoidrolases/química , Ácidos Araquidônicos/farmacologia , Fígado/efeitos dos fármacos , Fígado/enzimologia , Adenoviridae/genética , Amidoidrolases/metabolismo , Animais , Apoptose , Ductos Biliares/patologia , Western Blotting , Bloqueadores dos Canais de Cálcio/farmacologia , Morte Celular , Relação Dose-Resposta a Droga , Endocanabinoides , Proteínas de Transporte de Ácido Graxo/metabolismo , Glutationa/metabolismo , Hepatócitos/metabolismo , Metabolismo dos Lipídeos , Fígado/lesões , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Necrose , Alcamidas Poli-Insaturadas , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo
13.
Liver Int ; 26(9): 1138-47, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17032415

RESUMO

BACKGROUND/AIMS: Collagen production by activated hepatic stellate cells (HSCs) is a key event in liver fibrosis, and a number of factors have been characterized that trigger HSC activation and collagen production. However, it remains unclear if these factors act locally at the site of injury or also affect HSCs distant to the site of injury. METHODS: A model of partial bile duct ligation (PBDL) in which fibrogenesis can be compared between the injured ligated lobe and the non-ligated lobe. RESULTS: After PBDL, HSCs showed an increased expression of procollagen type I alpha1 mRNA and collagen-reporter gene activity not only in the ligated lobe, but also in the non-ligated lobe, albeit at a lower level. In contrast, an increase in the number of desmin- and alpha-smooth muscle actin positive HSCs, and accumulation of inflammatory cells were observed only in the ligated lobe. Although transforming growth factor-beta (TGF-beta) mRNA was increased only in the ligated lobe, Smad2/3 were activated in the ligated and the non-ligated lobe. These data suggest that the systemic increase in profibrogenic mediators including TGF-beta induces collagen transcription in the uninjured liver. CONCLUSION: Systemic profibrogenic mediators from the injury site affect the residual non-injured liver.


Assuntos
Ductos Biliares , Cirrose Hepática/etiologia , Fígado/metabolismo , Actinas/metabolismo , Animais , Colágeno/genética , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Desmina/metabolismo , Genes Reporter , Inflamação/etiologia , Ligadura , Fígado/citologia , Fígado/fisiologia , Camundongos , Camundongos Transgênicos , Músculo Liso/metabolismo , Fosforilação , RNA Mensageiro/metabolismo , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Distribuição Tecidual , Fator de Crescimento Transformador beta/genética , Regulação para Cima
14.
Alcohol Clin Exp Res ; 29(11 Suppl): 102S-109S, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16344593

RESUMO

Alcohol abuse is a main cause of liver fibrosis and cirrhosis in the western world. Although the major mechanisms of fibrogenesis are independent of the origin of liver injury, alcoholic liver fibrosis features distinctive characteristics, including the pronounced inflammatory response of immune cells due to elevated gut-derived endotoxin plasma levels, increased formation of reactive oxygen species (ROS), ethanol-induced pericentral hepatic hypoxia or formation of cell-toxic and pro-fibrogenic ethanol metabolites (e.g., acetaldehyde or lipid oxidation products). These factors are together responsible for increased hepatocellular cell death and activation of hepatic stellate cells (HSCs), the key cell type of liver fibrogenesis. To date, removing the causative agent is the most effective intervention to prevent the manifestation of liver cirrhosis. A novel experimental approach in fibrosis therapy is the selective induction of cell death in HSCs. Substances such as gliotoxin, anandamide or antibody against tissue inhibitor of metalloproteinase (TIMP)-1 can selectively induce cell death in activated HSCs. These new results in basic science are encouraging for the search of new antifibrotic treatment.


Assuntos
Cirrose Hepática Alcoólica/fisiopatologia , Fígado/fisiopatologia , Animais , Apoptose , Ácidos Araquidônicos/uso terapêutico , Endocanabinoides , Matriz Extracelular/patologia , Gliotoxina , Humanos , Fígado/patologia , Cirrose Hepática Alcoólica/tratamento farmacológico , Cirrose Hepática Alcoólica/patologia , Estresse Oxidativo/fisiologia , Alcamidas Poli-Insaturadas , Inibidor Tecidual de Metaloproteinase-1/uso terapêutico
15.
Alcohol Clin Exp Res ; 29(7): 1139-45, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16046868

RESUMO

BACKGROUND: Onset of alcohol use during adolescence has potentially long-lasting consequences, e.g., prospective alcohol dependence. To obtain new insight into the effects of early chronic ethanol consumption, we compared the drinking behavior of two adult male Wistar rat groups: one that initiated alcohol consumption during adolescence (adolescent group) and the other that initiated their drinking during adulthood (adult group) in a model of long-term alcohol self-administration. We investigated the magnitude of the effects of deprivation and stress on alcohol intake and the influence of these events on the alcohol drinking behavior across time. METHODS: Heterogeneous Wistar rats aged 31 days (adolescents) and 71 days (adults) were given ad libitum access to water, as well as 5% and 20% ethanol solutions during an observation period of 30 wk. A deprivation phase of 14 days was instituted after eight wk of access to alcohol. After 16 and 26 wk of alcohol access, all animals were subjected for three consecutive days to forced swimming and electric foot shocks, respectively. RESULTS: At the onset of drinking, adolescent animals consumed less alcohol and showed lower preference than adults. The deprivation phase was followed by increased intake of highly concentrated ethanol solution without appreciable differences between age groups. Repeated swim stress produced a slight increase in ethanol consumption in both animal groups; however, alcohol intake was not significantly different between groups, whereas the foot shock stress-induced increase in alcohol intake was significantly higher in the animal group that initiated alcohol consumption during adolescence. After swim stress, the drinking behavior of the adolescent group resembled that of the adult group. In particular, the adolescent group increased their preference for 20% ethanol solution for the remainder of the experiment. CONCLUSIONS: Age of voluntary alcohol drinking onset does not appear to be a strong predictor for prospective alcohol intake and relapse-like drinking behavior under the present experimental conditions. However, male Wistar rats that initiated alcohol consumption during adolescence seem to be more susceptible to acute stressor-specific effects in terms of alcohol consumption.


Assuntos
Consumo de Bebidas Alcoólicas/psicologia , Alcoolismo/psicologia , Estresse Psicológico/complicações , Síndrome de Abstinência a Substâncias/psicologia , Fatores Etários , Animais , Nível de Alerta , Etanol/toxicidade , Medo , Masculino , Ratos , Ratos Wistar
16.
Dig Dis ; 23(3-4): 181-94, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16508282

RESUMO

Alcohol-induced diseases of the gastrointestinal tract play an important role in clinical gastroenterology. However, the precise pathophysiological mechanisms are still largely unknown. Alcohol research depends essentially on animal models due to the fact that controlled experimental studies of ethanol-induced diseases in humans are unethical. Animal models have already been successfully applied to disclose and analyze molecular mechanisms in alcohol-induced diseases, partially by using knockout technology. Because of a lack of transferability of some animal models to the human condition, results have to be interpreted cautiously. For some alcohol-related diseases like chronic alcoholic pancreatitis, the ideal animal model does not yet exist. Here we provide an overview of the most commonly used animal models in gastrointestinal alcohol research. We will also briefly discuss the findings based on animal models as well as the current concepts of pathophysiological mechanisms involved in acute and chronic alcoholic damage of the esophagus, stomach, small and large intestine, pancreas and liver.


Assuntos
Transtornos Relacionados ao Uso de Álcool/diagnóstico , Modelos Animais de Doenças , Gastroenteropatias/etiologia , Gastroenteropatias/patologia , Pesquisa/tendências , Animais , Etanol/farmacologia , Previsões , Gastrite/epidemiologia , Gastrite/etiologia , Enteropatias/etiologia , Enteropatias/patologia , Cirrose Hepática Alcoólica/diagnóstico , Cirrose Hepática Alcoólica/patologia , Pancreatite Alcoólica/etiologia , Pancreatite Alcoólica/patologia , Pesquisa/normas , Fatores de Risco , Sensibilidade e Especificidade
17.
Dig Dis ; 23(3-4): 264-74, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16508291

RESUMO

Alcohol abuse is a major cause of liver fibrosis and cirrhosis in developed countries. Before alcoholic liver fibrosis becomes evident, the liver undergoes several stages of alcoholic liver disease including steatosis and steatohepatitis. Although the main mechanisms of fibrogenesis are independent of the etiology of liver injury, alcoholic liver fibrosis is distinctively characterized by a pronounced inflammatory response due to elevated gut-derived endotoxin plasma levels, an augmented generation of oxidative stress with pericentral hepatic hypoxia and the formation of cell-toxic and profibrogenic ethanol metabolites (e.g. acetaldehyde or lipid oxidation products). These factors, based on a complex network of cytokine actions, together result in increased hepatocellular damage and activation of hepatic stellate cells, the key cell type of liver fibrogenesis. Although to date removal of the causative agent, i.e. alcohol, still represents the most effective intervention to prevent the manifestation of alcoholic liver disease, sophisticated molecular approaches are underway, aiming to specifically blunt profibrogenic signaling pathways in liver cells or specifically induce cell death in activated hepatic stellate cells to decrease the scarring of the liver.


Assuntos
Citocromo P-450 CYP2E1/genética , Etanol/efeitos adversos , Regulação da Expressão Gênica , Cirrose Hepática Alcoólica/genética , Cirrose Hepática Alcoólica/patologia , Polimorfismo Genético , Etanol/metabolismo , Feminino , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Masculino , Biologia Molecular , Estresse Oxidativo , Reação em Cadeia da Polimerase , RNA Mensageiro/análise , Sensibilidade e Especificidade , Transdução de Sinais , Fator de Crescimento Transformador alfa/metabolismo
18.
Hepatology ; 41(5): 1085-95, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15841466

RESUMO

The endogenous cannabinoid anandamide (AEA) is a lipid mediator that blocks proliferation and induces apoptosis in many cell types. Although AEA levels are elevated in liver fibrosis, its role in fibrogenesis remains unclear. This study investigated effects of AEA in primary hepatic stellate cells (HSCs). Anandamide blocked HSC proliferation at concentrations of 1 to 10 micromol/L but did not affect HSC proliferation or activation at nanomolar concentrations. At higher concentrations (25-100 micromol/L), AEA rapidly and dose-dependently induced cell death in primary culture-activated and in vivo-activated HSCs, with over 70% cell death after 4 hours at 25 micromol/L. In contrast to treatment with Fas ligand or gliotoxin, AEA-mediated death was caspase independent and showed typical features of necrosis such as rapid adenosine triphosphate depletion and propidium iodide uptake. Anandamide-induced reactive oxygen species (ROS) formation, and an increase in intracellular Ca(2+). Pretreatment with the antioxidant glutathione or Ca(2+)-chelation attenuated AEA-induced cell death. Although the putative endocannabinoid receptors CB1, CB2, and VR1 were expressed in HSCs, specific receptor blockade failed to block cell death. Depletion of membrane cholesterol by methyl-beta-cyclodextrin inhibited AEA binding, blocked ROS formation and intracellular Ca(2+)-increase, and prevented cell death. In primary hepatocytes, AEA showed significantly lower binding and failed to induce cell death even after prolonged treatment. In conclusion, AEA efficiently induces necrosis in activated HSCs, an effect that depends on membrane cholesterol and a subsequent increase in intracellular Ca(2+) and ROS. The anti-proliferative effects and the selective killing of HSCs, but not hepatocytes, indicate that AEA may be used as a potential anti-fibrogenic tool.


Assuntos
Ácidos Araquidônicos/farmacologia , Moduladores de Receptores de Canabinoides/farmacologia , Morte Celular/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Animais , Apoptose , Cálcio/metabolismo , Células Cultivadas , Colesterol/metabolismo , Endocanabinoides , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Masculino , NF-kappa B/metabolismo , Necrose , Alcamidas Poli-Insaturadas , Ratos , Espécies Reativas de Oxigênio/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Receptores de Droga/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
19.
Alcohol Clin Exp Res ; 27(7): 1048-54, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12878910

RESUMO

BACKGROUND: Voluntary alcohol intake in rats can be influenced by alcohol deprivation phases and stress. We investigated the magnitude of the effects of both deprivation and stress (forced swimming in cold water and foot-shock had been chosen as stressors distinct in their physical and psychological features) on alcohol intake and the influence of these experiences on the time course of alcohol drinking behavior. For the alcohol drinking procedure, a long-term model of alcohol self-administration originally developed for heterogeneous Wistar rats was used and was compared with different alcohol-preferring rat lines. METHODS: Adult male Alko alcohol (AA), alcohol-preferring (P), high-alcohol-drinking (HAD), and unselected Wistar rats were given ad libitum access to water, 5%, and 20% alcohol solutions for 6 months. A deprivation phase of 14 days was performed after 8 weeks of access to alcohol. After 16 weeks and 22 weeks of alcohol access, all animals were subjected to forced swimming and foot-shock, respectively, for 3 consecutive days, while alcohol intake was still being measured. RESULTS: Alcohol deprivation led to a significant increase in alcohol intake in Wistar rats and P rats. No alcohol deprivation effect was observed in HAD and AA rats; after deprivation, however, their preference for the 20% alcohol solution increased, immediately in the HAD rats and gradually over time in the AA rats. Repeated swim stress caused an increase in alcohol intake in Wistar rats but no changes in the alcohol-preferring rat lines. Foot-shock stress increased alcohol consumption in all lines of rats, but the most pronounced effects were observed in HAD and P rats. CONCLUSIONS: Wistar, HAD, P, and AA rats differentially respond to alcohol deprivation and stress, showing that the genetic background of these different rat lines profoundly affects relapse-like drinking and stress-induced drinking.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Consumo de Bebidas Alcoólicas/psicologia , Etanol/administração & dosagem , Estresse Fisiológico/genética , Estresse Fisiológico/psicologia , Animais , Masculino , Ratos , Ratos Wistar , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA