Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Stem Cells ; 32(5): 1161-72, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24307629

RESUMO

Embryonic stem cells (ESCs), characterized by their ability to both self-renew and differentiate into multiple cell lineages, are a powerful model for biomedical research and developmental biology. Human and mouse ESCs share many features, yet have distinctive aspects, including fundamental differences in the signaling pathways and cell cycle controls that support self-renewal. Here, we explore the molecular basis of human ESC self-renewal using Bayesian network machine learning to integrate cell-type-specific, high-throughput data for gene function discovery. We integrated high-throughput ESC data from 83 human studies (~1.8 million data points collected under 1,100 conditions) and 62 mouse studies (~2.4 million data points collected under 1,085 conditions) into separate human and mouse predictive networks focused on ESC self-renewal to analyze shared and distinct functional relationships among protein-coding gene orthologs. Computational evaluations show that these networks are highly accurate, literature validation confirms their biological relevance, and reverse transcriptase polymerase chain reaction (RT-PCR) validation supports our predictions. Our results reflect the importance of key regulatory genes known to be strongly associated with self-renewal and pluripotency in both species (e.g., POU5F1, SOX2, and NANOG), identify metabolic differences between species (e.g., threonine metabolism), clarify differences between human and mouse ESC developmental signaling pathways (e.g., leukemia inhibitory factor (LIF)-activated JAK/STAT in mouse; NODAL/ACTIVIN-A-activated fibroblast growth factor in human), and reveal many novel genes and pathways predicted to be functionally associated with self-renewal in each species. These interactive networks are available online at www.StemSight.org for stem cell researchers to develop new hypotheses, discover potential mechanisms involving sparsely annotated genes, and prioritize genes of interest for experimental validation.


Assuntos
Diferenciação Celular , Proliferação de Células , Células-Tronco Embrionárias/citologia , Biologia de Sistemas/métodos , Algoritmos , Animais , Teorema de Bayes , Linhagem da Célula , Biologia Computacional/métodos , Células-Tronco Embrionárias/metabolismo , Redes Reguladoras de Genes , Humanos , Camundongos , Reprodutibilidade dos Testes , Transdução de Sinais
2.
Cancer Res ; 82(22): 4126-4138, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36069866

RESUMO

Patient-derived xenograft (PDX) models are an effective preclinical in vivo platform for testing the efficacy of novel drugs and drug combinations for cancer therapeutics. Here we describe a repository of 79 genomically and clinically annotated lung cancer PDXs available from The Jackson Laboratory that have been extensively characterized for histopathologic features, mutational profiles, gene expression, and copy-number aberrations. Most of the PDXs are models of non-small cell lung cancer (NSCLC), including 37 lung adenocarcinoma (LUAD) and 33 lung squamous cell carcinoma (LUSC) models. Other lung cancer models in the repository include four small cell carcinomas, two large cell neuroendocrine carcinomas, two adenosquamous carcinomas, and one pleomorphic carcinoma. Models with both de novo and acquired resistance to targeted therapies with tyrosine kinase inhibitors are available in the collection. The genomic profiles of the LUAD and LUSC PDX models are consistent with those observed in patient tumors from The Cancer Genome Atlas and previously characterized gene expression-based molecular subtypes. Clinically relevant mutations identified in the original patient tumors were confirmed in engrafted PDX tumors. Treatment studies performed in a subset of the models recapitulated the responses expected on the basis of the observed genomic profiles. These models therefore serve as a valuable preclinical platform for translational cancer research. SIGNIFICANCE: Patient-derived xenografts of lung cancer retain key features observed in the originating patient tumors and show expected responses to treatment with standard-of-care agents, providing experimentally tractable and reproducible models for preclinical investigations.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Xenoenxertos , Ensaios Antitumorais Modelo de Xenoenxerto , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Modelos Animais de Doenças
3.
Genetics ; 198(1): 59-73, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25236449

RESUMO

Massively parallel RNA sequencing (RNA-seq) has yielded a wealth of new insights into transcriptional regulation. A first step in the analysis of RNA-seq data is the alignment of short sequence reads to a common reference genome or transcriptome. Genetic variants that distinguish individual genomes from the reference sequence can cause reads to be misaligned, resulting in biased estimates of transcript abundance. Fine-tuning of read alignment algorithms does not correct this problem. We have developed Seqnature software to construct individualized diploid genomes and transcriptomes for multiparent populations and have implemented a complete analysis pipeline that incorporates other existing software tools. We demonstrate in simulated and real data sets that alignment to individualized transcriptomes increases read mapping accuracy, improves estimation of transcript abundance, and enables the direct estimation of allele-specific expression. Moreover, when applied to expression QTL mapping we find that our individualized alignment strategy corrects false-positive linkage signals and unmasks hidden associations. We recommend the use of individualized diploid genomes over reference sequence alignment for all applications of high-throughput sequencing technology in genetically diverse populations.


Assuntos
Alinhamento de Sequência/métodos , Análise de Sequência de RNA/métodos , Software , Transcriptoma , Animais , Feminino , Genoma , Masculino , Camundongos , Locos de Características Quantitativas
4.
PLoS One ; 8(2): e56810, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23468881

RESUMO

Self-renewal, the ability of a stem cell to divide repeatedly while maintaining an undifferentiated state, is a defining characteristic of all stem cells. Here, we clarify the molecular foundations of mouse embryonic stem cell (mESC) self-renewal by applying a proven Bayesian network machine learning approach to integrate high-throughput data for protein function discovery. By focusing on a single stem-cell system, at a specific developmental stage, within the context of well-defined biological processes known to be active in that cell type, we produce a consensus predictive network that reflects biological reality more closely than those made by prior efforts using more generalized, context-independent methods. In addition, we show how machine learning efforts may be misled if the tissue specific role of mammalian proteins is not defined in the training set and circumscribed in the evidential data. For this study, we assembled an extensive compendium of mESC data: ∼2.2 million data points, collected from 60 different studies, under 992 conditions. We then integrated these data into a consensus mESC functional relationship network focused on biological processes associated with embryonic stem cell self-renewal and cell fate determination. Computational evaluations, literature validation, and analyses of predicted functional linkages show that our results are highly accurate and biologically relevant. Our mESC network predicts many novel players involved in self-renewal and serves as the foundation for future pluripotent stem cell studies. This network can be used by stem cell researchers (at http://StemSight.org) to explore hypotheses about gene function in the context of self-renewal and to prioritize genes of interest for experimental validation.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Animais , Teorema de Bayes , Diferenciação Celular , Biologia Computacional , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Camundongos , Fases de Leitura Aberta , Mapas de Interação de Proteínas , Proteoma , Reprodutibilidade dos Testes
5.
PLoS One ; 7(3): e33720, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22448268

RESUMO

RNA editing is a process that modifies RNA nucleotides and changes the efficiency and fidelity of the central dogma. Enzymes that catalyze RNA editing are required for life, and defects in RNA editing are associated with many diseases. Recent advances in sequencing have enabled the genome-wide identification of RNA editing sites in mammalian transcriptomes. Here, we demonstrate that canonical RNA editing (A-to-I and C-to-U) occurs in liver, white adipose, and bone tissues of the laboratory mouse, and we show that apparent non-canonical editing (all other possible base substitutions) is an artifact of current high-throughput sequencing technology. Further, we report that high-confidence canonical RNA editing sites can cause non-synonymous amino acid changes and are significantly enriched in 3' UTRs, specifically at microRNA target sites, suggesting both regulatory and functional consequences for RNA editing.


Assuntos
Regiões 3' não Traduzidas/genética , Tecido Adiposo Branco/metabolismo , Osso e Ossos/metabolismo , Fígado/metabolismo , MicroRNAs/genética , Edição de RNA/genética , Animais , Sequência de Bases , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA