Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Breed Sci ; 71(5): 615-621, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35087326

RESUMO

The heading date is an important trait for determining regional and climatic adaptability in rice. To expand the adaptability of the indica rice cultivar 'IR64', we pyramided multiple early or late heading quantitative trait locus (QTLs) in the 'IR64' genetic background by crossing previously developed near-isogenic lines (NILs) with a single QTL for early or late heading. The effects of pyramiding QTLs were observed in three different climatic zones of the Philippines, Madagascar, and Japan. The early heading pyramiding lines (PYLs) headed 6.2 to 12.8 days earlier than 'IR64' while the late heading PYLs headed 18.8 to 27.1 days later than 'IR64'. The PYLs tended to produce low grain yield compared to 'IR64'. The low yield was not improved by combining SPIKE, which is a QTL that increases the number of spikelets per panicle. Conversely, 'IR64-PYL(7+10)' carrying Hd5 and Hd1 headed earlier, produced more tillers, and more panicles per m2 than 'IR64', and mitigated the yield decrease in early heading. These results suggest that the effects of pyramided QTLs on heading date were consistent across various environments and PYLs could be used to enhance the adaptation of 'IR64' in other rice growing environments.

2.
Front Plant Sci ; 14: 1247014, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37731986

RESUMO

Biotic stress is one of the major threats to stable rice production. Climate change affects the shifting of pest outbreaks in time and space. Genetic improvement of biotic stress resistance in rice is a cost-effective and environment-friendly way to control diseases and pests compared to other methods such as chemical spraying. Fast deployment of the available and suitable genes/alleles in local elite varieties through marker-assisted selection (MAS) is crucial for stable high-yield rice production. In this review, we focused on consolidating all the available cloned genes/alleles conferring resistance against rice pathogens (virus, bacteria, and fungus) and insect pests, the corresponding donor materials, and the DNA markers linked to the identified genes. To date, 48 genes (independent loci) have been cloned for only major biotic stresses: seven genes for brown planthopper (BPH), 23 for blast, 13 for bacterial blight, and five for viruses. Physical locations of the 48 genes were graphically mapped on the 12 rice chromosomes so that breeders can easily find the locations of the target genes and distances among all the biotic stress resistance genes and any other target trait genes. For efficient use of the cloned genes, we collected all the publically available DNA markers (~500 markers) linked to the identified genes. In case of no available cloned genes yet for the other biotic stresses, we provided brief information such as donor germplasm, quantitative trait loci (QTLs), and the related papers. All the information described in this review can contribute to the fast genetic improvement of biotic stress resistance in rice for stable high-yield rice production.

3.
Sci Rep ; 11(1): 8962, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33903715

RESUMO

Wild relatives of rice in the genus Oryza (composed of 24 species with 11 different genome types) have been significantly contributing to the varietal improvement of rice (Oryza sativa). More than 4000 accessions of wild rice species are available and they are regarded as a "genetic reservoir" for further rice improvement. DNA markers are essential tools in genetic analysis and breeding. To date, genome-wide marker sets for wild rice species have not been well established and this is one of the major difficulties for the efficient use of wild germplasm. Here, we developed 541 genome-wide InDel markers for the discrimination of alleles between the cultivated species O. sativa and the other seven AA-genome species by positional multiple sequence alignments among five AA-genome species with four rice varieties. The newly developed markers were tested by PCR-agarose gel analysis of 24 accessions from eight AA genome species (three accessions per species) along with two representative cultivars (O. sativa subsp. indica cv. IR24 and subsp. japonica cv. Nipponbare). Marker polymorphism was validated for 475 markers. The number of polymorphic markers between IR24 and each species (three accessions) ranged from 338 (versus O. rufipogon) to 416 (versus O. longistaminata) and the values in comparison with Nipponbare ranged from 179 (versus O. glaberrima) to 323 (versus O. glumaepatula). These marker sets will be useful for genetic studies and use of the AA-genome wild rice species.


Assuntos
Alelos , Genoma de Planta , Mutação INDEL , Oryza/genética , Melhoramento Vegetal , Polimorfismo Genético , Marcadores Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA