Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36835362

RESUMO

In this paper, we describe the chemical synthesis, preliminary evaluation of antimicrobial properties and mechanisms of action of a novel group of lipidated derivatives of three naturally occurring α-helical antimicrobial peptides, LL-I (VNWKKVLGKIIKVAK-NH2), LK6 (IKKILSKILLKKL-NH2), ATRA-1 (KRFKKFFKKLK-NH2). The obtained results showed that biological properties of the final compounds were defined both by the length of the fatty acid and by the structural and physico-chemical properties of the initial peptide. We consider C8-C12 length of the hydrocarbon chain as the optimal for antimicrobial activity improvement. However, the most active analogues exerted relatively high cytotoxicity toward keratinocytes, with the exception of the ATRA-1 derivatives, which had a higher selectivity for microbial cells. The ATRA-1 derivatives had relatively low cytotoxicity against healthy human keratinocytes but high cytotoxicity against human breast cancer cells. Taking into account that ATRA-1 analogues carry the highest positive net charge, it can be assumed that this feature contributes to cell selectivity. As expected, the studied lipopeptides showed a strong tendency to self-assembly into fibrils and/or elongated and spherical micelles, with the least cytotoxic ATRA-1 derivatives forming apparently smaller assemblies. The results of the study also confirmed that the bacterial cell membrane is the target for the studied compounds.


Assuntos
Anti-Infecciosos , Peptídeos Catiônicos Antimicrobianos , Humanos , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos , Desenho de Fármacos , Testes de Sensibilidade Microbiana , Conformação Proteica em alfa-Hélice
2.
Int J Mol Sci ; 24(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36982579

RESUMO

Contemporary medicine has been confronted by multidrug resistance. Therefore, new antibiotics are sought to alleviate the problem. In this study, we estimated the effect of the positioning and extent of lipidation (mainly octanoic acid residue) in the KR12-NH2 molecule on antibacterial and hemolytic activities. The effect of the conjugation of benzoic acid derivatives (C6H5-X-COOH, where X: CH2, CH2-CH2, CH=CH, C≡C, and CH2-CH2-CH2) with the N-terminal part of KR12-NH2 on biological activity was also studied. All analogs were tested against planktonic cells of ESKAPE bacteria and reference strains of Staphylococcus aureus. The effect of lipidation site on the helicity of the KR12-NH2 analogs was studied using CD spectroscopy. The ability of the selected peptides to induce the aggregation of POPG liposomes was evaluated with DLS measurements. We demonstrated that both the site and extent of peptide lipidation play an essential role in the bacterial specificity of the lipopeptides. Most of the C8α-KR12-NH2 (II) analogs that were more hydrophobic than the parent compound were also more hemolytic. A similar relationship was also found between the α-helical structure content in POPC and hemolytic activity. It is worth emphasizing that in our study, the highest selectivity against S. aureus strains with an SI value of at least 21.11 exhibited peptide XII obtained by the conjugation of the octanoic acid with the N-terminus of retro-KR12-NH2. All lipidated analogs with the highest net charge (+5) were the most selective toward pathogens. Therefore, the overall charge of KR12-NH2 analogs plays pivotal role in their biological activity.


Assuntos
Antibacterianos , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Caprilatos/farmacologia , Lipopeptídeos/farmacologia , Bactérias , Testes de Sensibilidade Microbiana
3.
Bioorg Chem ; 122: 105748, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35325694

RESUMO

Cancer immunotherapy using blockade of immune checkpoints is mainly based on monoclonal antibodies. Despite the tremendous success achieved by using those molecules to block immune checkpoint proteins, antibodies possess some weaknesses, which means that there is still a need to search for new compounds as alternatives to antibodies. Many current approaches are focused on use of peptides/peptidomimetics to destroy receptor/ligand interactions. Our studies concern blockade of the BTLA/HVEM complex, which generates an inhibitory effect on the immune response resulting in tolerance to cancer cells. To design inhibitors of such proteins binding we based our work on the amino acid sequence and structure of a ligand of HVEM protein, namely glycoprotein D, which possesses the same binding site on HVEM as BTLA protein. To disrupt the BTLA and HVEM interaction we designed several peptides, all fragments of glycoprotein D, and tested their binding to HVEM using SPR and their ability to inhibit the BTLA/HVEM complex formation using ELISA tests and cellular reporter platforms. That led to identification of two peptides, namely gD(1-36)(K10C-D30C) and gD(1-36)(A12C-L25C), which interact with HVEM and possess blocking capacities. Both peptides are not cytotoxic to human PBMCs, and show stability in human plasma. We also studied the 3D structure of the gD(1-36)(K10C-D30C) peptide using NMR and molecular modeling methods. The obtained data reveal that it possesses an unstructured conformation and binds to HVEM in the same location as gD and BTLA. All these results suggest that peptides based on the binding fragment of gD protein represent promising immunomodulation agents for future cancer immunotherapy.


Assuntos
Receptores Imunológicos , Membro 14 de Receptores do Fator de Necrose Tumoral , Sequência de Aminoácidos , Sítios de Ligação , Glicoproteínas , Humanos , Receptores Imunológicos/química , Receptores Imunológicos/metabolismo , Membro 14 de Receptores do Fator de Necrose Tumoral/química , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo
4.
Bioorg Chem ; 128: 106047, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35963023

RESUMO

Over the past few years, many molecules such as monoclonal antibodies, affibodies, nanobodies, and small compounds have been designed and tested as inhibitors of PD-1/PD-L1 complex formation. Some of them have been successfully implemented into clinical oncology practice. However, the majority of these compounds have disadvantages and limitations, such as high production price, potential for immunogenicity and/or prolonged clearance. Thus, new inhibitors of the PD-1/PD-L1 immune checkpoints are needed. Recently, peptides emerged as potential novel approach for blocking receptor/ligand interaction. In the presented studies we have designed, synthesised and tested peptides, which are potential inhibitors of the PD-1/PD-L1 axis. The amino acid sequences of the designed peptides were based on the binding sites of PD-1 to PD-L1, as determined by the crystal structure of the protein complex and also based on MM/GBSA analysis. Interactions of the peptides with PD-L1 protein were confirmed using SPR, while their inhibitory properties were studied using cell-based PD-1/PD-L1 immune checkpoint blockade assays. The characterization of the peptides has shown that the peptides PD-1(119-142)T120C-E141C, PD-1(119-142)C123-S137C and PD-1(122-138)C123-S137C strongly bind to PD-L1 protein and disrupt the interaction of the proteins. PD-1(122-138)C123-S137C peptide was shown to have the best inhibitory potential from the panel of peptides. Its 3D NMR structure was determined and the binding site to PD-L1 was established using molecular modelling methods. Our results indicate that the PD-1 derived peptides are able to mimic the PD-1 protein and inhibit PD-1/PD-L1 complex formation.


Assuntos
Antígeno B7-H1 , Neoplasias , Antígeno B7-H1/metabolismo , Humanos , Imunoterapia/métodos , Neoplasias/terapia , Peptídeos/química , Peptídeos/farmacologia , Receptor de Morte Celular Programada 1/química , Receptor de Morte Celular Programada 1/metabolismo
5.
J Biol Chem ; 295(7): 2068-2083, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31915245

RESUMO

Many secretory proteins are activated by cleavage at specific sites. The proprotein convertases (PCs) form a family of nine secretory subtilisin-like serine proteases, seven of which cleave at specific basic residues within the trans-Golgi network, granules, or at the cell surface/endosomes. The seventh member, PC7, is a type-I transmembrane (TM) protein with a 97-residue-long cytosolic tail (CT). PC7 sheds human transferrin receptor 1 (hTfR1) into soluble shTfR1 in endosomes. To better understand the physiological roles of PC7, here we focused on the relationship between the CT-regulated trafficking of PC7 and its ability to shed hTfR1. Deletion of the TMCT resulted in soluble PC7 and loss of its hTfR1 shedding activity. Extensive CT deletions and mutagenesis analyses helped us zoom in on three residues in the CT, namely Glu-719, Glu-721, and Leu-725, that are part of a novel motif, EXEXXXL725, critical for PC7 activity on hTfR1. NMR studies of two 14-mer peptides mimicking this region of the CT and its Ala variants revealed that the three exposed residues are on the same side of the molecule. This led to the identification of adaptor protein 2 (AP-2) as a protein that recognizes the EXEXXXL725 motif, thus representing a potentially new regulator of PC7 trafficking and cleavage activity. Immunocytochemistry of the subcellular localization of PC7 and its Ala variants of Leu-725 and Glu-719 and Glu-721 revealed that Leu-725 enhances PC7 localization to early endosomes and that, together with Glu-719 and Glu-721, it increases the endosomal activity of PC7 on hTfR1.


Assuntos
Antígenos CD/genética , Citosol/metabolismo , Transporte Proteico/genética , Receptores da Transferrina/genética , Subtilisinas/genética , Fator de Transcrição AP-2/genética , Motivos de Aminoácidos/genética , Sequência de Aminoácidos/genética , Antígenos CD/química , Membrana Celular/genética , Movimento Celular/genética , Citosol/química , Endossomos/genética , Células HEK293 , Humanos , Receptores da Transferrina/química , Subtilisinas/química , Rede trans-Golgi/genética
6.
Chem Biodivers ; 18(2): e2000883, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33427369

RESUMO

Herpesviruses are the most prevalent viruses that infect the human and animal body. They can escape a host immune response in numerous ways. One way is to block the TAP complex so that viral peptides, originating from proteasomal degradation, cannot be transported to the endoplasmic reticulum. As a result, a reduced number of MHC class I molecules appear on the surface of infected cells and, thus, the immune system is not efficiently activated. BoHV-1-encoded UL49.5 protein is one such TAP transporter inhibitor. This protein binds to TAP in such a way that its N-terminal fragment interacts with the loops of the TAP complex, and the C-terminus stimulates proteasomal degradation of TAP. Previous studies have indicated certain amino acid residues, especially the RRE(9-11) motif, within the helical structure of the UL49.5 N-terminal fragment, as being crucial to the protein's activity. In this work, we investigated the effects of modifications within the RRE region on the spatial structure of the UL49.5 N-terminal fragment. The introduced RRE(9-11) variations were designed to abolish or stabilize the structure of the α-helix and, consequently, to increase or decrease protein activity compared to the wild type. The terminal structure of the peptides was established using circular dichroism (CD), 2D nuclear magnetic resonance (NMR), and molecular dynamics (MD) in membrane-mimetic or membrane-model environments. Our structural results show that in the RRE(9-11)AAA and E11G peptides the helical structure has been stabilized, whereas for the RRE(9-11)GGG peptide, as expected, the helix structure has partially unfolded compared to the native structure. These RRE modifications, in the context of the entire UL49.5 proteins, slightly altered their biological activity in human cells.


Assuntos
Infecções por Herpesviridae/virologia , Herpesvirus Bovino 1/química , Rinotraqueíte Infecciosa Bovina/virologia , Proteínas do Envelope Viral/química , Motivos de Aminoácidos , Animais , Bovinos , Humanos , Modelos Moleculares , Fragmentos de Peptídeos/química , Conformação Proteica , Estabilidade Proteica
7.
Int J Mol Sci ; 22(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33804887

RESUMO

Ultrashort cationic lipopeptides (USCLs) and gemini cationic surfactants are classes of potent antimicrobials. Our recent study has shown that the branching and shortening of the fatty acids chains with the simultaneous addition of a hydrophobic N-terminal amino acid in USCLs result in compounds with enhanced selectivity. Here, this approach was introduced into arginine-rich gemini cationic surfactants. l-cystine diamide and l-lysine amide linkers were used as spacers. Antimicrobial activity against planktonic and biofilm cultures of ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) strains and Candida sp. as well as hemolytic and cytotoxic activities were examined. Moreover, antimicrobial activity in the presence of human serum and the ability to form micelles were evaluated. Membrane permeabilization study, serum stability assay, and molecular dynamics were performed. Generally, critical aggregation concentration was linearly correlated with hydrophobicity. Gemini surfactants were more active than the parent USCLs, and they turned out to be selective antimicrobial agents with relatively low hemolytic and cytotoxic activities. Geminis with the l-cystine diamide spacer seem to be less cytotoxic than their l-lysine amide counterparts, but they exhibited lower antibiofilm and antimicrobial activities in serum. In some cases, geminis with branched fatty acid chains and N-terminal hydrophobic amino acid resides exhibited enhanced selectivity to pathogens over human cells.


Assuntos
Peptídeos Catiônicos Antimicrobianos/síntese química , Biofilmes/efeitos dos fármacos , Lipoproteínas/síntese química , Tensoativos/síntese química , Motivos de Aminoácidos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Arginina/química , Candida/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Cistina/química , Enterobacteriaceae/efeitos dos fármacos , Ácidos Graxos/química , Hemólise , Interações Hidrofóbicas e Hidrofílicas , Lipoproteínas/farmacologia , Lisina/química , Micelas , Tensoativos/farmacologia
8.
Int J Mol Sci ; 22(5)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806461

RESUMO

The present study aimed to synthesize novel polycationic polymers composed of N-substituted L-2,3-diaminopropionic acid residues (DAPEGs) and investigate their cell permeability, cytotoxicity, and DNA-binding ability. The most efficient cell membrane-penetrating compounds (O2Oc-Dap(GO2)n-O2Oc-NH2, where n = 4, 6, and 8) showed dsDNA binding with a binding constant in the micromolar range (0.3, 3.4, and 0.19 µM, respectively) and were not cytotoxic to HB2 and MDA-MB-231 cells. Selected compounds used in the transfection of a GFP plasmid showed high transfection efficacy and minimal cytotoxicity. Their interaction with plasmid DNA and the increasing length of the main chain of tested compounds strongly influenced the organization and shape of the flower-like nanostructures formed, which were unique for 5/6-FAM-O2Oc-[Dap(GO2)]8-O2Oc-NH2 and typical for large proteins.


Assuntos
Permeabilidade da Membrana Celular/fisiologia , Ácidos Nucleicos/metabolismo , Polímeros/farmacologia , beta-Alanina/análogos & derivados , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Nanoestruturas/química , Plasmídeos/metabolismo , Transfecção/métodos , beta-Alanina/farmacologia
9.
Int J Mol Sci ; 22(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206444

RESUMO

The alarming raise of multi-drug resistance among human microbial pathogens makes the development of novel therapeutics a priority task. In contrast to conventional antibiotics, antimicrobial peptides (AMPs), besides evoking a broad spectrum of activity against microorganisms, could offer additional benefits, such as the ability to neutralize toxins, modulate inflammatory response, eradicate bacterial and fungal biofilms or prevent their development. The latter properties are of special interest, as most antibiotics available on the market have limited ability to diffuse through rigid structures of biofilms. Lipidation of AMPs is considered as an effective approach for enhancement of their antimicrobial potential and in vivo stability; however, it could also have undesired impact on selectivity, solubility or the aggregation state of the modified peptides. In the present work, we describe the results of structural modifications of compounds designed based on cationic antimicrobial peptides DK5 and CAR-PEG-DK5, derivatized at their N-terminal part with fatty acids with different lengths of carbon chain. The proposed modifications substantially improved antimicrobial properties of the final compounds and their effectiveness in inhibition of biofilm development as well as eradication of pre-formed 24 h old biofilms of Candida albicans and Staphylococcus aureus. The most active compounds (C5-DK5, C12-DK5 and C12-CAR-PEG-DK5) were also potent against multi-drug resistant Staphylococcus aureus USA300 strain and clinical isolates of Pseudomonas aeruginosa. Both experimental and in silico methods revealed strong correlation between the length of fatty acid attached to the peptides and their final membranolytic properties, tendency to self-assemble and cytotoxicity.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Estabilidade de Medicamentos , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Análise Espectral , Relação Estrutura-Atividade , Termodinâmica
10.
Int J Mol Sci ; 21(19)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003569

RESUMO

Ultrashort cationic lipopeptides (USCLs) are considered to be a promising class of antimicrobials with high activity against a broad-spectrum of microorganisms. However, the majority of these compounds are characterized by significant toxicity toward human cells, which hinders their potential application. To overcome those limitations, several approaches have been advanced. One of these is disulfide cyclization that has been shown to improve drug-like characteristics of peptides. In this article the effect of disulfide cyclization of the polar head of N-palmitoylated USCLs on in vitro biological activity has been studied. Lipopeptides used in this study consisted of three or four basic amino acids (lysine and arginine) and cystine in a cyclic peptide. In general, disulfide cyclization of the lipopeptides resulted in peptides with reduced cytotoxicity. Disulfide-cyclized USCLs exhibited improved selectivity between Candida sp., Gram-positive strains and normal cells in contrast to their linear counterparts. Interactions between selected USCLs and membranes were studied by molecular dynamics simulations using a coarse-grained force field. Moreover, membrane permeabilization properties and kinetics were examined. Fluorescence and transmission electron microscopy revealed damage to Candida cell membrane and organelles. Concluding, USCLs are strong membrane disruptors and disulfide cyclization of polar head can have a beneficial effect on its in vitro selectivity between Candida sp. and normal human cells.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Proliferação de Células/efeitos dos fármacos , Lipopeptídeos/farmacologia , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Candida/efeitos dos fármacos , Ciclização , Dissulfetos/química , Dissulfetos/farmacologia , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Lipopeptídeos/química , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade
11.
Int J Mol Sci ; 21(3)2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32019109

RESUMO

An increasing number of multidrug-resistant pathogens is a serious problem of modern medicine and new antibiotics are highly demanded. In this study, different n-alkyl acids (C2-C14) and aromatic acids (benzoic and trans-cinnamic) were conjugated to the N-terminus of KR12 amide. The effect of this modification on antimicrobial activity (ESKAPE bacteria and biofilm of Staphylococcus aureus) and cytotoxicity (human red blood cells and HaCaT cell line) was examined. The effect of lipophilic modifications on helicity was studied by CD spectroscopy, whereas peptide self-assembly was studied by surface tension measurements and NMR spectroscopy. As shown, conjugation of the KR12-NH2 peptide with C4-C14 fatty acid chains enhanced the antimicrobial activity with an optimum demonstrated by C8-KR12-NH2 (MIC 1-4 µg/mL against ESKAPE strains; MBEC of S. aureus 4-16 µg/mL). Correlation between antimicrobial activity and self-assembly behavior of C14-KR12-NH2 and C8-KR12-NH2 has shown that the former self-assembled into larger aggregated structures, which reduced its antimicrobial activity. In conclusion, N-terminal modification can enhance antimicrobial activity of KR12-NH2; however, at the same time, the cytotoxicity increases. It seems that the selectivity against pathogens over human cells can be achieved through conjugation of peptide N-terminus with appropriate n-alkyl fatty and aromatic acids.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Ácidos Graxos/química , Fragmentos de Peptídeos/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Eritrócitos/efeitos dos fármacos , Humanos , Imidazóis/química , Lipopeptídeos , Nylons/química , Fragmentos de Peptídeos/química , Infecções Estafilocócicas/microbiologia , Propriedades de Superfície , Catelicidinas
12.
Int J Mol Sci ; 21(23)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255674

RESUMO

Antimicrobial peptides (AMPs) constitute a promising tool in the development of novel therapeutic agents useful in a wide range of bacterial and fungal infections. Among the modifications improving pharmacokinetic and pharmacodynamic characteristics of natural AMPs, an important role is played by lipidation. This study focuses on the newly designed and synthesized lipopeptides containing multiple Lys residues or their shorter homologues with palmitic acid (C16) attached to the side chain of a residue located in the center of the peptide sequence. The approach resulted in the development of lipopeptides representing a model of surfactants with two polar headgroups. The aim of this study is to explain how variations in the length of the peptide chain or the hydrocarbon side chain of an amino acid residue modified with C16, affect biological functions of lipopeptides, their self-assembling propensity, and their mode of action.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Infecções Bacterianas/tratamento farmacológico , Lipopeptídeos/química , Micoses/tratamento farmacológico , Sequência de Aminoácidos/genética , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Infecções Bacterianas/microbiologia , Candida albicans/efeitos dos fármacos , Candida albicans/patogenicidade , Escherichia coli/efeitos dos fármacos , Humanos , Lipopeptídeos/genética , Lipopeptídeos/farmacologia , Testes de Sensibilidade Microbiana , Micoses/microbiologia , Relação Estrutura-Atividade
13.
Bioorg Med Chem ; 27(23): 115129, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31668583

RESUMO

Short cationic antimicrobial lipopeptides with surfactant-like structure are promising antibiotic candidates that preferentially target microbial membranes. Therefore, we focused our study on double-chain lipopeptides, (C10-16)2Dab-KKK-NH2 and (C10-16)2Dap-KKK-NH2, where Dab and Dap are 2,4-diaminobutyric and 2,3-diaminopropionic acids, respectively. We tried to answer a question how the self-assembly behaviour affects biological activities of the tested compounds. The subject compounds were synthesized by solid-phase method and screened for their antimicrobial and haemolytic activities. Cytotoxicity tests on human keratinocytes were carried out for the most promising lipopeptides. Self-assembly properties were evaluated by both experimental and theoretical methods. Interactions with membrane models were examined using the ITC and FTIR techniques. All the lipopeptides studied showed the tendency to self-assembly in solution, and this behaviour was affected by the length of the hydrocarbon chains. Acyl chain elongation supported the formation of the bilayer structure and deprived the lipopeptides of antimicrobial activity. A multi-step mechanism of interaction with a negatively charged membrane was observed for the short-chain lipopeptides, indicating other processes accompanying the binding process. Short-chain lipopeptides were able to penetrate into the liposome's interior and/or cause the rupture of the liposome, this being compatible with their high antimicrobial activity.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Lipopeptídeos/química , Lipopeptídeos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Candida albicans/efeitos dos fármacos , Candidíase/tratamento farmacológico , Hemólise/efeitos dos fármacos , Humanos , Bicamadas Lipídicas/metabolismo , Lipossomos/metabolismo , Testes de Sensibilidade Microbiana , Simulação de Dinâmica Molecular
14.
Int J Mol Sci ; 20(17)2019 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-31454948

RESUMO

The transmembrane (TM) proteins are gateways for molecular transport across the cell membrane that are often selected as potential targets for drug design. The bilitranslocase (BTL) protein facilitates the uptake of various anions, such as bilirubin, from the blood into the liver cells. As previously established, there are four hydrophobic transmembrane segments (TM1-TM4), which constitute the structure of the transmembrane channel of the BTL protein. In our previous studies, the 3D high-resolution structure of the TM2 and TM3 transmembrane fragments of the BTL in sodium dodecyl sulfate (SDS) micellar media were solved using Nuclear Magnetic Resonance (NMR) spectroscopy and molecular dynamics simulations (MD). The high-resolution 3D structure of the fourth transmembrane region (TM4) of the BTL was evaluated using NMR spectroscopy in two different micellar media, anionic SDS and zwitterionic DPC (dodecylphosphocholine). The presented experimental data revealed the existence of an α -helical conformation in the central part of the TM4 in both micellar media. In the case of SDS surfactant, the α -helical conformation is observed for the Pro258-Asn269 region. The use of the zwitterionic DPC micelle leads to the formation of an amphipathic α -helix, which is characterized by the extension of the central α -helix in the TM4 fragment to Phe257-Thr271. The complex character of the dynamic processes in the TM4 peptide within both surfactants was analyzed based on the relaxation data acquired on 15 N and 31 P isotopes. Contrary to previously published and present observations in the SDS micelle, the zwitterionic DPC environment leads to intensive low-frequency molecular dynamic processes in the TM4 fragment.


Assuntos
Ceruloplasmina/química , Proteínas de Membrana/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Ceruloplasmina/metabolismo , Espectroscopia de Ressonância Magnética , Proteínas de Membrana/metabolismo , Micelas , Peptídeos/química , Peptídeos/metabolismo , Relação Estrutura-Atividade
15.
Biochem Biophys Res Commun ; 483(1): 258-263, 2017 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-28025143

RESUMO

Molecular imaging can report on the status of the tumor immune microenvironment and guide immunotherapeutic strategies to enhance the efficacy of immune modulation therapies. Imaging agents that can rapidly report on targets of immunomodulatory therapies are few. The programmed death ligand 1 (PD-L1) is an immune checkpoint protein over-expressed in several cancers and contributes to tumor immune suppression. Tumor PD-L1 expression is indicative of tumor response to PD-1 and PD-L1 targeted therapies. Herein, we report a highly specific peptide-based positron emission tomography (PET) imaging agent for PD-L1. We assessed the binding modes of the peptide WL12 to PD-L1 by docking studies, developed a copper-64 labeled WL12 ([64Cu]WL12), and performed its evaluation in vitro, and in vivo by PET imaging, biodistribution and blocking studies. Our results show that [64Cu]WL12 can be used to detect tumor PD-L1 expression specifically and soon after injection of the radiotracer, to fit within the standard clinical workflow of imaging within 60 min of administration.


Assuntos
Antígeno B7-H1/análise , Neoplasias/metabolismo , Peptídeos/metabolismo , Peptídeos/farmacocinética , Tomografia por Emissão de Pósitrons/métodos , Animais , Antígeno B7-H1/metabolismo , Células CHO , Radioisótopos de Cobre/administração & dosagem , Radioisótopos de Cobre/farmacocinética , Cricetulus , Usos Diagnósticos de Compostos Químicos , Feminino , Humanos , Camundongos SCID , Simulação de Acoplamento Molecular , Neoplasias/diagnóstico por imagem , Peptídeos/administração & dosagem , Receptor de Morte Celular Programada 1/metabolismo , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Amino Acids ; 49(10): 1755-1771, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28756544

RESUMO

Increasing drug resistance of common pathogens urgently needs discovery of new effective molecules. Antimicrobial peptides are believed to be one of the possible solutions of this problem. One of the approaches for improvement of biological properties is reversion of the sequence (retro analog concept). This research is based on investigation of antimicrobial activity against Gram-positive, Gram-negative bacteria, and fungi, hemolysis of erythrocytes, interpretation of the circular dichroism spectra, measurement of counter-ion content, and assessment of the peptide hydrophobicity and self-assembly using reversed-phase chromatography. The experiments were conducted using the following peptides: aurein 1.2, CAMEL, citropin 1.1, omiganan, pexiganan, temporin A, and their retro analogs. Among the compounds studied, only retro omiganan showed an enhanced antimicrobial and a slightly increased hemolytic activity as compared to parent molecule. Moreover, retro pexiganan exhibited high activity towards Klebsiella pneumoniae, whereas pexiganan was in general more or equally active against the rest of tested microorganisms. Furthermore, the determined activity was closely related to the peptide hydrophobicity. In general, the reduced hemolytic activity correlates with lower antimicrobial activity. The tendency to self-association and helicity fraction in SDS seems to be correlated. The normalized RP-HPLC-temperature profiles of citropin 1.1 and aurein 1.2, revealed an enhanced tendency to self-association than that of their retro analogs.


Assuntos
Proteínas de Anfíbios , Antibacterianos , Peptídeos Catiônicos Antimicrobianos , Klebsiella pneumoniae/crescimento & desenvolvimento , Proteínas de Anfíbios/química , Proteínas de Anfíbios/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia
17.
Postepy Biochem ; 63(3): 179-184, 2017.
Artigo em Polonês | MEDLINE | ID: mdl-29294261

RESUMO

Cancer is one of the most common cause of death nowadays. Thorough knowledge of the mechanisms of tumorigenesis and invasiveness of tumor cells is crucial for the development of molecular targeted therapies, which are believed to be future treatment of this type of diseases. Proteolytic enzymes are one of the factors involved in the development of cancer cells, very often used as markers of tumor progression. In this paper we describe the role of enzymes termed proprotein convertases (PCs) in pathogenesis and progress of cancer diseases. Furthermore, we indicate potential directions for the development of therapeutic strategies designed based on PCs inhibitors.


Assuntos
Neoplasias , Transformação Celular Neoplásica , Humanos , Terapia de Alvo Molecular , Pró-Proteína Convertases , Serina Endopeptidases
18.
Biopolymers ; 106(3): 245-59, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26916937

RESUMO

Deamination of vasopressin (AVP) enhances its antidiuretic activity. Moreover, introduction of D-Arg8 instead of its L enantiomer in deamino-vasopressin (dAVP) results in an extremely potent and selective antidiuretic agonist - desmopressin (dDAVP). In this study we describe the synthesis, pharmacological properties and structures of these two potent antidiuretic agonists, and their inverso analogs. The structures of the peptides are studied in micellar and liposomic models of cell membrane using CD spectroscopy. Additionally, three-dimensional structures in mixed anionic-zwitterionic micelles are obtained using NMR spectroscopy supported by molecular dynamics simulations. Our conformational studies have shown that desmopressin in a membrane mimicking environment adopts one of the characteristic for vasopressin-like peptides ß-turn - in position 3,4. Furthermore, dDAVP shows the tendency to create a ß-turn in the Cys6-Gly9 C-tail, considered to be important for the antidiuretic activity, and also some tendency to adopt a 5,6 ß-turn. In desmopressin, in contrast to the native vasopressin, deamino-vasopressin and [D-Arg8]-vasopressin (DAVP), the Arg8 side chain, crucial for the pressor and antidiuretic activities, is very well exposed for interaction with the receptor, whereas Gly9, crucial for the pressor and uterotonic activities, is situated together with the C-terminal amide group very close to the tocin ring. The arrangements of the Gln4 and Asn5 side chains, being crucial for OT activity, also differ in desmopressin as compared to those of AVP, dAVP and DAVP. These differences in arrangement of the important for activities side chains are likely to explain extremely potent and selective antidiuretic activities of desmopressin. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 245-259, 2016.


Assuntos
Antidiuréticos/síntese química , Desamino Arginina Vasopressina/síntese química , Lipossomos/química , Ocitócicos/síntese química , 1,2-Dipalmitoilfosfatidilcolina/química , Animais , Antidiuréticos/farmacologia , Ciclização , Desamino Arginina Vasopressina/farmacologia , Feminino , Fluorenos/química , Ligação de Hidrogênio , Micelas , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Ocitócicos/farmacologia , Fosfatidilgliceróis/química , Estrutura Secundária de Proteína , Ratos Wistar , Técnicas de Síntese em Fase Sólida/métodos , Útero/efeitos dos fármacos , Útero/fisiologia
19.
J Pept Sci ; 22(11-12): 723-730, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27862720

RESUMO

This is the study on the effect of opiorphin, sialorphin and their analogs on antitumor activity. We demonstrated that conjugation of opiorphin and sialorphin with a proapoptotic, antimicrobial peptide klak (klaklakklaklak) led to compounds (opio-klak and sialo-klak) that were cytotoxic against cancer cells (LN18, PC3, A549, HCT116 and B10-F16) in the MTT test. The conjugated analogs were designed to increase the effectiveness of the peptide. The opio-klak derivative was the most effective in the in vitro assays and led to a decrease in viability of cancer cells over time as compared with that of untreated controls. In contrast, treatment with either the untargeted klak peptide or opiorphin as a negative control led to a negligible loss in viability. Antitumor effect of the opio-klak was also observed in vivo in murine melanoma tumor-bearing mice. Cessation of peptide administration resulted in tumor regrowth. Our results are seemingly valuable for the development of opiorphin analogs with potential clinical applications. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Antineoplásicos/farmacologia , Melanoma Experimental/tratamento farmacológico , Oligopeptídeos/farmacologia , Precursores de Proteínas/farmacologia , Proteínas e Peptídeos Salivares/farmacologia , Neoplasias Cutâneas/tratamento farmacológico , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos/síntese química , Antineoplásicos/síntese química , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Oligopeptídeos/síntese química , Precursores de Proteínas/síntese química , Proteínas e Peptídeos Salivares/síntese química , Neoplasias Cutâneas/patologia , Técnicas de Síntese em Fase Sólida , Carga Tumoral/efeitos dos fármacos
20.
Postepy Biochem ; 62(4): 472-481, 2016.
Artigo em Polonês | MEDLINE | ID: mdl-28132449

RESUMO

A large group of secretory proteins involved in proper functioning of living organisms, is synthesized as inactive precursor molecules. Their biologically active forms are obtained as a result of numerous post-translational modifications. Some of these processes occur irreversibly, permanently changing the initial compound structure. An example of such modifications is catalytic treatment of proteins performed by proteolytic enzymes. Among five separate classes of these enzymes, the most numerous are serine proteases. Mammalian proprotein convertases (PCs), which include: furin, PC1/3, PC2, PACE4, PC4, PC5/6, PC7, PCSK9, SKI-1, represent serine endoproteases family. PCs play a key role in the activation of a number of precursor proteins causing formation of biologically active forms of enzymes, hormones, signaling molecules, transcription and growth factors. This article summarizes current state of knowledge on biosynthesis, structure and substrate specificity of PCs, identifies the relationship between location and intracellular activity of these enzymes, and their physiological functions in mammals.


Assuntos
Pró-Proteína Convertases/fisiologia , Animais , Humanos , Pró-Proteína Convertases/metabolismo , Conformação Proteica , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA