Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977019

RESUMO

As the closest transiting hot Jupiter to Earth, HD 189733b has been the benchmark planet for atmospheric characterization 1,2,3. It has also been the anchor point for much of our theoretical understanding of exoplanet atmospheres from composition 4, chemistry 5,6, aerosols 7 to atmospheric dynamics 8, escape 9 and modeling techniques 10,11. Prior studies of HD 189733b have detected carbon and oxygen-bearing molecules H2O and CO 12,13 in the atmosphere. The presence of CO2 and CH4 has been claimed 14,15 but later disputed 12,16,17. The inferred metallicity based on these measurements, a key parameter in tracing planet formation locations 18, varies from depletion 19,20 to enhancement 21,22, hindered by limited wavelength coverage and precision of the observations. Here we report detections of H2O (13.4 sigma), CO2 (11.2 sigma), CO (5 sigma), and H2S (4.5 sigma) in the transmission spectrum (2.4-5 micron) of HD 189733b. With an equilibrium temperature of ~ 1200K, H2O, CO, and H2S are the main reservoirs for oxygen, carbon, and sulfur. Based on the measured abundances of these three major volatile elements, we infer an atmospheric metallicity of 3-5 times stellar. The upper limit on the methane abundance at 5 sigma is 0.1 ppm which indicates a low carbon-to-oxygen ratio (<0.2), suggesting formation through the accretion of water-rich icy planetesimals. The low oxygen-to-sulfur and carbon-to-sulfur ratios also support the planetesimal accretion formation pathway 23.

2.
Nature ; 630(8018): 831-835, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38768633

RESUMO

Observations of transiting gas giant exoplanets have revealed a pervasive depletion of methane1-4, which has only recently been identified atmospherically5,6. The depletion is thought to be maintained by disequilibrium processes such as photochemistry or mixing from a hotter interior7-9. However, the interiors are largely unconstrained along with the vertical mixing strength and only upper limits on the CH4 depletion have been available. The warm Neptune WASP-107b stands out among exoplanets with an unusually low density, reported low core mass10, and temperatures amenable to CH4, though previous observations have yet to find the molecule2,4. Here we present a JWST-NIRSpec transmission spectrum of WASP-107b that shows features from both SO2 and CH4 along with H2O, CO2, and CO. We detect methane with 4.2σ significance at an abundance of 1.0 ± 0.5 ppm, which is depleted by 3 orders of magnitude relative to equilibrium expectations. Our results are highly constraining for the atmosphere and interior, which indicate the envelope has a super-solar metallicity of 43 ± 8 × solar, a hot interior with an intrinsic temperature of Tint = 460 ± 40 K, and vigorous vertical mixing which depletes CH4 with a diffusion coefficient of Kzz = 1011.6±0.1 cm2 s-1. Photochemistry has a negligible effect on the CH4 abundance but is needed to account for the SO2. We infer a core mass of 11.5 - 3.6 + 3.0 M ⊕ , which is much higher than previous upper limits10, releasing a tension with core-accretion models11.

3.
Nature ; 614(7949): 670-675, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36623550

RESUMO

The Saturn-mass exoplanet WASP-39b has been the subject of extensive efforts to determine its atmospheric properties using transmission spectroscopy1-4. However, these efforts have been hampered by modelling degeneracies between composition and cloud properties that are caused by limited data quality5-9. Here we present the transmission spectrum of WASP-39b obtained using the Single-Object Slitless Spectroscopy (SOSS) mode of the Near Infrared Imager and Slitless Spectrograph (NIRISS) instrument on the JWST. This spectrum spans 0.6-2.8 µm in wavelength and shows several water-absorption bands, the potassium resonance doublet and signatures of clouds. The precision and broad wavelength coverage of NIRISS/SOSS allows us to break model degeneracies between cloud properties and the atmospheric composition of WASP-39b, favouring a heavy-element enhancement ('metallicity') of about 10-30 times the solar value, a sub-solar carbon-to-oxygen (C/O) ratio and a solar-to-super-solar potassium-to-oxygen (K/O) ratio. The observations are also best explained by wavelength-dependent, non-grey clouds with inhomogeneous coverageof the planet's terminator.

4.
Nature ; 614(7949): 664-669, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36623549

RESUMO

Measuring the abundances of carbon and oxygen in exoplanet atmospheres is considered a crucial avenue for unlocking the formation and evolution of exoplanetary systems1,2. Access to the chemical inventory of an exoplanet requires high-precision observations, often inferred from individual molecular detections with low-resolution space-based3-5 and high-resolution ground-based6-8 facilities. Here we report the medium-resolution (R ≈ 600) transmission spectrum of an exoplanet atmosphere between 3 and 5 µm covering several absorption features for the Saturn-mass exoplanet WASP-39b (ref. 9), obtained with the Near Infrared Spectrograph (NIRSpec) G395H grating of JWST. Our observations achieve 1.46 times photon precision, providing an average transit depth uncertainty of 221 ppm per spectroscopic bin, and present minimal impacts from systematic effects. We detect significant absorption from CO2 (28.5σ) and H2O (21.5σ), and identify SO2 as the source of absorption at 4.1 µm (4.8σ). Best-fit atmospheric models range between 3 and 10 times solar metallicity, with sub-solar to solar C/O ratios. These results, including the detection of SO2, underscore the importance of characterizing the chemistry in exoplanet atmospheres and showcase NIRSpec G395H as an excellent mode for time-series observations over this critical wavelength range10.

5.
Nature ; 614(7949): 653-658, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36623551

RESUMO

Measuring the metallicity and carbon-to-oxygen (C/O) ratio in exoplanet atmospheres is a fundamental step towards constraining the dominant chemical processes at work and, if in equilibrium, revealing planet formation histories. Transmission spectroscopy (for example, refs. 1,2) provides the necessary means by constraining the abundances of oxygen- and carbon-bearing species; however, this requires broad wavelength coverage, moderate spectral resolution and high precision, which, together, are not achievable with previous observatories. Now that JWST has commenced science operations, we are able to observe exoplanets at previously uncharted wavelengths and spectral resolutions. Here we report time-series observations of the transiting exoplanet WASP-39b using JWST's Near InfraRed Camera (NIRCam). The long-wavelength spectroscopic and short-wavelength photometric light curves span 2.0-4.0 micrometres, exhibit minimal systematics and reveal well defined molecular absorption features in the planet's spectrum. Specifically, we detect gaseous water in the atmosphere and place an upper limit on the abundance of methane. The otherwise prominent carbon dioxide feature at 2.8 micrometres is largely masked by water. The best-fit chemical equilibrium models favour an atmospheric metallicity of 1-100-times solar (that is, an enrichment of elements heavier than helium relative to the Sun) and a substellar C/O ratio. The inferred high metallicity and low C/O ratio may indicate significant accretion of solid materials during planet formation (for example, refs. 3,4,) or disequilibrium processes in the upper atmosphere (for example, refs. 5,6).

6.
Nature ; 620(7973): 292-298, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37257843

RESUMO

Close-in giant exoplanets with temperatures greater than 2,000 K ('ultra-hot Jupiters') have been the subject of extensive efforts to determine their atmospheric properties using thermal emission measurements from the Hubble Space Telescope (HST) and Spitzer Space Telescope1-3. However, previous studies have yielded inconsistent results because the small sizes of the spectral features and the limited information content of the data resulted in high sensitivity to the varying assumptions made in the treatment of instrument systematics and the atmospheric retrieval analysis3-12. Here we present a dayside thermal emission spectrum of the ultra-hot Jupiter WASP-18b obtained with the NIRISS13 instrument on the JWST. The data span 0.85 to 2.85 µm in wavelength at an average resolving power of 400 and exhibit minimal systematics. The spectrum shows three water emission features (at >6σ confidence) and evidence for optical opacity, possibly attributable to H-, TiO and VO (combined significance of 3.8σ). Models that fit the data require a thermal inversion, molecular dissociation as predicted by chemical equilibrium, a solar heavy-element abundance ('metallicity', [Formula: see text] times solar) and a carbon-to-oxygen (C/O) ratio less than unity. The data also yield a dayside brightness temperature map, which shows a peak in temperature near the substellar point that decreases steeply and symmetrically with longitude towards the terminators.

7.
Nature ; 617(7961): 483-487, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37100917

RESUMO

Photochemistry is a fundamental process of planetary atmospheres that regulates the atmospheric composition and stability1. However, no unambiguous photochemical products have been detected in exoplanet atmospheres so far. Recent observations from the JWST Transiting Exoplanet Community Early Release Science Program2,3 found a spectral absorption feature at 4.05 µm arising from sulfur dioxide (SO2) in the atmosphere of WASP-39b. WASP-39b is a 1.27-Jupiter-radii, Saturn-mass (0.28 MJ) gas giant exoplanet orbiting a Sun-like star with an equilibrium temperature of around 1,100 K (ref. 4). The most plausible way of generating SO2 in such an atmosphere is through photochemical processes5,6. Here we show that the SO2 distribution computed by a suite of photochemical models robustly explains the 4.05-µm spectral feature identified by JWST transmission observations7 with NIRSpec PRISM (2.7σ)8 and G395H (4.5σ)9. SO2 is produced by successive oxidation of sulfur radicals freed when hydrogen sulfide (H2S) is destroyed. The sensitivity of the SO2 feature to the enrichment of the atmosphere by heavy elements (metallicity) suggests that it can be used as a tracer of atmospheric properties, with WASP-39b exhibiting an inferred metallicity of about 10× solar. We further point out that SO2 also shows observable features at ultraviolet and thermal infrared wavelengths not available from the existing observations.

8.
Nature ; 604(7904): 49-52, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35388193

RESUMO

Aerosols have been found to be nearly ubiquitous in substellar atmospheres1-3. The precise temperature at which these aerosols begin to form in exoplanets has yet to be observationally constrained. Theoretical models and observations of muted spectral features indicate that silicate clouds play an important role in exoplanets between at least 950 and 2,100 K (ref. 4). Some giant planets, however, are thought to be hot enough to avoid condensation altogether5,6. Here we report the near-ultraviolet transmission spectrum of the ultra-hot Jupiter WASP-178b (approximately 2,450 K), which exhibits substantial absorption. Bayesian retrievals indicate the presence of gaseous refractory species containing silicon and magnesium, which are the precursors to condensate clouds at lower temperatures. SiO, in particular, has not previously, to our knowledge, been detected in exoplanets, but the presence of SiO in WASP-178b is consistent with theoretical expectations as the dominant Si-bearing species at high temperatures. These observations allow us to re-interpret previous observations of HAT-P-41b and WASP-121b that did not consider SiO, to suggest that silicate cloud formation begins on exoplanets with equilibrium temperatures between 1,950 and 2,450 K.

9.
Nature ; 548(7665): 58-61, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28770846

RESUMO

Infrared radiation emitted from a planet contains information about the chemical composition and vertical temperature profile of its atmosphere. If upper layers are cooler than lower layers, molecular gases will produce absorption features in the planetary thermal spectrum. Conversely, if there is a stratosphere-where temperature increases with altitude-these molecular features will be observed in emission. It has been suggested that stratospheres could form in highly irradiated exoplanets, but the extent to which this occurs is unresolved both theoretically and observationally. A previous claim for the presence of a stratosphere remains open to question, owing to the challenges posed by the highly variable host star and the low spectral resolution of the measurements. Here we report a near-infrared thermal spectrum for the ultrahot gas giant WASP-121b, which has an equilibrium temperature of approximately 2,500 kelvin. Water is resolved in emission, providing a detection of an exoplanet stratosphere at 5σ confidence. These observations imply that a substantial fraction of incident stellar radiation is retained at high altitudes in the atmosphere, possibly by absorbing chemical species such as gaseous vanadium oxide and titanium oxide.

10.
Nature ; 529(7584): 59-62, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26675732

RESUMO

Thousands of transiting exoplanets have been discovered, but spectral analysis of their atmospheres has so far been dominated by a small number of exoplanets and data spanning relatively narrow wavelength ranges (such as 1.1-1.7 micrometres). Recent studies show that some hot-Jupiter exoplanets have much weaker water absorption features in their near-infrared spectra than predicted. The low amplitude of water signatures could be explained by very low water abundances, which may be a sign that water was depleted in the protoplanetary disk at the planet's formation location, but it is unclear whether this level of depletion can actually occur. Alternatively, these weak signals could be the result of obscuration by clouds or hazes, as found in some optical spectra. Here we report results from a comparative study of ten hot Jupiters covering the wavelength range 0.3-5 micrometres, which allows us to resolve both the optical scattering and infrared molecular absorption spectroscopically. Our results reveal a diverse group of hot Jupiters that exhibit a continuum from clear to cloudy atmospheres. We find that the difference between the planetary radius measured at optical and infrared wavelengths is an effective metric for distinguishing different atmosphere types. The difference correlates with the spectral strength of water, so that strong water absorption lines are seen in clear-atmosphere planets and the weakest features are associated with clouds and hazes. This result strongly suggests that primordial water depletion during formation is unlikely and that clouds and hazes are the cause of weaker spectral signatures.


Assuntos
Atmosfera/química , Meio Ambiente Extraterreno/química , Planetas , Água/análise , Júpiter , Pressão , Espectrofotometria Infravermelho , Telescópios , Temperatura
11.
Nature ; 522(7557): 459-61, 2015 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-26108854

RESUMO

Exoplanets orbiting close to their parent stars may lose some fraction of their atmospheres because of the extreme irradiation. Atmospheric mass loss primarily affects low-mass exoplanets, leading to the suggestion that hot rocky planets might have begun as Neptune-like, but subsequently lost all of their atmospheres; however, no confident measurements have hitherto been available. The signature of this loss could be observed in the ultraviolet spectrum, when the planet and its escaping atmosphere transit the star, giving rise to deeper and longer transit signatures than in the optical spectrum. Here we report that in the ultraviolet the Neptune-mass exoplanet GJ 436b (also known as Gliese 436b) has transit depths of 56.3 ± 3.5% (1σ), far beyond the 0.69% optical transit depth. The ultraviolet transits repeatedly start about two hours before, and end more than three hours after the approximately one hour optical transit, which is substantially different from one previous claim (based on an inaccurate ephemeris). We infer from this that the planet is surrounded and trailed by a large exospheric cloud composed mainly of hydrogen atoms. We estimate a mass-loss rate in the range of about 10(8)-10(9) grams per second, which is far too small to deplete the atmosphere of a Neptune-like planet in the lifetime of the parent star, but would have been much greater in the past.

12.
Nature ; 445(7127): 511-4, 2007 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17268463

RESUMO

About ten per cent of the known extrasolar planets are gas giants that orbit very close to their parent stars. The atmospheres of these 'hot Jupiters' are heated by the immense stellar irradiation. In the case of the planet HD 209458b, this energy deposition results in a hydrodynamic state in the upper atmosphere, allowing for sizeable expansion and escape of neutral hydrogen gas. HD 209458b was the first extrasolar planet discovered that transits in front of its parent star. The size of the planet can be measured using the total optical obscuration of the stellar disk during an observed transit, and the structure and composition of the planetary atmosphere can be studied using additional planetary absorption signatures in the stellar spectrum. Here we report the detection of absorption by hot hydrogen in the atmosphere of HD 209458b. Previously, the lower atmosphere and the full extended upper atmosphere of HD 209458b have been observed, whereas here we probe a layer where the escaping gas forms in the upper atmosphere of HD 209458b.

13.
Nature ; 448(7150): 169-71, 2007 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-17625559

RESUMO

Water is predicted to be among the most abundant (if not the most abundant) molecular species after hydrogen in the atmospheres of close-in extrasolar giant planets ('hot Jupiters'). Several attempts have been made to detect water on such planets, but have either failed to find compelling evidence for it or led to claims that should be taken with caution. Here we report an analysis of recent observations of the hot Jupiter HD 189733b (ref. 6) taken during the transit, when the planet passed in front of its parent star. We find that absorption by water vapour is the most likely cause of the wavelength-dependent variations in the effective radius of the planet at the infrared wavelengths 3.6 mum, 5.8 mum (both ref. 7) and 8 mum (ref. 8). The larger effective radius observed at visible wavelengths may arise from either stellar variability or the presence of clouds/hazes. We explain the report of a non-detection of water on HD 189733b (ref. 4) as being a consequence of the nearly isothermal vertical profile of the planet's atmosphere.


Assuntos
Atmosfera/química , Gases/análise , Planetas , Água/análise , Fenômenos Astronômicos , Astronomia , Exobiologia , Análise Espectral
14.
Science ; 356(6338): 628-631, 2017 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-28495748

RESUMO

A correlation between giant-planet mass and atmospheric heavy elemental abundance was first noted in the past century from observations of planets in our own Solar System and has served as a cornerstone of planet-formation theory. Using data from the Hubble and Spitzer Space Telescopes from 0.5 to 5 micrometers, we conducted a detailed atmospheric study of the transiting Neptune-mass exoplanet HAT-P-26b. We detected prominent H2O absorption bands with a maximum base-to-peak amplitude of 525 parts per million in the transmission spectrum. Using the water abundance as a proxy for metallicity, we measured HAT-P-26b's atmospheric heavy element content ([Formula: see text] times solar). This likely indicates that HAT-P-26b's atmosphere is primordial and obtained its gaseous envelope late in its disk lifetime, with little contamination from metal-rich planetesimals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA