Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Mol Cell Cardiol ; 193: 113-124, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38960316

RESUMO

The sarcolemmal Ca2+ efflux pathways, Na+-Ca2+-exchanger (NCX) and Ca2+-ATPase (PMCA), play a crucial role in the regulation of intracellular Ca2+ load and Ca2+ transient in cardiomyocytes. The distribution of these pathways between the t-tubular and surface membrane of ventricular cardiomyocytes varies between species and is not clear in human. Moreover, several studies suggest that this distribution changes during the development and heart diseases. However, the consequences of NCX and PMCA redistribution in human ventricular cardiomyocytes have not yet been elucidated. In this study, we aimed to address this point by using a mathematical model of the human ventricular myocyte incorporating t-tubules, dyadic spaces, and subsarcolemmal spaces. Effects of various combinations of t-tubular fractions of NCX and PMCA were explored, using values between 0.2 and 1 as reported in animal experiments under normal and pathological conditions. Small variations in the action potential duration (≤ 2%), but significant changes in the peak value of cytosolic Ca2+ transient (up to 17%) were observed at stimulation frequencies corresponding to the human heart rate at rest and during activity. The analysis of model results revealed that the changes in Ca2+ transient induced by redistribution of NCX and PMCA were mainly caused by alterations in Ca2+ concentrations in the subsarcolemmal spaces and cytosol during the diastolic phase of the stimulation cycle. The results suggest that redistribution of both transporters between the t-tubular and surface membranes contributes to changes in contractility in human ventricular cardiomyocytes during their development and heart disease and may promote arrhythmogenesis.


Assuntos
Cálcio , Ventrículos do Coração , Miócitos Cardíacos , Sarcolema , Trocador de Sódio e Cálcio , Humanos , Miócitos Cardíacos/metabolismo , Cálcio/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Ventrículos do Coração/metabolismo , Sarcolema/metabolismo , Potenciais de Ação , Sinalização do Cálcio , Membrana Celular/metabolismo , Modelos Biológicos , Modelos Cardiovasculares
2.
Pflugers Arch ; 474(12): 1263-1274, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36239778

RESUMO

The transverse-axial tubular system (tubular system) of cardiomyocytes plays a key role in excitation-contraction coupling. To determine the area of the tubular membrane in relation to the area of the surface membrane, indirect measurements through the determination of membrane capacitances are currently used in addition to microscopic methods. Unlike existing electrophysiological methods based on an irreversible procedure (osmotic shock), the proposed new approach uses a reversible short-term intermittent increase in the electrical resistance of the extracellular medium. The resulting increase in the lumen resistance of the tubular system makes it possible to determine separate capacitances of the tubular and surface membranes. Based on the analysis of the time course of the capacitive current, computational relations were derived to quantify the elements of the electrical equivalent circuit of the measured cardiomyocyte including both capacitances. The exposition to isotonic low-conductivity sucrose solution is reversible which is the main advantage of the proposed approach allowing repetitive measurements on the same cell under control and sucrose solutions. Experiments on rat ventricular cardiomyocytes (n = 20) resulted in the surface and tubular capacitance values implying the fraction of tubular capacitance/area of 0.327 ± 0.018. We conclude that the newly proposed method provides results comparable to the data obtained by the currently used detubulation method and, in addition, by being reversible, allows repeated evaluation of surface and tubular membrane parameters on the same cell.


Assuntos
Acoplamento Excitação-Contração , Miócitos Cardíacos , Animais , Ratos , Condutividade Elétrica , Pressão Osmótica , Sacarose
3.
Pflugers Arch ; 474(3): 303-313, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35084562

RESUMO

Bronchodilator aminophylline may induce atrial or less often ventricular arrhythmias. The mechanism of this proarrhythmic side effect has not been fully explained. Modifications of inward rectifier potassium (Kir) currents including IK1 are known to play an important role in arrhythmogenesis; however, no data on the aminophylline effect on these currents have been published. Hence, we tested the effect of aminophylline (3-100 µM) on IK1 in enzymatically isolated rat ventricular myocytes using the whole-cell patch-clamp technique. A dual steady-state effect of aminophylline was observed; either inhibition or activation was apparent in individual cells during the application of aminophylline at a given concentration. The smaller the magnitude of the control IK1, the more likely the activation of the current by aminophylline and vice versa. The effect was reversible; the relative changes at -50 and -110 mV did not differ. Using IK1 channel population model, the dual effect was explained by the interaction of aminophylline with two different channel populations, the first one being inhibited and the second one being activated. Considering various fractions of these two channel populations in individual cells, varying effects observed in the measured cells could be simulated. We propose that the dual aminophylline effect may be related to the direct and indirect effect of the drug on various Kir2.x subunits forming the homo- and heterotetrameric IK1 channels in a single cell. The observed IK1 changes induced by clinically relevant concentrations of aminophylline might contribute to arrhythmogenesis related to the use of this bronchodilator in clinical medicine.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização , Aminofilina/efeitos adversos , Animais , Arritmias Cardíacas , Broncodilatadores/efeitos adversos , Miócitos Cardíacos/fisiologia , Potássio/farmacologia , Ratos
4.
Pflugers Arch ; 470(2): 315-325, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28948353

RESUMO

Inward rectifier potassium currents (I Kir,x) belong to prominent ionic currents affecting both resting membrane voltage and action potential repolarization in cardiomyocytes. In existing integrative models of electrical activity of cardiac cells, they have been described as single current components. The proposed quantitative model complies with findings indicating that these channels are formed by various homomeric or heteromeric assemblies of channel subunits with specific functional properties. Each I Kir,x may be expressed as a total of independent currents via individual populations of identical channels, i.e., channels formed by the same combination of their subunits. Solution of the model equations simulated well recently observed unique manifestations of dual ethanol effect in rat ventricular and atrial cells. The model reflects reported occurrence of at least two binding sites for ethanol within I Kir,x channels related to slow allosteric conformation changes governing channel conductance and inducing current activation or inhibition. Our new model may considerably improve the existing models of cardiac cells by including the model equations proposed here in the particular case of the voltage-independent drug-channel interaction. Such improved integrative models may provide more precise and, thus, more physiologically relevant results.


Assuntos
Potenciais de Ação , Etanol/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Regulação Alostérica , Animais , Ventrículos do Coração/citologia , Modelos Cardiovasculares , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/química , Multimerização Proteica , Ratos , Função Ventricular
5.
Gen Physiol Biophys ; 31(1): 113-6, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22447837

RESUMO

An improved approach to the evaluation of the rate constants of drugs binding to the open channel underlying the transient outward potassium current I(t0) is described. It is based on an analysis of a quantitative model formulated by a set of twelve differential equations. The rate constants are calculated from the time constants resulting from an approximation of the time course of apparent inactivation of the recorded I(t0) by two exponentials in the absence and by three exponentials in the presence of a blocking agent. The model study confirmed significantly higher accuracy in comparison with the existing electrophysiological method.


Assuntos
Membrana Celular/fisiologia , Potenciais da Membrana/fisiologia , Modelos Cardiovasculares , Miócitos Cardíacos/fisiologia , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/fisiologia , Potássio/metabolismo , Sítios de Ligação , Membrana Celular/efeitos dos fármacos , Simulação por Computador , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Cinética , Miócitos Cardíacos/efeitos dos fármacos , Canais de Potássio/efeitos dos fármacos
6.
Front Physiol ; 13: 837239, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35620609

RESUMO

The transverse-axial tubular system (t-tubules) plays an essential role in excitation-contraction coupling in cardiomyocytes. Its remodelling is associated with various cardiac diseases. Numerous attempts were made to analyse characteristics essential for proper understanding of the t-tubules and their impact on cardiac cell function in health and disease. The currently available methodical approaches related to the fraction of the t-tubular membrane area produce diverse data. The widely used detubulation techniques cause irreversible cell impairment, thus, distinct cell samples have to be used for estimation of t-tubular parameters in untreated and detubulated cells. Our proposed alternative method is reversible and allows repetitive estimation of the fraction of t-tubular membrane (f t) in cardiomyocytes using short-term perfusion of the measured cell with a low-conductive isotonic sucrose solution. It results in a substantial increase in the electrical resistance of t-tubular lumen, thus, electrically separating the surface and t-tubular membranes. Using the whole-cell patch-clamp measurement and the new approach in enzymatically isolated rat atrial and ventricular myocytes, a set of data was measured and evaluated. The analysis of the electrical equivalent circuit resulted in the establishment of criteria for excluding measurements in which perfusion with a low conductivity solution did not affect the entire cell surface. As expected, the final average f t in ventricular myocytes (0.337 ± 0.017) was significantly higher than that in atrial myocytes (0.144 ± 0.015). The parameter f t could be estimated repetitively in a particular cell (0.345 ± 0.021 and 0.347 ± 0.023 in ventricular myocytes during the first and second sucrose perfusion, respectively). The new method is fast, simple, and leaves the measured cell intact. It can be applied in the course of experiments for which it is useful to estimate both the surface and t-tubular capacitance/area in a particular cell.

7.
Prog Biophys Mol Biol ; 157: 18-23, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32428518

RESUMO

A variety of techniques of cell capacitance measurement have been proposed and applied in cellular electrophysiology. They are mostly based on the evaluation of membrane current responses to small changes in the membrane voltage. One of the currently used approaches applies the least-squares fit of an exponential current decay in response to voltage clamped rectangular pulses. In this study, we propose an alternative simpler approach to evaluation of the exponential parts in the current responses to square wave stimulation and present preliminary results of membrane capacitance evaluation. It is based on the property of the exponential function that has not yet been used to measure membrane capacitance. The time constant and the asymptote of the exponential waveform are unambiguously determined by the values read at three points separated by a constant time interval. In order to minimize the effect of noise and deviations from the exponential waveform, the triplet of points is designed to slide along the time axis. The results of the proposed approach and those previously evaluated by the least squares method are comparable. The method described may be advantageous for continuously recording changes in membrane capacitance.


Assuntos
Potenciais da Membrana/fisiologia , Técnicas de Patch-Clamp/métodos , Algoritmos , Animais , Simulação por Computador , Capacitância Elétrica , Condutividade Elétrica , Eletrofisiologia , Átrios do Coração/patologia , Análise dos Mínimos Quadrados , Modelos Neurológicos , Neurônios , Ratos , Reprodutibilidade dos Testes , Software
8.
PLoS One ; 14(10): e0223448, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31600261

RESUMO

Recent experimental work has revealed unusual features of the effect of certain drugs on cardiac inwardly rectifying potassium currents, including the constitutively active and acetylcholine-induced components of acetylcholine-sensitive current (IKAch). These unusual features have included alternating susceptibility of the current components to activation and inhibition induced by ethanol or nicotine applied at various concentrations, and significant correlation between the drug effect and the current magnitude measured under drug-free conditions. To explain these complex drug effects, we have developed a new type of quantitative model to offer a possible interpretation of the effect of ethanol and nicotine on the IKAch channels. The model is based on a description of IKAch as a sum of particular currents related to the populations of channels formed by identical assemblies of different α-subunits. Assuming two different channel populations in agreement with the two reported functional IKAch-channels (GIRK1/4 and GIRK4), the model was able to simulate all the above-mentioned characteristic features of drug-channel interactions and also the dispersion of the current measured in different cells. The formulation of our model equations allows the model to be incorporated easily into the existing integrative models of electrical activity of cardiac cells involving quantitative description of IKAch. We suppose that the model could also help make sense of certain observations related to the channels that do not show inward rectification. This new ionic channel model, based on a concept we call population type, may allow for the interpretation of complex interactions of drugs with ionic channels of various types, which cannot be done using the ionic channel models available so far.


Assuntos
Acetilcolina/farmacologia , Etanol/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Nicotina/farmacologia , Simulação por Computador , Modelos Biológicos , Fatores de Tempo
9.
Naunyn Schmiedebergs Arch Pharmacol ; 390(5): 471-481, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28160016

RESUMO

Nicotine abuse is associated with variety of diseases including arrhythmias, most often atrial fibrillation (AF). Altered inward rectifier potassium currents including acetylcholine-sensitive current I K(Ach) are known to be related to AF pathogenesis. Since relevant data are missing, we aimed to investigate I K(Ach) changes at clinically relevant concentrations of nicotine. Experiments were performed by the whole cell patch clamp technique at 23 ± 1 °C on isolated rat atrial myocytes. Nicotine was applied at following concentrations: 4, 40 and 400 nM; ethanol at 20 mM (∼0.09%). Nicotine at 40 and 400 nM significantly activated constitutively active component of I K(Ach) with the maximum effect at 40 nM (an increase by ∼100%); similar effect was observed at -110 and -50 mV. Changes at 4 nM nicotine were negligible on average. Coapplication of 40 nM nicotine and 20 mM ethanol (which is also known to activate this current) did not show cumulative effect. In the case of acetylcholine-induced component of I K(Ach), a dual effect of nicotine and its correlation with the current magnitude in control were apparent: the current was increased by nicotine in the cells showing small current in control and vice versa. The effect of 40 and 400 nM nicotine on acetylcholine-induced component of I K(Ach) was significantly different at -110 and -50 mV. We conclude that nicotine at clinically relevant concentrations significantly increased constitutively active component of I K(Ach) and showed a dual effect on its acetylcholine-induced component, similarly as ethanol. Synchronous application of nicotine and ethanol did not cause additive effect.


Assuntos
Acetilcolina/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/agonistas , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/efeitos dos fármacos , Átrios do Coração/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Nicotina/toxicidade , Animais , Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/metabolismo , Relação Dose-Resposta a Droga , Etanol/toxicidade , Átrios do Coração/metabolismo , Técnicas In Vitro , Masculino , Potenciais da Membrana , Miócitos Cardíacos/metabolismo , Ratos Wistar , Medição de Risco , Fatores de Tempo
10.
Med Biol Eng Comput ; 54(5): 753-62, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26280513

RESUMO

Alcohol consumption may result in electrocardiographic changes and arrhythmias, at least partly due to effects of ethanol on cardiac ionic currents. Contractility and intracellular Ca(2+) dynamics seem to be altered as well. In this study, we integrated the available (mostly animal) experimental data into previously published models of the rat and human ventricular myocytes to assess the share of ionic current components in ethanol-induced changes in AP configuration and cytosolic Ca(2+) transient in ventricular cardiomyocytes. The rat model reproduced well the experimentally observed changes in AP duration (APD) under ethanol (slight prolongation at 0.8 mM and shortening at ≥8 mM). These changes were almost exclusively caused by the ethanol-induced alterations of I K1. The cytosolic Ca(2+) transient decreased gradually with the increasing ethanol concentration as a result of the ethanol-induced inhibition of I Ca. In the human model, ethanol produced a dose-dependent APD lengthening, dominated by ethanol effect on I Kr, the key repolarising current in human ventricles. This effect might contribute to the clinically observed proarrhythmic effects of ethanol in predisposed individuals.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Cálcio/metabolismo , Simulação por Computador , Etanol/farmacologia , Ventrículos do Coração/citologia , Espaço Intracelular/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Humanos , Espaço Intracelular/efeitos dos fármacos , Modelos Biológicos , Miócitos Cardíacos/efeitos dos fármacos , Ratos , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo
11.
Naunyn Schmiedebergs Arch Pharmacol ; 389(10): 1049-58, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27369777

RESUMO

Alcohol intoxication tends to induce arrhythmias, most often the atrial fibrillation. To elucidate arrhythmogenic mechanisms related to alcohol consumption, the effect of ethanol on main components of the ionic membrane current is investigated step by step. Considering limited knowledge, we aimed to examine the effect of clinically relevant concentrations of ethanol (0.8-80 mM) on acetylcholine-sensitive inward rectifier potassium current I K(Ach). Experiments were performed by the whole-cell patch clamp technique at 23 ± 1 °C on isolated rat and guinea-pig atrial myocytes, and on expressed human Kir3.1/3.4 channels. Ethanol induced changes of I K(Ach) in the whole range of concentrations applied; the effect was not voltage dependent. The constitutively active component of I K(Ach) was significantly increased by ethanol with the maximum effect (an increase by ∼100 %) between 8 and 20 mM. The changes were comparable in rat and guinea-pig atrial myocytes and also in expressed human Kir3.1/3.4 channels (i.e., structural correlate of I K(Ach)). In the case of the acetylcholine-induced component of I K(Ach), a dual ethanol effect was apparent with a striking heterogeneity of changes in individual cells. The effect correlated with the current magnitude in control: the current was increased by eth-anol in the cells showing small current in control and vice versa. The average effect peaked at 20 mM ethanol (an increase of the current by ∼20 %). Observed changes of action potential duration agreed well with the voltage clamp data. Ethanol significantly affected both components of I K(Ach) even in concentrations corresponding to light alcohol consumption.


Assuntos
Acetilcolina/farmacologia , Arritmias Cardíacas/induzido quimicamente , Etanol/toxicidade , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/efeitos dos fármacos , Átrios do Coração/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Potenciais de Ação , Animais , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Células CHO , Simulação por Computador , Cricetulus , Relação Dose-Resposta a Droga , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Cobaias , Átrios do Coração/metabolismo , Átrios do Coração/fisiopatologia , Frequência Cardíaca/efeitos dos fármacos , Humanos , Cinética , Masculino , Modelos Cardiovasculares , Miócitos Cardíacos/metabolismo , Ratos Wistar , Medição de Risco , Transfecção
12.
Naunyn Schmiedebergs Arch Pharmacol ; 380(2): 125-33, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19430764

RESUMO

Antipsychotic drug perphenazine belongs to the phenothiazine group commonly reported to induce ECG changes and tachyarrhythmias. Data about its effect on ionic membrane currents in cardiomyocytes are missing. We analyzed the effect of perphenazine (0.1-100 microM) on fast sodium current I (Na) and transient outward potassium current I (to) in enzymatically isolated rat right ventricular myocytes by the whole-cell patch-clamp technique at room temperature. Perphenazine reversibly blocked I (Na) (reducing its amplitude; IC(50) = 1.24 +/- 0.10 microM) and I (to) (accelerating its apparent inactivation with a slight decrease of its amplitude; IC(50) = 38.2 +/- 3.5 microM, evaluated from changes of the time integral). The fast time constant of I (to) inactivation was significantly decreased in a concentration-dependent manner (IC(50) = 30.0 +/- 6.6 microM). Both blocks were use and frequency dependent at 3.3 Hz. We conclude that perphenazine causes concentration-, use-, and frequency-dependent block of I (Na) and I (to) . Computer simulations suggest that perphenazine interacts preferentially with I (Na) channels in inactivated states and with I (to) channels in both open and open-inactivated states.


Assuntos
Antipsicóticos/toxicidade , Perfenazina/toxicidade , Canais de Potássio/efeitos dos fármacos , Canais de Sódio/efeitos dos fármacos , Animais , Antipsicóticos/administração & dosagem , Simulação por Computador , Relação Dose-Resposta a Droga , Ventrículos do Coração/citologia , Ventrículos do Coração/efeitos dos fármacos , Concentração Inibidora 50 , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp , Perfenazina/administração & dosagem , Canais de Potássio/metabolismo , Ratos , Ratos Wistar , Canais de Sódio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA