Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Proc Natl Acad Sci U S A ; 111(4): 1580-5, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24434552

RESUMO

The M2-1 protein of the important pathogen human respiratory syncytial virus is a zinc-binding transcription antiterminator that is essential for viral gene expression. We present the crystal structure of full-length M2-1 protein in its native tetrameric form at a resolution of 2.5 Å. The structure reveals that M2-1 forms a disk-like assembly with tetramerization driven by a long helix forming a four-helix bundle at its center, further stabilized by contact between the zinc-binding domain and adjacent protomers. The tetramerization helix is linked to a core domain responsible for RNA binding activity by a flexible region on which lie two functionally critical serine residues that are phosphorylated during infection. The crystal structure of a phosphomimetic M2-1 variant revealed altered charge density surrounding this flexible region although its position was unaffected. Structure-guided mutagenesis identified residues that contributed to RNA binding and antitermination activity, revealing a strong correlation between these two activities, and further defining the role of phosphorylation in M2-1 antitermination activity. The data we present here identify surfaces critical for M2-1 function that may be targeted by antiviral compounds.


Assuntos
Vírus Sinciciais Respiratórios/metabolismo , Proteínas Virais/química , Biopolímeros/metabolismo , Cristalografia por Raios X , Humanos , Ressonância Magnética Nuclear Biomolecular , Fosforilação , Conformação Proteica , RNA/metabolismo , Proteínas Virais/metabolismo
2.
High Throughput ; 7(4)2018 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-30332776

RESUMO

Meningitis is commonly caused by infection with a variety of bacterial or viral pathogens. Acute bacterial meningitis (ABM) can cause severe disease, which can progress rapidly to a critical life-threatening condition. Rapid diagnosis of ABM is critical, as this is most commonly associated with severe sequelae with associated high mortality and morbidity rates compared to viral meningitis, which is less severe and self-limiting. We have designed a microarray for detection and diagnosis of ABM. This has been validated using randomly amplified DNA targets (RADT), comparing buffers with or without formamide, in glass slide format or on the Alere ArrayTubeTM (Alere Technologies GmbH) microarray platform. Pathogen-specific signals were observed using purified bacterial nucleic acids and to a lesser extent using patient cerebral spinal fluid (CSF) samples, with some technical issues observed using RADT and glass slides. Repurposing the array onto the Alere ArrayTubeTM platform and using a targeted amplification system increased specific and reduced nonspecific hybridization signals using both pathogen nucleic and patient CSF DNA targets, better revealing pathogen-specific signals although sensitivity was still reduced in the latter. This diagnostic microarray is useful as a laboratory diagnostic tool for species and strain designation for ABM, rather than for primary diagnosis.

3.
PLoS One ; 13(9): e0202675, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30192789

RESUMO

Seasonal influenza virus infections cause yearly epidemics which are the source of a significant public health burden worldwide. The ferret model for human influenza A virus (IAV) is widely used and has several advantages over other animal models such as comparable symptomology, similar receptor distribution in the respiratory tract to humans and the ability to be infected with human isolates without the need for adaptation. However, a major disadvantage of the model has been a paucity of reagents for the evaluation of the cellular immune response. Investigation of T-cell mediated immunity in ferrets is crucial to vaccine development and efficacy studies. In this study we have used commercially produced antibodies to ferret interferon gamma (IFN-γ) allowing us to reliably measure influenza-specific IFN-γ as a marker of the cellular immune response using both enzyme-linked immunospot (ELISpot) and enzyme-linked immunosorbent (ELISA) techniques. Here we demonstrate the application of these tools to evaluate cellular immunity in ferrets infected with clinically relevant seasonal H1N1 and H3N2 IAV subtypes at equivalent doses. Using small heparinised blood samples we were able to observe the longitudinal influenza-specific IFN-γ responses of ferrets infected with both seasonal subtypes of IAV and found a notable increase in influenza-specific IFN-γ responses in circulating peripheral blood within 8 days post-infection. Both seasonal strains caused a well-defined pattern of influenza-specific IFN-γ responses in infected ferrets when compared to naïve animals. Additionally, we found that while the influenza specific IFN-γ responses found in peripheral circulating blood were comparable between subtypes, the influenza specific IFN-γ responses found in lung lymphocytes significantly differed. Our results suggest that there is a distinct difference between the ability of the two seasonal influenza strains to establish an infection in the lung of ferrets associated with distinct signatures of acquired immunity.


Assuntos
Furões/imunologia , Furões/virologia , Imunidade Celular , Vírus da Influenza A Subtipo H1N1/fisiologia , Vírus da Influenza A Subtipo H3N2/fisiologia , Pulmão/imunologia , Pulmão/virologia , Animais , Relação Dose-Resposta Imunológica , Humanos , Interferon gama/biossíntese , Pulmão/metabolismo , Especificidade da Espécie
4.
Philos Trans R Soc Lond B Biol Sci ; 372(1721)2017 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-28396470

RESUMO

As part of the UK response to the 2013-2016 Ebola virus disease (EVD) epidemic in West Africa, Public Health England (PHE) were tasked with establishing three field Ebola virus (EBOV) diagnostic laboratories in Sierra Leone by the UK Department for International Development (DFID). These provided diagnostic support to the Ebola Treatment Centre (ETC) facilities located in Kerry Town, Makeni and Port Loko. The Novel and Dangerous Pathogens (NADP) Training group at PHE, Porton Down, designed and implemented a pre-deployment Ebola diagnostic laboratory training programme for UK volunteer scientists being deployed to the PHE EVD laboratories. Here, we describe the training, workflow and capabilities of these field laboratories for use in response to disease epidemics and in epidemiological surveillance. We discuss the training outcomes, the laboratory outputs, lessons learned and the legacy value of the support provided. We hope this information will assist in the recruitment and training of staff for future responses and in the design and implementation of rapid deployment diagnostic field laboratories for future outbreaks of high consequence pathogens.This article is part of the themed issue 'The 2013-2016 West African Ebola epidemic: data, decision-making and disease control'.


Assuntos
Ebolavirus/fisiologia , Doença pelo Vírus Ebola/prevenção & controle , Saúde Pública/educação , Inglaterra , Humanos , Laboratórios/organização & administração , Serra Leoa
5.
PLoS One ; 11(6): e0157887, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27311020

RESUMO

Non-human primates are the animals closest to humans for use in influenza A virus challenge studies, in terms of their phylogenetic relatedness, physiology and immune systems. Previous studies have shown that cynomolgus macaques (Macaca fascicularis) are permissive for infection with H1N1pdm influenza virus. These studies have typically used combined challenge routes, with the majority being intra-tracheal delivery, and high doses of virus (> 107 infectious units). This paper describes the outcome of novel challenge routes (inhaled aerosol, intra-nasal instillation) and low to moderate doses (103 to 106 plaque forming units) of H1N1pdm virus in cynomolgus macaques. Evidence of virus replication and sero-conversion were detected in all four challenge groups, although the disease was sub-clinical. Intra-nasal challenge led to an infection confined to the nasal cavity. A low dose (103 plaque forming units) did not lead to detectable infectious virus shedding, but a 1000-fold higher dose led to virus shedding in all intra-nasal challenged animals. In contrast, aerosol and intra-tracheal challenge routes led to infections throughout the respiratory tract, although shedding from the nasal cavity was less reproducible between animals compared to the high-dose intra-nasal challenge group. Intra-tracheal and aerosol challenges induced a transient lymphopaenia, similar to that observed in influenza-infected humans, and greater virus-specific cellular immune responses in the blood were observed in these groups in comparison to the intra-nasal challenge groups. Activation of lung macrophages and innate immune response genes was detected at days 5 to 7 post-challenge. The kinetics of infection, both virological and immunological, were broadly in line with human influenza A virus infections. These more authentic infection models will be valuable in the determination of anti-influenza efficacy of novel entities against less severe (and thus more common) influenza infections.


Assuntos
Vírus da Influenza A Subtipo H1N1/imunologia , Linfócitos/virologia , Linfopenia/virologia , Macaca fascicularis/imunologia , Macrófagos Alveolares/virologia , Infecções por Orthomyxoviridae/virologia , Administração por Inalação , Administração Intranasal , Aerossóis/administração & dosagem , Animais , Líquido da Lavagem Broncoalveolar/citologia , Biologia Computacional , Modelos Animais de Doenças , Cães , Humanos , Interferon gama/biossíntese , Interferon gama/imunologia , Linfócitos/imunologia , Linfopenia/complicações , Linfopenia/imunologia , Linfopenia/patologia , Macaca fascicularis/virologia , Macrófagos Alveolares/imunologia , Células Madin Darby de Rim Canino , Masculino , Infecções por Orthomyxoviridae/complicações , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/patologia , Mapeamento de Interação de Proteínas , Proteoma/genética , Proteoma/imunologia , Índice de Gravidade de Doença , Carga Viral/imunologia , Replicação Viral/fisiologia , Eliminação de Partículas Virais/fisiologia
6.
Microb Genom ; 1(5): e000039, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28348823

RESUMO

There have been two anthrax cases affecting people that played and/or made animal-skin drums in the UK during the last 10 years, with single fatal occurrences in Scotland in 2006 and London in 2008. Investigations by the Health Protection Agency (now Public Health England) employing multi-locus-variable number tandem repeat analysis had previously linked the clinical cases to spores associated with animal skins and drums the patients had been in contact with. In this study, whole-genome sequencing of 23 Bacillus anthracis isolates harvested during the investigations was performed. High-quality draft assemblies of these genomes provided greater characterization of the B. anthracis strains present and placed them all upon a new branch of the global phylogeny. Although closely related, the clinical isolates from the two events, and another isolated from a drum-skin-associated case in New York in 2006, were distinct from each other. Multiple distinct genotypes were found during both investigations, implying either multiple contamination events or a single heterogeneous contamination. One environmental isolate from the Scottish incident was more closely related to London isolates than to the other Scottish isolates. As B. anthracis of this subgroup was present at both geographically and temporally distinct events, it may be more widespread at the source of contamination. All isolates were distinct from currently characterized West African strains, despite this being the likely origin of the drums and hides, therefore adding to our knowledge of B. anthracis diversity in the region.

7.
Vaccine ; 32(19): 2231-40, 2014 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-24631078

RESUMO

Currently, the need for cooled storage and the impossibility of terminal sterilisation are major drawbacks in vaccine manufacturing and distribution. To overcome current restrictions a preclinical safety and efficacy study was conducted to evaluate new influenza A vaccine formulations regarding thermal resistance, resistance against irradiation-mediated damage and storage stability. We evaluated the efficacy of novel antigen stabilizing and protecting solutions (SPS) to protect influenza A(H1N1)pdm09 split virus antigen under experimental conditions in vitro and in vivo. Original or SPS re-buffered vaccine (Pandemrix) was spray-dried and terminally sterilised by irradiation with 25 kGy (e-beam). Antigen integrity was monitored by SDS-PAGE, dynamic light scattering, size exclusion chromatography and functional haemagglutination assays. In vitro screening experiments revealed a number of highly stable compositions containing glycyrrhizinic acid (GA) and/or chitosan. The most stable composition was selected for storage tests and in vivo assessment of seroconversion in non-human primates (Macaca fascicularis) using a prime-boost strategy. Redispersed formulations with original adjuvant were administered intramuscularly. Storage data revealed high stability of protected vaccines at 4°C and 25°C, 60% relative humidity, for at least three months. Animals receiving original Pandemrix exhibited expected levels of seroconversion after 21 days (prime) and 48 days (boost) as assessed by haemagglutination inhibition and microneutralisation assays. Animals vaccinated with spray-dried and irradiated Pandemrix failed to exhibit seroconversion after 21 days whereas spray-dried and irradiated, SPS-protected vaccines elicited similar seroconversion levels to those vaccinated with original Pandemrix. Boost immunisation with SPS-protected vaccine resulted in a strong increase in seroconversion but had only minor effects in animals treated with non SPS-protected vaccine. In conclusion, utilising the SPS formulation technology, spray-drying and terminal sterilisation of influenza A(H1N1)pdm09 split virus vaccine is feasible. Findings indicate the potential utility of such formulated vaccines e.g. for needle-free vaccination routes and delivery to countries with uncertain cold chain facilities.


Assuntos
Vacinas contra Influenza/química , Vacinas contra Influenza/uso terapêutico , Infecções por Orthomyxoviridae/prevenção & controle , Potência de Vacina , Animais , Dessecação , Armazenamento de Medicamentos , Excipientes/química , Feminino , Ácido Glicirrízico/química , Testes de Inibição da Hemaglutinação , Vírus da Influenza A Subtipo H1N1 , Macaca fascicularis , Masculino , Manitol/química , Testes de Neutralização , Pós , Esterilização , Trealose/química
8.
PLoS One ; 9(4): e94090, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24709834

RESUMO

Ferrets are widely used to study human influenza virus infection. Their airway physiology and cell receptor distribution makes them ideal for the analysis of pathogenesis and virus transmission, and for testing the efficacy of anti-influenza interventions and vaccines. The 2009 pandemic influenza virus (H1N1pdm09) induces mild to moderate respiratory disease in infected ferrets, following inoculation with 106 plaque-forming units (pfu) of virus. We have demonstrated that reducing the challenge dose to 102 pfu delays the onset of clinical signs by 1 day, and results in a modest reduction in clinical signs, and a less rapid nasal cavity innate immune response. There was also a delay in virus production in the upper respiratory tract, this was up to 9-fold greater and virus shedding was prolonged. Progression of infection to the lower respiratory tract was not noticeably delayed by the reduction in virus challenge. A dose of 104 pfu gave an infection that was intermediate between those of the 106 pfu and 102 pfu doses. To address the hypothesis that using a more authentic low challenge dose would facilitate a more sensitive model for antiviral efficacy, we used the well-known neuraminidase inhibitor, oseltamivir. Oseltamivir-treated and untreated ferrets were challenged with high (106 pfu) and low (102 pfu) doses of influenza H1N1pdm09 virus. The low dose treated ferrets showed significant delays in innate immune response and virus shedding, delayed onset of pathological changes in the nasal cavity, and reduced pathological changes and viral RNA load in the lung, relative to untreated ferrets. Importantly, these observations were not seen in treated animals when the high dose challenge was used. In summary, low dose challenge gives a disease that more closely parallels the disease parameters of human influenza infection, and provides an improved pre-clinical model for the assessment of influenza therapeutics, and potentially, influenza vaccines.


Assuntos
Antivirais/uso terapêutico , Vírus da Influenza A Subtipo H1N1/imunologia , Infecções por Orthomyxoviridae/tratamento farmacológico , Oseltamivir/uso terapêutico , Eliminação de Partículas Virais , Animais , Modelos Animais de Doenças , Furões , Resultado do Tratamento
9.
Expert Rev Vaccines ; 9(3): 273-5, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20218855

RESUMO

The World Influenza conference comprised numerous plenary sessions and some panel discussions. The highlights of the meeting were the novel approaches to vaccine developments, particularly the use of live-attenuated viruses and baculovirus- or bacteriophage-derived virus-like particles as delivery vectors. Improvements in antigenicity have been demonstrated by thoroughly understanding the biology of the influenza virus; in particular, understanding which residues within the hemagglutinin protein correspond with plaque morphology in cell culture. At least two different bioinformatic approaches were discussed for the rationale design of peptide vaccines; these are naturally at a very early stage but data look promising. We were reminded by several presenters that although we were in the midst of a pandemic caused by the H1N1 swine-derived influenza strain, avian influenza strains were still circulating, and some were predicting more widespread infection with these strains in the future.


Assuntos
Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Animais , Bacteriófagos/genética , Bacteriófagos/imunologia , Baculoviridae/genética , Baculoviridae/imunologia , Aves , Europa (Continente) , Humanos , Influenza Aviária/epidemiologia , Influenza Humana/tratamento farmacológico , Orthomyxoviridae/genética , Orthomyxoviridae/patogenicidade , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia
10.
Expert Rev Vaccines ; 8(10): 1329-31, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19803754

RESUMO

The Phacilitate Vaccine Forum comprised numerous plenary sessions and panel discussions. The highlights of the meeting were the discussion of new adjuvant technologies able to specifically target the immune system to drive the response down the required route. Also of topical interest was a session on the challenges of the current influenza pandemic, and strategies for vaccination and control of the disease. Finally, the session covering vaccines for tropical and emerging infectious diseases highlighted some of the niche vaccines that are being developed, in particular those for dengue and West Nile viruses, which show great promise. In addition to scientific promise, the value proposition for vaccine development in a risk-averse economy was outlined, citing expected growth in the worldwide market of more than US$25 billion within 5 years. This proposition was supported by the overviews of disposable and 'flex factory' manufacturing technologies, providing cost and time efficiencies in product development, which are especially critical for the emerging markets.


Assuntos
Adjuvantes Imunológicos/uso terapêutico , Surtos de Doenças/prevenção & controle , Vacinas/administração & dosagem , Defesa Civil , Desenho de Fármacos , Indústria Farmacêutica/economia , Humanos , Vacinas contra Influenza/administração & dosagem , Vacinas/economia , Vacinas/provisão & distribuição
11.
PLoS One ; 2(4): e352, 2007 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-17406676

RESUMO

BACKGROUND: Francisella tularensis causes tularaemia, a life-threatening zoonosis, and has potential as a biowarfare agent. F. tularensis subsp. tularensis, which causes the most severe form of tularaemia, is usually confined to North America. However, a handful of isolates from this subspecies was obtained in the 1980s from ticks and mites from Slovakia and Austria. Our aim was to uncover the origins of these enigmatic European isolates. METHODOLOGY/PRINCIPAL FINDINGS: We determined the complete genome sequence of FSC198, a European isolate of F. tularensis subsp. tularensis, by whole-genome shotgun sequencing and compared it to that of the North American laboratory strain Schu S4. Apparent differences between the two genomes were resolved by re-sequencing discrepant loci in both strains. We found that the genome of FSC198 is almost identical to that of Schu S4, with only eight SNPs and three VNTR differences between the two sequences. Sequencing of these loci in two other European isolates of F. tularensis subsp. tularensis confirmed that all three European isolates are also closely related to, but distinct from Schu S4. CONCLUSIONS/SIGNIFICANCE: The data presented here suggest that the Schu S4 laboratory strain is the most likely source of the European isolates of F. tularensis subsp. tularensis and indicate that anthropogenic activities, such as movement of strains or animal vectors, account for the presence of these isolates in Europe. Given the highly pathogenic nature of this subspecies, the possibility that it has become established wild in the heartland of Europe carries significant public health implications.


Assuntos
Francisella tularensis/genética , Genoma Bacteriano , Primers do DNA , Francisella tularensis/classificação , Reação em Cadeia da Polimerase , Especificidade da Espécie
12.
Mol Cell Probes ; 19(5): 349-57, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16144753

RESUMO

An oligonucleotide microarray system has been specifically designed to detect and differentiate Bacillus anthracis from other bacterial species present in clinical samples. The pilot-scale microarray initially incorporated probes to detect six common species of bacteria, which were fully evaluated. The microarray comprised long oligonucleotides (50--70-mer) designed to hybridise with the variable regions of the 16S rRNA genes. Probes which hybridised to virulence genes were also incorporated; for B. anthracis, these initially included the pag, lef, cap and vrrA (for partial genotyping) genes. Hybridisation conditions were initially optimised to be run using 5 x SSC, 0.1% SDS, 50 degrees C for 16 h. The detection limits of the microarray were determined under these conditions by titration of chromosomal DNA and unlabelled amplicons followed by hybridisation to determine the levels of sensitivity that could be obtained with the microarray. Two different amplification methodologies were also compared-specific-primer based PCR and random PCR (with the labelling stage incorporated). Higher sensitivity was obtained using specific PCR primers, however, since one of the desired outcomes of a microarray-based detection system was the high discrimination that it offered, random amplification and labelling was used as the amplification method of choice. The length of hybridisation was investigated using a time-course, and 1--2h was found to give optimal and higher signals than 16 h incubation. These results indicate that microarray technology can be employed in a diagnostic environment and moreover, results may be obtained in a similar time-scale to a standard PCR reaction, but with the advantage that no a priori knowledge of the infectious agent is required for detection.


Assuntos
Bacillus anthracis/genética , DNA Bacteriano/análise , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Testes Sorológicos/métodos , Sondas de Oligonucleotídeos/genética , Sondas de Oligonucleotídeos/metabolismo , Projetos Piloto , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA