Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Vis ; 24(8): 10, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39167394

RESUMO

The occipital place area (OPA) is a scene-selective region on the lateral surface of human occipitotemporal cortex that spatially overlaps multiple visual field maps, as well as portions of cortex that are not currently defined as retinotopic. Here we combined population receptive field modeling and responses to scenes in a representational similarity analysis (RSA) framework to test the prediction that the OPA's visual field map divisions contribute uniquely to the overall pattern of scene selectivity within the OPA. Consistent with this prediction, the patterns of response to a set of complex scenes were heterogeneous between maps. To explain this heterogeneity, we tested the explanatory power of seven candidate models using RSA. These models spanned different scene dimensions (Content, Expanse, Distance), low- and high-level visual features, and navigational affordances. None of the tested models could account for the variation in scene response observed between the OPA's visual field maps. However, the heterogeneity in scene response was correlated with the differences in retinotopic profiles across maps. These data highlight the need to carefully examine the relationship between regions defined as category-selective and the underlying retinotopy, and they suggest that, in the case of the OPA, it may not be appropriate to conceptualize it as a single scene-selective region.


Assuntos
Lobo Occipital , Estimulação Luminosa , Campos Visuais , Humanos , Campos Visuais/fisiologia , Lobo Occipital/fisiologia , Masculino , Adulto , Estimulação Luminosa/métodos , Feminino , Mapeamento Encefálico/métodos , Retina/fisiologia , Adulto Jovem , Vias Visuais/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Modelos Neurológicos
2.
J Neurosci ; 41(11): 2382-2392, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33500275

RESUMO

The initial encoding of visual information primarily from the contralateral visual field is a fundamental organizing principle of the primate visual system. Recently, the presence of such retinotopic sensitivity has been shown to extend well beyond early visual cortex to regions not historically considered retinotopically sensitive. In particular, human scene-selective regions in parahippocampal and medial parietal cortex exhibit prominent biases for the contralateral visual field. Here, we used fMRI to test the hypothesis that the human hippocampus, which is thought to be anatomically connected with these scene-selective regions, would also exhibit a biased representation of contralateral visual space. First, population receptive field (pRF) mapping with scene stimuli revealed strong biases for the contralateral visual field in bilateral hippocampus. Second, the distribution of retinotopic sensitivity suggested a more prominent representation in anterior medial portions of the hippocampus. Finally, the contralateral bias was confirmed in independent data taken from the Human Connectome Project (HCP) initiative. The presence of contralateral biases in the hippocampus, a structure considered by many as the apex of the visual hierarchy, highlights the truly pervasive influence of retinotopy. Moreover, this finding has important implications for understanding how visual information relates to the allocentric global spatial representations known to be encoded therein.SIGNIFICANCE STATEMENT Retinotopic encoding of visual information is an organizing principle of visual cortex. Recent work demonstrates this sensitivity in structures far beyond early visual cortex, including those anatomically connected to the hippocampus. Here, using population receptive field (pRF) modeling in two independent sets of data we demonstrate a consistent bias for the contralateral visual field in bilateral hippocampus. Such a bias highlights the truly pervasive influence of retinotopy, with important implications for understanding how the presence of retinotopy relates to more allocentric spatial representations.


Assuntos
Hipocampo/fisiologia , Percepção Espacial/fisiologia , Percepção Visual/fisiologia , Adulto , Mapeamento Encefálico/métodos , Conectoma , Feminino , Lateralidade Funcional , Corpos Geniculados/fisiologia , Hipocampo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Giro Para-Hipocampal/fisiologia , Estimulação Luminosa , Retina/fisiologia , Campos Visuais , Adulto Jovem
3.
J Neurosci ; 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099511

RESUMO

The map of category-selectivity in human ventral temporal cortex (VTC) provides organizational constraints to models of object recognition. One important principle is lateral-medial response biases to stimuli that are typically viewed in the center or periphery of the visual field. However, little is known about the relative temporal dynamics and location of regions that respond preferentially to stimulus classes that are centrally viewed, like the face- and word-processing networks. Here, word- and face-selective regions within VTC were mapped using intracranial recordings from 36 patients. Partially overlapping, but also anatomically dissociable patches of face- and word-selectivity were found in VTC. In addition to canonical word-selective regions along the left posterior occipitotemporal sulcus, selectivity was also located medial and anterior to face-selective regions on the fusiform gyrus at the group level and within individual male and female subjects. These regions were replicated using 7 Tesla fMRI in healthy subjects. Left hemisphere word-selective regions preceded right hemisphere responses by 125 ms, potentially reflecting the left hemisphere bias for language; with no hemispheric difference in face-selective response latency. Word-selective regions along the posterior fusiform responded first, then spread medially and laterally, then anteriorally. Face-selective responses were first seen in posterior fusiform regions bilaterally, then proceeded anteriorally from there. For both words and faces, the relative delay between regions was longer than would be predicted by purely feedforward models of visual processing. The distinct time-courses of responses across these regions, and between hemispheres, suggest a complex and dynamic functional circuit supports face and word perception.SIGNIFICANCE STATEMENT:Representations of visual objects in the human brain have been shown to be organized by several principles, including whether those objects tend to be viewed centrally or peripherally in the visual field. However, it remains unclear how regions that process objects that are viewed centrally, like words and faces, are organized relative to one another. Here, invasive and non-invasive neuroimaging suggests there is a mosaic of regions in ventral temporal cortex that respond selectively to either words or faces. These regions display differences in the strength and timing of their responses, both within and between brain hemispheres, suggesting they play different roles in perception. These results illuminate extended, bilateral, and dynamic brain pathways that support face perception and reading.

4.
Neuroimage ; 264: 119723, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36328274

RESUMO

fMRI is an indispensable tool for neuroscience investigation, but this technique is limited by multiple sources of physiological and measurement noise. These noise sources are particularly problematic for analysis techniques that require high signal-to-noise ratio for stable model fitting, such as voxel-wise modeling. Multi-echo data acquisition in combination with echo-time dependent ICA denoising (ME-ICA) represents one promising strategy to mitigate physiological and hardware-related noise sources as well as motion-related artifacts. However, most studies employing ME-ICA to date are resting-state fMRI studies, and therefore we have a limited understanding of the impact of ME-ICA on complex task or model-based fMRI paradigms. Here, we addressed this knowledge gap by comparing data quality and model fitting performance of data acquired during a visual population receptive field (pRF) mapping (N = 13 participants) experiment after applying one of three preprocessing procedures: ME-ICA, optimally combined multi-echo data without ICA-denoising, and typical single echo processing. As expected, multi-echo fMRI improved temporal signal-to-noise compared to single echo fMRI, with ME-ICA amplifying the improvement compared to optimal combination alone. However, unexpectedly, this boost in temporal signal-to-noise did not directly translate to improved model fitting performance: compared to single echo acquisition, model fitting was only improved after ICA-denoising. Specifically, compared to single echo acquisition, ME-ICA resulted in improved variance explained by our pRF model throughout the visual system, including anterior regions of the temporal and parietal lobes where SNR is typically low, while optimal combination without ICA did not. ME-ICA also improved reliability of parameter estimates compared to single echo and optimally combined multi-echo data without ICA-denoising. Collectively, these results suggest that ME-ICA is effective for denoising task-based fMRI data for modeling analyzes and maintains the integrity of the original data. Therefore, ME-ICA may be beneficial for complex fMRI experiments, including voxel-wise modeling and naturalistic paradigms.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Reprodutibilidade dos Testes , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Artefatos , Mapeamento Encefálico/métodos
5.
Neuroimage ; 230: 117790, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33497776

RESUMO

Human visual cortex contains three scene-selective regions in the lateral, medial and ventral cortex, termed the occipital place area (OPA), medial place area (MPA) and parahippocampal place area (PPA). Using functional magnetic resonance imaging (fMRI), all three regions respond more strongly when viewing visual scenes compared with isolated objects or faces. To determine how these regions are functionally and causally connected, we applied transcranial magnetic stimulation to OPA and measured fMRI responses before and after stimulation, using a theta-burst paradigm (TBS). To test for stimulus category-selectivity, we presented a range of visual categories (scenes, buildings, objects, faces). To test for specificity of any effects to TBS of OPA we employed two control conditions: Sham, with no TBS stimulation, and an active TBS-control with TBS to a proximal face-selective cortical region (occipital face area, or OFA). We predicted that TBS to OPA (but not OFA) would lead to decreased responses to scenes and buildings (but not other categories) in other scene-selective cortical regions. Across both ROI and whole-volume analyses, we observed decreased responses to scenes in PPA as a result of TBS. However, these effects were neither category specific, with decreased responses to all stimulus categories, nor limited to scene-selective regions, with decreases also observed in face-selective fusiform face area (FFA). Furthermore, similar effects were observed with TBS to OFA, thus effects were not specific to the stimulation site in the lateral occipital cortex. Whilst these data are suggestive of a causal, but non-specific relationship between lateral occipital and ventral temporal cortex, we discuss several factors that could have underpinned this result, such as the differences between TBS and online TMS, the role of anatomical distance between stimulated regions and how TMS effects are operationalised. Furthermore, our findings highlight the importance of active control conditions in brain stimulation experiments to accurately assess functional and causal connectivity between specific brain regions.


Assuntos
Lobo Occipital/metabolismo , Consumo de Oxigênio/fisiologia , Estimulação Luminosa/métodos , Lobo Temporal/metabolismo , Ritmo Teta/fisiologia , Estimulação Magnética Transcraniana/métodos , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Lobo Occipital/diagnóstico por imagem , Tempo de Reação/fisiologia , Lobo Temporal/diagnóstico por imagem , Adulto Jovem
6.
J Neurosci ; 39(4): 705-717, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30504281

RESUMO

Human retrosplenial complex (RSC), located in medial parietal cortex, has been implicated in numerous cognitive functions, including scene perception, spatial navigation, and autobiographical memory retrieval. Recently, a posterior-anterior distinction within RSC was proposed, such that posterior aspects process scene-related visual information (constituting a medial place area [MPA]), whereas anterior aspects process information that is vividly retrieved from memory, thereby supporting remembering and potentially navigation. Here, we tested this proposed distinction in a single group of participants (both male and female) using fMRI with both perceptual and mnemonic tasks. After completing a resting-state scan, participants performed a task that required constructing scenes from memory and completed a scene selectivity localizer task. We tested directly perceptual and mnemonic responses in MPA and an anterior, connectivity-defined region (CON), which showed strong functional connectivity with anterior parahippocampal place area. A double dissociation was observed, such that CON was more strongly activated during scene construction than was MPA, whereas MPA was more perceptually responsive than CON. Further, peak responses from the scene construction task were anterior to perceptual peaks in all but 1 participant and hemisphere. Finally, through analyses of the posterior-anterior response profiles, we identify the fundus of the parieto-occipital sulcus as a potential location for the crossover from perceptual to mnemonic representations and highlight a potential left-hemisphere advantage for mnemonic representations. Collectively, our results support a distinction between posterior and anterior aspects of the RSC, suggesting that more specific functional-anatomic terms should be used in its place in future work.SIGNIFICANCE STATEMENT The retrosplenial complex (RSC) has been implicated in vision, spatial cognition, and memory. We previously speculated on a potential posterior-anterior distinction within RSC for scene perception and memory-based scene construction/navigation. Here, we tested this distinction through a combination of resting-state, perceptual, and mnemonic task data. Consistent with our predictions, we demonstrate that perceptual responses peak consistently posterior of those elicited by memory-based scene construction within the broader RSC. Further, we highlight (1) the fundus of the parieto-occipital sulcus as a landmark for the transition between these representations, (2) the anterior bank of parieto-occipital sulcus as the point of maximal separation between these representations, and (3) identify a potential hemispheric asymmetry in mnemonic representations. These data support functional dissociations within RSC.


Assuntos
Memória/fisiologia , Lobo Parietal/fisiologia , Percepção Espacial/fisiologia , Adulto , Mapeamento Encefálico , Feminino , Lateralidade Funcional/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/fisiologia , Lobo Occipital/fisiologia , Giro Para-Hipocampal/fisiologia , Lobo Parietal/anatomia & histologia , Lobo Parietal/diagnóstico por imagem , Adulto Jovem
7.
J Neurosci ; 38(9): 2294-2303, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29382711

RESUMO

A fundamental feature of cortical visual processing is the separation of visual processing for the upper and lower visual fields. In early visual cortex (EVC), the upper visual field is processed ventrally, with the lower visual field processed dorsally. This distinction persists into several category-selective regions of occipitotemporal cortex, with ventral and lateral scene-, face-, and object-selective regions biased for the upper and lower visual fields, respectively. Here, using an elliptical population receptive field (pRF) model, we systematically tested the sampling of visual space within ventral and dorsal divisions of human EVC in both male and female participants. We found that (1) pRFs tend to be elliptical and oriented toward the fovea with distinct angular distributions for ventral and dorsal divisions of EVC, potentially reflecting a radial bias; and (2) pRFs in ventral areas were larger (∼1.5×) and more elliptical (∼1.2×) than those in dorsal areas. These differences potentially reflect a tendency for receptive fields in ventral temporal cortex to overlap the fovea with less emphasis on precise localization and isotropic representation of space compared with dorsal areas. Collectively, these findings suggest that ventral and dorsal divisions of EVC sample visual space differently, likely contributing to and/or stemming from the functional differentiation of visual processing observed in higher-level regions of the ventral and dorsal cortical visual pathways.SIGNIFICANCE STATEMENT The processing of visual information from the upper and lower visual fields is separated in visual cortex. Although ventral and dorsal divisions of early visual cortex (EVC) are commonly assumed to sample visual space equivalently, we demonstrate systematic differences using an elliptical population receptive field (pRF) model. Specifically, we demonstrate that (1) ventral and dorsal divisions of EVC exhibit diverging distributions of pRF angle, which are biased toward the fovea; and (2) ventral pRFs exhibit higher aspect ratios and cover larger areas than dorsal pRFs. These results suggest that ventral and dorsal divisions of EVC sample visual space differently and that such differential sampling likely contributes to different functional roles attributed to the ventral and dorsal pathways, such as object recognition and visually guided attention, respectively.


Assuntos
Córtex Visual/fisiologia , Percepção Visual/fisiologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino
8.
Neuroimage ; 189: 95-105, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30630080

RESUMO

Reward and punishment shape behavior, but the mechanisms underlying their effect on skill learning are not well understood. Here, we tested whether the functional connectivity of premotor cortex (PMC), a region known to be critical for learning of sequencing skills, is altered after training when reward or punishment is given during training. Resting-state fMRI was collected in two experiments before and after participants trained on either a serial reaction time task (SRTT; n = 36) or force-tracking task (FTT; n = 36) with reward, punishment, or control feedback. In each experiment, training-related change in PMC functional connectivity was compared across feedback groups. In both tasks, we found that reward and punishment differentially affected PMC functional connectivity. On the SRTT, participants trained with reward showed an increase in functional connectivity between PMC and cerebellum as well as PMC and striatum, while participants trained with punishment showed an increase in functional connectivity between PMC and medial temporal lobe connectivity. After training on the FTT, subjects trained with control and reward showed increases in PMC connectivity with parietal and temporal cortices after training, while subjects trained with punishment showed increased PMC connectivity with ventral striatum. While the results from the two experiments overlapped in some areas, including ventral pallidum, temporal lobe, and cerebellum, these regions showed diverging patterns of results across the two tasks for the different feedback conditions. These findings suggest that reward and punishment strongly influence spontaneous brain activity after training, and that the regions implicated depend on the task learned.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Córtex Motor/fisiologia , Destreza Motora/fisiologia , Rede Nervosa/fisiologia , Prática Psicológica , Punição , Recompensa , Aprendizagem Seriada/fisiologia , Adulto , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Consolidação da Memória/fisiologia , Córtex Motor/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Adulto Jovem
9.
Cereb Cortex ; 27(1): 1-10, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28365777

RESUMO

Two subdivisions of human V5/MT+: one located posteriorly (MT/TO-1) and the other more anteriorly (MST/TO-2) were identified in human participants using functional magnetic resonance imaging on the basis of their representations of the ipsilateral versus contralateral visual field. These subdivisions were then targeted for disruption by the application of repetitive transcranial magnetic stimulation (rTMS). The rTMS was delivered to cortical areas while participants performed direction discrimination tasks involving 3 different types of moving stimuli defined by the translational, radial, or rotational motion of dot patterns. For translational motion, performance was significantly reduced relative to baseline when rTMS was applied to both MT/TO-1 and MST/TO-2. For radial motion, there was a differential effect between MT/TO-1 and MST/TO-2, with only disruption of the latter area affecting performance. The rTMS failed to reveal a complete dissociation between MT/TO-1 and MST/TO-2 in terms of their contribution to the perception of rotational motion. On the basis of these results, MT/TO-1 and MST/TO-2 appear to be functionally distinct subdivisions of hV5/MT+. While both areas appear to be implicated in the processing of translational motion, only the anterior region (MST/TO-2) makes a causal contribution to the perception of radial motion.


Assuntos
Potenciais Evocados Visuais/fisiologia , Percepção de Movimento/fisiologia , Rede Nervosa/fisiologia , Análise e Desempenho de Tarefas , Córtex Visual/fisiologia , Campos Visuais/fisiologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estimulação Magnética Transcraniana , Adulto Jovem
10.
J Neurophysiol ; 117(6): 2209-2217, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28298300

RESUMO

Human neuropsychological and neuroimaging studies have raised the possibility that different attributes of optic flow stimuli, namely radial direction and the position of the focus of expansion (FOE), are processed within separate cortical areas. In the human brain, visual areas V5/MT+ and V3A have been proposed as integral to the analysis of these different attributes of optic flow stimuli. To establish direct causal relationships between neural activity in human (h)V5/MT+ and V3A and the perception of radial motion direction and FOE position, we used transcranial magnetic stimulation (TMS) to disrupt cortical activity in these areas while participants performed behavioral tasks dependent on these different aspects of optic flow stimuli. The cortical regions of interest were identified in seven human participants using standard functional MRI retinotopic mapping techniques and functional localizers. TMS to area V3A was found to disrupt FOE positional judgments but not radial direction discrimination, whereas the application of TMS to an anterior subdivision of hV5/MT+, MST/TO-2 produced the reverse effects, disrupting radial direction discrimination but eliciting no effect on the FOE positional judgment task. This double dissociation demonstrates that FOE position and radial direction of optic flow stimuli are signaled independently by neural activity in areas hV5/MT+ and V3A.NEW & NOTEWORTHY Optic flow constitutes a biologically relevant visual cue as we move through any environment. With the use of neuroimaging and brain-stimulation techniques, this study demonstrates that separate human brain areas are involved in the analysis of the direction of radial motion and the focus of expansion in optic flow. This dissociation reveals the existence of separate processing pathways for the analysis of different attributes of optic flow that are important for the guidance of self-locomotion and object avoidance.


Assuntos
Fluxo Óptico/fisiologia , Córtex Visual/fisiologia , Adulto , Discriminação Psicológica/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Percepção de Movimento/fisiologia , Estimulação Luminosa , Psicofísica , Estimulação Magnética Transcraniana , Córtex Visual/diagnóstico por imagem , Adulto Jovem
11.
Cogn Neuropsychol ; 39(1-2): 85-87, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35337256
12.
J Vis ; 16(6): 14, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27105060

RESUMO

The organization of human lateral occipitotemporal cortex (lOTC) has been characterized largely according to two distinct principles: retinotopy and category-selectivity. Whereas category-selective regions were originally thought to exist beyond retinotopic maps, recent evidence highlights overlap. Here, we combined detailed mapping of retinotopy, using population receptive fields (pRF), and category-selectivity to examine and contrast the retinotopic profiles of scene- (occipital place area, OPA), face- (occipital face area, OFA) and object- (lateral occipital cortex, LO) selective regions of lOTC. We observe striking differences in the relationship each region has to underlying retinotopy. Whereas OPA overlapped multiple retinotopic maps (including V3A, V3B, LO1, and LO2), and LO overlapped two maps (LO1 and LO2), OFA overlapped almost none. There appears no simple consistent relationship between category-selectivity and retinotopic maps, meaning category-selective regions are not constrained spatially to retinotopic map borders consistently. The multiple maps that overlap OPA suggests it is likely not appropriate to conceptualize it as a single scene-selective region, whereas the inconsistency in any systematic map overlapping OFA suggests it may constitute a more uniform area. Beyond their relationship to retinotopy, all three regions evidenced strongly retinotopic voxels, with pRFs exhibiting a significant bias towards the contralateral lower visual field, despite differences in pRF size, contributing to an emerging literature suggesting this bias is present across much of lOTC. Taken together, these results suggest that whereas category-selective regions are not constrained to consistently contain ordered retinotopic maps, they nonetheless likely inherit retinotopic characteristics of the maps from which they draw information.


Assuntos
Face , Lobo Occipital/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Retina/fisiologia , Lobo Temporal/fisiologia , Adulto , Mapeamento Encefálico/métodos , Formação de Conceito , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Campos Visuais/fisiologia , Vias Visuais/fisiologia
13.
bioRxiv ; 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39386498

RESUMO

The hippocampus is thought to coordinate sensory-mnemonic information streams in the brain, representing both the apex of the visual processing hierarchy and the central hub of mnemonic processing. Yet, the mechanisms underlying sensory-mnemonic interactions in the hippocampus are poorly understood. Recent work in cortex suggests that a retinotopic code - typically thought to be exclusive to visual areas - may help organize internal and external information at the cortical apex via opponent interactions. Here, we leverage high-resolution 7T functional MRI to test whether a bivalent retinotopic code structures activity within the human hippocampus and mediates hippocampal-cortical interactions. In seven densely-sampled individuals, we defined the retinotopic preferences of individual voxels within the hippocampus and cortex during a visual mapping task, as well as their functional connectivity during independent runs of resting-state fixation. Our findings reveal a robust retinotopic code in the hippocampus, characterized by stable population receptive fields (pRFs) with consistent preferred visual field locations across experimental runs. Notably, this retinotopic code is comprised of roughly equal proportions of positive and negative pRFs, aligning with the hypothesized role of negative pRFs in mnemonic processing. Finally, the signed amplitude of hippocampal pRFs predicts functional connectivity between retinotopic hippocampal and cortical voxels. Taken together, these results suggest that retinotopic coding may scaffold internal mnemonic and external sensory information processing within the hippocampus, and across hippocampal-cortical interactions.

14.
bioRxiv ; 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39386717

RESUMO

How the human brain integrates internally- (i.e., mnemonic) and externally-oriented (i.e., perceptual) information is a long-standing puzzle in neuroscience. In particular, the internally-oriented networks like the default network (DN) and externally-oriented dorsal attention networks (dATNs) are thought to be globally competitive, which implies DN disengagement during cognitive states that drive the dATNs and vice versa. If these networks are globally opposed, how is internal and external information integrated across these networks? Here, using precision neuroimaging methods, we show that these internal/external networks are not as dissociated as traditionally thought. Using densely sampled high-resolution fMRI data, we defined individualized whole-brain networks from participants at rest, and the retinotopic preferences of individual voxels within these networks during an independent visual mapping task. We show that while the overall network activity between the DN and dATN is opponent at rest, a latent retinotopic code structures this global opponency. Specifically, the anti-correlation (i.e., global opponency) between the DN and dATN at rest is structured at the voxel-level by each voxel's retinotopic preferences, such that the spontaneous activity of voxels preferring similar visual field locations are more anti-correlated than those that prefer different visual field locations. Further, this retinotopic scaffold integrates with the domain-specific preferences of subregions within these networks, enabling efficient, parallel processing of retinotopic and domain-specific information. Thus, DN and dATN dynamics are opponent, but not competitive: voxel-scale anti-correlation between these networks preserves and encodes information in the negative BOLD responses, even in the absence of visual input or task demands. These findings suggest that retinotopic coding may serve as a fundamental organizing principle for brain-wide communication, providing a new framework for understanding how the brain balances and integrates internal cognition with external perception.

15.
Nat Neurosci ; 27(2): 339-347, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38168931

RESUMO

Conventional views of brain organization suggest that regions at the top of the cortical hierarchy processes internally oriented information using an abstract amodal neural code. Despite this, recent reports have described the presence of retinotopic coding at the cortical apex, including the default mode network. What is the functional role of retinotopic coding atop the cortical hierarchy? Here we report that retinotopic coding structures interactions between internally oriented (mnemonic) and externally oriented (perceptual) brain areas. Using functional magnetic resonance imaging, we observed robust inverted (negative) retinotopic coding in category-selective memory areas at the cortical apex, which is functionally linked to the classic (positive) retinotopic coding in category-selective perceptual areas in high-level visual cortex. These functionally linked retinotopic populations in mnemonic and perceptual areas exhibit spatially specific opponent responses during both bottom-up perception and top-down recall, suggesting that these areas are interlocked in a mutually inhibitory dynamic. These results show that retinotopic coding structures interactions between perceptual and mnemonic neural systems, providing a scaffold for their dynamic interaction.


Assuntos
Mapeamento Encefálico , Córtex Visual , Mapeamento Encefálico/métodos , Retina/fisiologia , Córtex Visual/fisiologia , Encéfalo , Imageamento por Ressonância Magnética/métodos , Estimulação Luminosa , Percepção , Percepção Visual/fisiologia
16.
bioRxiv ; 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37292758

RESUMO

Conventional views of brain organization suggest that the cortical apex processes internally-oriented information using an abstract, amodal neural code. Yet, recent reports have described the presence of retinotopic coding at the cortical apex, including the default mode network. What is the functional role of retinotopic coding atop the cortical hierarchy? Here, we report that retinotopic coding structures interactions between internally-oriented (mnemonic) and externally-oriented (perceptual) brain areas. Using fMRI, we observed robust, inverted (negative) retinotopic coding in category-selective memory areas at the cortical apex, which is functionally linked to the classic (positive) retinotopic coding in category-selective perceptual areas in high-level visual cortex. Specifically, these functionally-linked retinotopic populations in mnemonic and perceptual areas exhibit spatially-specific opponent responses during both bottom-up perception and top-down recall, suggesting that these areas are interlocked in a mutually-inhibitory dynamic. Together, these results show that retinotopic coding structures interactions between perceptual and mnemonic neural systems, thereby scaffolding their dynamic interaction.

17.
Neuroimage Clin ; 38: 103384, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37023490

RESUMO

Choroideremia (CHM) is an X-linked recessive form of hereditary retinal degeneration, which preserves only small islands of central retinal tissue. Previously, we demonstrated the relationship between central vision and structure and population receptive fields (pRF) using functional magnetic resonance imaging (fMRI) in untreated CHM subjects. Here, we replicate and extend this work, providing a more in-depth analysis of the visual responses in a cohort of CHM subjects who participated in a retinal gene therapy clinical trial. fMRI was conducted in six CHM subjects and six age-matched healthy controls (HC's) while they viewed drifting contrast pattern stimuli monocularly. A single ∼3-minute fMRI run was collected for each eye. Participants also underwent ophthalmic evaluations of visual acuity and static automatic perimetry (SAP). Consistent with our previous report, a single âˆ¼ 3 min fMRI run accurately characterized ophthalmic evaluations of visual function in most CHM subjects. In-depth analyses of the cortical distribution of pRF responses revealed that the motion-selective regions V5/MT and MST appear resistant to progressive retinal degenerations in CHM subjects. This effect was restricted to V5/MT and MST and was not present in either primary visual cortex (V1), motion-selective V3A or regions within the ventral visual pathway. Motion-selective areas V5/MT and MST appear to be resistant to the continuous detrimental impact of CHM. Such resilience appears selective to these areas and may be mediated by independent retina-V5/MT anatomical connections that bypass V1. We did not observe any significant impact of gene therapy.


Assuntos
Coroideremia , Percepção de Movimento , Humanos , Coroideremia/terapia , Imageamento por Ressonância Magnética , Percepção de Movimento/fisiologia , Retina/diagnóstico por imagem , Acuidade Visual
18.
Brain Struct Funct ; 227(4): 1405-1421, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34727232

RESUMO

Human visual cortex is organised broadly according to two major principles: retinotopy (the spatial mapping of the retina in cortex) and category-selectivity (preferential responses to specific categories of stimuli). Historically, these principles were considered anatomically separate, with retinotopy restricted to the occipital cortex and category-selectivity emerging in the lateral-occipital and ventral-temporal cortex. However, recent studies show that category-selective regions exhibit systematic retinotopic biases, for example exhibiting stronger activation for stimuli presented in the contra- compared to the ipsilateral visual field. It is unclear, however, whether responses within category-selective regions are more strongly driven by retinotopic location or by category preference, and if there are systematic differences between category-selective regions in the relative strengths of these preferences. Here, we directly compare contralateral and category preferences by measuring fMRI responses to scene and face stimuli presented in the left or right visual field and computing two bias indices: a contralateral bias (response to the contralateral minus ipsilateral visual field) and a face/scene bias (preferred response to scenes compared to faces, or vice versa). We compare these biases within and between scene- and face-selective regions and across the lateral and ventral surfaces of the visual cortex more broadly. We find an interaction between surface and bias: lateral surface regions show a stronger contralateral than face/scene bias, whilst ventral surface regions show the opposite. These effects are robust across and within subjects, and appear to reflect large-scale, smoothly varying gradients. Together, these findings support distinct functional roles for the lateral and ventral visual cortex in terms of the relative importance of the spatial location of stimuli during visual information processing.


Assuntos
Reconhecimento Visual de Modelos , Córtex Visual , Viés , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética , Lobo Occipital/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Estimulação Luminosa , Lobo Temporal/fisiologia , Córtex Visual/fisiologia
19.
Cortex ; 155: 277-286, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36054997

RESUMO

Braille reading and other tactile discrimination tasks recruit the visual cortex of both blind and normally sighted individuals undergoing short-term visual deprivation. Prior functional magnetic resonance imaging (fMRI) work in patient 'S', a visually impaired adult with the rare ability to read both highly magnified print visually and Braille by touch, found that foveal representations of S's visual cortex were recruited during tactile perception, whereas peripheral regions were recruited during visual perception. Here, we test the causal nature of tactile responses in the visual cortex of S by combining tactile and visual psychophysics with repetitive transcranial magnetic stimulation. First, we replicate the previous fMRI findings in S. Second, we demonstrate that transient disruption of S's foveal visual cortex has no measurable impact on S's tactile processing performance compared to that of healthy controls - a pattern not predicted by the fMRI results. Third, stimulation of foveal visual cortex maximally disrupted visual processing performance in both S and controls, suggesting the possibility of preserved visual processing within S's foveal representation. Finally, stimulation of somatosensory cortex induced the expected disruption to tactile processing performance in both S and controls. These data suggest that tactile responses in S's foveal representation reflect unmasking of latent connections between visual and somatosensory cortices and not behaviourally relevant cross-modal plasticity. Unlike studies in congenitally blind individuals, it is possible that the absence of complete visual loss in S has limited the degree of causally impactful cross-modal reorganisation.


Assuntos
Percepção do Tato , Baixa Visão , Córtex Visual , Adulto , Cegueira , Humanos , Imageamento por Ressonância Magnética , Leitura , Córtex Somatossensorial/fisiologia , Tato/fisiologia , Percepção do Tato/fisiologia , Córtex Visual/fisiologia
20.
Trends Cogn Sci ; 26(1): 81-96, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34799253

RESUMO

For more than 100 years we have known that the visual field is mapped onto the surface of visual cortex, imposing an inherently spatial reference frame on visual information processing. Recent studies highlight visuospatial coding not only throughout visual cortex, but also brain areas not typically considered visual. Such widespread access to visuospatial coding raises important questions about its role in wider cognitive functioning. Here, we synthesise these recent developments and propose that visuospatial coding scaffolds human cognition by providing a reference frame through which neural computations interface with environmental statistics and task demands via perception-action loops.


Assuntos
Percepção Espacial , Córtex Visual , Mapeamento Encefálico , Cognição , Humanos , Imageamento por Ressonância Magnética , Percepção Visual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA