Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Phys Chem A ; 123(9): 1874-1881, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30735373

RESUMO

Molecular dynamics (MD) simulation of complex chemistry typically involves thousands of atoms propagating over millions of time steps, generating a wealth of data. Traditionally these data are used to calculate some aggregate properties of the system and then discarded, but we propose that these data can be reused to study related chemical systems. Using approximate chemical kinetic models and methods from statistical learning, we study hydrocarbon chemistries under extreme thermodynamic conditions. We discover that a single MD simulation can contain sufficient information about reactions and rates to predict the dynamics of related yet different chemical systems using kinetic Monte Carlo (KMC) simulation. Our learned KMC models identify thousands of reactions and run 4 orders of magnitude faster than MD. The transferability of these models suggests that we can viably reuse data from existing MD simulations to accelerate future simulation studies and reduce the number of new MD simulations required.

2.
Chem Sci ; 8(8): 5781-5796, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28989618

RESUMO

We propose a novel statistical learning framework for automatically and efficiently building reduced kinetic Monte Carlo (KMC) models of large-scale elementary reaction networks from data generated by a single or few molecular dynamics simulations (MD). Existing approaches for identifying species and reactions from molecular dynamics typically use bond length and duration criteria, where bond duration is a fixed parameter motivated by an understanding of bond vibrational frequencies. In contrast, we show that for highly reactive systems, bond duration should be a model parameter that is chosen to maximize the predictive power of the resulting statistical model. We demonstrate our method on a high temperature, high pressure system of reacting liquid methane, and show that the learned KMC model is able to extrapolate more than an order of magnitude in time for key molecules. Additionally, our KMC model of elementary reactions enables us to isolate the most important set of reactions governing the behavior of key molecules found in the MD simulation. We develop a new data-driven algorithm to reduce the chemical reaction network which can be solved either as an integer program or efficiently using L1 regularization, and compare our results with simple count-based reduction. For our liquid methane system, we discover that rare reactions do not play a significant role in the system, and find that less than 7% of the approximately 2000 reactions observed from molecular dynamics are necessary to reproduce the molecular concentration over time of methane. The framework described in this work paves the way towards a genomic approach to studying complex chemical systems, where expensive MD simulation data can be reused to contribute to an increasingly large and accurate genome of elementary reactions and rates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA