Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Biochem ; 119(8): 6555-6565, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29388700

RESUMO

Recent studies have shown that exposure to fluoxetine treatment induces excessive production of ROS, and alters the antioxidant defense system in various tissues and cell types, mainly the liver. When fluoxetine is administered intraperitoneally, the drug rapidly reaches high concentrations in the liver, has potentially multiple toxic effects on energy metabolism in rat liver mitochondria. The aim of this study was to evaluate the effect of pharmacological treatment with fluoxetine during critical period for development on the mitochondrial bioenergetics and oxidative stress in liver of rat adult. To perform this study, the rat pups received Fx, or vehicle (Ct) from postnatal day 1 to postnatal day 21 (ie, during lactation period). We evaluated mitochondrial oxygen consumption, respiratory control ratio, ROS production, mitochondrial swelling by pore opening, oxidative stress biomarkers, and antioxidant defense in liver of rats at 60 days of age. Our studies have shown, that treatment with Fx during the lactation period resulted in reduced body mass gain, improvement of the mitochondrial respiratory capacity, induced higher mitochondrial resistance to calcium ion preventing the mitochondrial permeability transition pore opening, as well as decreased oxidative stress biomarkers, and increased the SH levels and enzymes antioxidant activities (SOD, CAT, GST) in liver of treated rats at 60 days of age. These findings suggest that pharmacological treatment with fluoxetine during critical period of development result in positive changes in liver of rats, as improvement of the mitochondrial bioenergetics and hepatic oxidative metabolism that persist in adulthood.


Assuntos
Fluoxetina/farmacologia , Fígado/metabolismo , Mitocôndrias Hepáticas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Animais , Cálcio/metabolismo , Ratos , Ratos Wistar
2.
J Trace Elem Med Biol ; 71: 126928, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35032836

RESUMO

BACKGROUND: Thimerosal (TM) is an organic mercury compound used as a preservative in many pharmacological inputs. Mercury toxicity is related to structural and functional changes in macromolecules such as hemoglobin (Hb) in erythrocytes (Ery). METHOD: Human Hb and Ery were used to evaluate O2 uptake based on the TM concentration, incubation time, and temperature. The influence of TM on the sulfhydryl content, production of reactive oxygen species (ROS), and membrane fragility was also evaluated. Raman spectra and atomic force microscopy (AFM) profiles for Ery in the presence and absence of TM were calculated, and docking studies were performed. RESULTS: At 37 °C, with 2.50 µM TM (higher concentration) and after 5 min of incubation in Hb and Ery, we observed a reduction in O2 uptake of up to 50 %, while HgCl2, which was used as a positive control, showed a reduction of at least 62 %. Total thiol assays in the presence of NEM (thiol blocker) quantified the preservation of almost 60 % of free SH in Ery. Based on the Raman spectrum profile from Ery-TM, structural differences in the porphyrinic ring and the membrane lipid content were confirmed. Finally, studies using AFM showed changes in the morphology and biomechanical properties of Ery. Theoretical studies confirmed these experimental results and showed that the cysteine (Cys) residues present in Hb are involved in the binding of TM. CONCLUSION: Our results show that TM binds to human Hb via free Cys residues, causing conformation changes and leading to harmful effects associated with O2 transport.


Assuntos
Compostos de Mercúrio , Mercúrio , Humanos , Timerosal/farmacologia , Timerosal/metabolismo , Eritrócitos/metabolismo , Cisteína , Hemoglobinas , Compostos de Sulfidrila/metabolismo
3.
Cells ; 8(4)2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30974751

RESUMO

The nutritional transition that the western population has undergone is increasingly associated with chronic metabolic diseases. In this work, we evaluated a diet rich in saturated fatty acids (hyperlipidic, HL) after weaning of the offspring rats submitted to maternal protein restriction on the hepatic mitochondrial bioenergetics. Wistar rats were mated and during gestation and lactation, mothers received control diets (NP, normal protein content 17%) or low protein (LP, 8% protein). After weaning, rats received either NL (normolipidic) or HL (+59% SFA) diets up to 90 days of life. It was verified that all respiratory states of hepatic mitochondria showed a reduction in the LP group submitted to the post-weaning HL diet. This group also presented greater mitochondrial swelling compared to controls, potentiated after Ca2+ addition and prevented in the presence of EGTA (calcium chelator) and cyclosporin A (mitochondrial permeability transition pore inhibitor). There was also an increase in liver protein oxidation and lipid peroxidation and reduction in catalase and glutathione peroxidase activities in the LP group fed HL diet after weaning. Our data suggest that adult rats subjected to maternal protein restriction were more susceptible to hepatic mitochondrial damage caused by a diet rich in saturated fatty acids post-weaning.


Assuntos
Metabolismo Energético , Fígado/metabolismo , Mitocôndrias/metabolismo , Animais , Dieta Hiperlipídica , Dieta com Restrição de Proteínas , Feminino , Masculino , Oxirredução , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Fenômenos Fisiológicos da Nutrição Pré-Natal , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA