Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell Rep ; 43(6): 156, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819495

RESUMO

KEY MESSAGE: In current study candidate gene (261 genes) based association mapping on 144 pigeonpea accessions for flowering time and related traits and 29 MTAs producing eight superior haplotypes were identified. In the current study, we have conducted an association analysis for flowering-associated traits in a diverse pigeonpea mini-core collection comprising 144 accessions using the SNP data of 261 flowering-related genes. In total, 13,449 SNPs were detected in the current study, which ranged from 743 (ICP10228) to 1469 (ICP6668) among the individuals. The nucleotide diversity (0.28) and Watterson estimates (0.34) reflected substantial diversity, while Tajima's D (-0.70) indicated the abundance of rare alleles in the collection. A total of 29 marker trait associations (MTAs) were identified, among which 19 were unique to days to first flowering (DOF) and/or days to fifty percent flowering (DFF), 9 to plant height (PH), and 1 to determinate (Det) growth habit using 3 years of phenotypic data. Among these MTAs, six were common to DOF and/or DFF, and four were common to DOF/DFF along with the PH, reflecting their pleiotropic action. These 29 MTAs spanned 25 genes, among which 10 genes clustered in the protein-protein network analysis, indicating their concerted involvement in floral induction. Furthermore, we identified eight haplotypes, four of which regulate late flowering, while the remaining four regulate early flowering using the MTAs. Interestingly, haplotypes conferring late flowering (H001, H002, and H008) were found to be taller, while those involved in early flowering (H003) were shorter in height. The expression pattern of these genes, as inferred from the transcriptome data, also underpinned their involvement in floral induction. The haplotypes identified will be highly useful to the pigeonpea breeding community for haplotype-based breeding.


Assuntos
Cajanus , Flores , Haplótipos , Polimorfismo de Nucleotídeo Único , Flores/genética , Flores/fisiologia , Flores/crescimento & desenvolvimento , Haplótipos/genética , Cajanus/genética , Cajanus/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único/genética , Genes de Plantas/genética , Fenótipo , Regulação da Expressão Gênica de Plantas , Estudos de Associação Genética , Locos de Características Quantitativas/genética
2.
J Assoc Physicians India ; 72(7): 79-93, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38990592

RESUMO

Globally, diabetes mellitus (DM) is a substantial contributor to morbidity and mortality. Comorbidities and intercurrent illnesses in people with diabetes may necessitate the use of steroids. Acute as well as chronic use of steroids contributes substantially to the development of various complications. Despite this, there are no standard guidelines or consensus to provide a unified approach for the rational use of steroids in people with diabetes. Also, there is scant harmonization among clinicians with the use of different steroids in routine practice. To address the inconsistencies in this clinical arena, the consensus working group (CWG) formulated a unified consensus for steroid use in people with diabetes. In people with diabetes, the use of steroids causes hyperglycemia and may precipitate diabetic ketoacidosis (DKA). An increase in weight is directly related to the dose and duration of the steroid therapy. Steroid-related alterations in hyperglycemia, dyslipidemia, and hypertension (HTN) add to the increased risk of cardiovascular (CV) disease. The risk of complications such as infections, osteoporosis, myopathy, acne, cataracts, and glaucoma may increase with the use of steroids. Appropriate and timely monitoring of these complications is necessary for early detection and treatment of such complications. Given the systemic effects of various antihyperglycemic drugs, there is a possibility of aggravating or diminishing the specific complications. Preference to a safer steroid is required matching the steroid dose equivalence and individualizing patient management. In conclusion, short-, intermediate-, or long-term use of steroids in people with diabetes demands their rational use and holistic approach to identify, monitor, and treat the complications induced or aggravated by the steroids.


Assuntos
Consenso , Humanos , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/epidemiologia , Corticosteroides/administração & dosagem , Corticosteroides/efeitos adversos , Complicações do Diabetes , Administração Oral , Comorbidade
3.
Bioinformatics ; 38(2): 318-324, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34601584

RESUMO

MOTIVATION: Tea is a cross-pollinated woody perennial plant, which is why, application of conventional breeding is limited for its genetic improvement. However, lack of the genome-wide high-density SNP markers and genome-wide haplotype information has greatly hampered the utilization of tea genetic resources toward fast-track tea breeding programs. To address this challenge, we have generated a first-generation haplotype map of tea (Tea HapMap-1). Out-crossing and highly heterozygous nature of tea plants, make them more complicated for DNA-level variant discovery. RESULTS: In this study, whole genome re-sequencing data of 369 tea genotypes were used to generate 2,334,564 biallelic SNPs and 1,447,985 InDels. Around 2928.04 million paired-end reads were used with an average mapping depth of ∼0.31× per accession. Identified polymorphic sites in this study will be useful in mapping the genomic regions responsible for important traits of tea. These resources lay the foundation for future research to understand the genetic diversity within tea germplasm and utilize genes that determine tea quality. This will further facilitate the understanding of tea genome evolution and tea metabolite pathways thus, offers an effective germplasm utilization for breeding the tea varieties. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Camellia sinensis , Camellia sinensis/genética , Haplótipos , Projeto HapMap , Melhoramento Vegetal , Chá , Genoma de Planta
4.
J Assoc Physicians India ; 71(10): 45-48, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38716523

RESUMO

Background and objective: The prevalence rate of hyperuricemia (HU) is comparatively higher in Asian countries than in the Western regions. Patients with coexisting HU and hypertension (HTN) are at greater risk of uncontrolled HTN, metabolic syndrome, and complications. This study aims to determine the prevalence of HU in individuals with HTN from the major geographical regions across India. Materials and methods: A cross-sectional, multicentric, observational study conducted in primary and secondary care centers from urban areas across different regions in India. Primary inclusion criteria were either a history of HTN or blood pressure systolic blood pressure (SBP) ≥140 and diastolic blood pressure (DBP) ≥ 90 mm Hg. A structured Google form was circulated among the participating healthcare practitioners from various participating centers to record the demographic, clinical, and biochemical parameters of patients visiting the respective centers. The data was consolidated and analyzed using Microsoft Excel. Screening for HU among individuals with HTN was based on two criteria-(1) self-reported diagnosed history of HU or (2) based on serum uric acid (SUA) levels >7 and > 6 mg/dL for men and women, respectively. The data were analyzed and represented using GraphPad Prism version 9. Results: Among the study population from 12 participating centers across different regions in India, 1,528 individuals had HTN. The mean age of the study participants was 57.4 ± 10.5 years with a male-to-female ratio of 1:1. The total prevalence rate of HU among individuals with HTN is 22.5% (N = 345). Gender-wise analysis indicated that 51.5% (177) of the males and 48.5% (168) of the females had HU. Among the patients with HTN and HU, 75% were overweight with a body mass index (BMI) of ≥25 kg/m2. The region-wise prevalence rate HU are North-17.4% (60), South-18% (62), Central-12.2% (42), East-29.6% (102), and West-22.9% (79). Conclusion: India's overall HU prevalence rate (22.5%) was comparable to that in other Asian countries (10-30%). However, the prevalence of HU among HTN patients varies between different regions of India (12.2-29.6%). Results from the participating centers located in an urban setting indicated that the eastern region had the highest HU prevalence (29.6%) and the Central region had the lowest HU prevalence rate (12.2%). The varying prevalence rate can be attributed to the diversity in geographical factors, genetic background or (family history of HU), sociocultural habits, and metabolic perturbations. Understanding this prevalence rate diversity can help strengthen the HU prevention measures to improve quality of life. How to cite this article: Patni B, Singh AN, Singh NK, et al. Prevalence of Hyperuricemia in Indian Population with Hypertension. J Assoc Physicians India 2023;71(10):45-48.


Assuntos
Hipertensão , Hiperuricemia , Humanos , Hiperuricemia/epidemiologia , Índia/epidemiologia , Hipertensão/epidemiologia , Masculino , Prevalência , Feminino , Pessoa de Meia-Idade , Estudos Transversais , Adulto , Idoso , Ácido Úrico/sangue
5.
Planta ; 255(5): 104, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35416522

RESUMO

MAIN CONCLUSION: The high affinity nitrate transport system is a potential target for improving nitrogen use efficiency of bread wheat growing either under optimal or limiting nitrate concentration. Nitrate uptake is one of the most important traits to take into account to improve nitrogen use efficiency in wheat (Triticum aestivum L.). In this study, we aimed to gain an insight into the regulation of NO3- -uptake and translocation systems in two contrasting wheat genotypes [K9107(K9) vs. Choti Lerma (CL)]. Different conditions, such as NO3--uptake rates, soil-types, N-free solid external media, and external NO3- levels at the seedling stage, were considered. We also studied the contribution of homeolog expression of five genes encoding two nitrate transporters in the root tissue, along with their overall transcript expression levels relative to specific external nitrate availability. We observed that K9107 had a higher 15N influx than Choti Lerma under both limiting as well as optimum external N conditions in vermiculite-perlite (i.e., N-free solid) medium, with the improved translocation efficiency in Choti Lerma. However, in different soil types, different levels of 15N-enrichment in both the genotypes were found. Our results also demonstrated that the partitioning of dry matter in root and shoot was different under these growing conditions. Moreover, K9107 showed significantly higher relative expression of TaNRT2.1 at the lowest and TaNPF6.1 and TaNPF6.2 at the highest external nitrate concentrations. We also observed genotype-specific and nitrate starvation-dependent homeolog expression bias in all five nitrate transporter genes. Our data suggest that K9107 had a higher NO3- influx capacity, involving different nitrate transporters, than Choti Lerma at the seedling stage.


Assuntos
Nitratos , Triticum , Pão , Genótipo , Transportadores de Nitrato , Nitratos/metabolismo , Nitrogênio/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Solo , Triticum/genética , Triticum/metabolismo
6.
J Sci Food Agric ; 102(14): 6309-6319, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35531753

RESUMO

BACKGROUND: Deficiency of Zn is a major soil constraint in rice plant growth and yield. Edaphic factors such as Zn deficiency in soil in relation to plant performance are still poorly understood. Here, we report promising quantitative trait loci (QTL) conferring tolerance to Zn deficiency, which were identified through biparental mapping. The experiment was conducted using the 236 F7 recombinant inbred line mapping population derived from the cross of Kinandang Patong (Zn deficiency sensitive) and A69-1 (Zn deficiency tolerant). RESULTS: A total of six QTLs (qLB-2B, qLB-4B, qPM-4B, qPM-6B, qRZC-4B, qSZC-4B) on chromosomes 2, 4 and 6 were identified for environment 1, whereas five QTLs (qLB-2 N, qLB-4 N, qPM-4 N, qRZC-4 N, qSZC-4 N) on chromosomes 2 and 4 were detected for environment 2. Among these, five major (51.30, 48.70, 28.60, 56.00, 52.00 > 10 R2 ) and one minor (5.40 < 10 R2 ) QTLs for environment 1 and four major (51.48, 50.20, 53.00, 48.00 > 10 R2 ) and one minor (4.44 < 10) QTLs for environment 2 for Zn deficiency tolerance with a logarithm of odd threshold value higher than 3 were identified. The QTLs (qLB-4B, qPM-4B, qRZC-4B, qSZC-4B, qLB-4 N, qPM-4 N, qRZC-4 N, qSZC-4 N) for leaf bronzing, plant mortality root zinc concentration and shoot zinc concentration identified on chromosome 4 were found to be the most promising and highly reproducible across the locations that explained phenotypic variation from 48.00% to 56.00% with the same marker interval RM6748-RM303. CONCLUSION: The new QTLs and its linked markers identified in the present study can be utilized for Zn deficiency tolerance in elite cultivars using marker-assisted backcrossing. © 2022 Society of Chemical Industry.


Assuntos
Oryza , Locos de Características Quantitativas , Oryza/genética , Fenótipo , Solo , Zinco
7.
Genomics ; 112(1): 659-668, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31029862

RESUMO

The NCBI database has >15 chloroplast (cp) genome sequences available for different Camellia species but none for C. assamica. There is no report of any mitochondrial (mt) genome in the Camellia genus or Theaceae family. With the strong believes that these organelle genomes can play a great tool for taxonomic and phylogenetic analysis, we successfully assembled and analyzed cp and mt genome of C. assamica. We assembled the complete mt genome of C. assamica in a single circular contig of 707,441 bp length comprising of a total of 66 annotated genes, including 35 protein-coding genes, 29 tRNAs and two rRNAs. The first ever cp genome of C. assamica resulted in a circular contig of 157,353 bp length with a typical quadripartite structure. Phylogenetic analysis based on these organelle genomes showed that C. assamica was closely related to C. sinensis and C. leptophylla. It also supports Caryophyllales as Superasterids.


Assuntos
Camellia/genética , DNA de Cloroplastos/genética , DNA Mitocondrial/genética , Genoma de Cloroplastos , Genoma Mitocondrial , Filogenia , Proteínas de Cloroplastos/genética , Proteínas Mitocondriais/genética , RNA de Cloroplastos/genética , RNA Mitocondrial/genética
8.
Physiol Mol Biol Plants ; 27(12): 2833-2848, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35035139

RESUMO

Pigeonpea (Cajanus cajan) is an important crop in semi-arid regions and a significant source of dietary proteins in India. The plant is sensitive to salinity stress, which adversely affects its productivity. Based on the dosage-dependent influence of salinity stress on the growth and ion contents in the young seedlings of pigeonpea, a comparative proteome analysis of control and salt stressed (150 mM NaCl) plants was conducted using 7 days-old seedlings. Among various amino acids, serine, aspartate and asparagine were the amino acids that showed increment in the root, whereas serine, aspartate and phenylalanine showed an upward trend in shoots under salt stress. Furthermore, a label-free and gel-free comparative Q-Tof, Liquid Chromatography-Mass spectrometry (LC-MS) revealed total of 118 differentially abundant proteins in roots and shoots with and without salt stress conditions. Proteins related to DNA-binding with one finger (Dof) transcription factor family and glycine betaine (GB) biosynthesis were differentially expressed in the shoot and root of the salinity-stressed seedlings. Exogenous application of choline on GB accumulation under salt stress showed the increase of GB pathway in C. cajan. Gene expression analysis for differentially abundant proteins revealed the higher induction of ethanolamine kinase (CcEthKin), choline-phosphate cytidylyltransferase 1-like (CcChoPh), serine hydroxymethyltransferase (CcSHMT) and Dof protein (CcDof29). The results indicate the importance of, choline precursor, serine biosynthetic pathways and glycine betaine synthesis in salinity stress tolerance. The glycine betaine protects plant from cellular damages and acts as osmoticum under stress condition. Protein interaction network (PIN) analysis demonstrated that 61% of the differentially expressed proteins exhibited positive interactions and 10% of them formed the center of the PIN. Further, The PIN analysis also highlighted the potential roles of the cytochrome c oxidases in sensing and signaling cascades governing salinity stress responses in pigeonpea. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01116-w.

9.
Mol Genet Genomics ; 295(5): 1211-1226, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32506235

RESUMO

North Eastern part of India such as Assam is inundated by flood every year where the farmers are forced to grow the traditional tall deep-water rice. Genetic improvement of this type of rice is slow because of insufficient knowledge about their genetic architecture and population structure. In the present investigation, the genetic diversity architecture of 94 deep-water rice genotypes of Assam and association mapping strategy was, for the first time, applied to determine the significant SNPs and genes for deep-water rice. These genotypes are known for their unique elongation ability under deep-water condition. The anaerobic germination (AG) related trait-associated genes identified here can provide affluent resources for rice breeding especially in flood-prone areas. We investigated the genome-wide association studies (GWAS) using 50 K rice genic SNP chip across 94 deep-water rice genotypes collected from different flood-prone districts/villages of Assam. Population structure and diversity analysis revealed that these genotypes were stratified into four sub-populations. Using GWAS approach, 20 significant genes were identified and found to be associated with AG-related traits. Of them, two most relevant genes (OsXDH1and SSXT) have been identified which explain phenotypic variability (R2 > 20%) in the population. These genes were located in Chr 3 (LOC_Os03g31550) which encodes for enzyme xanthine dehydrogenase 1(OsXDH1) and in Chr 12 (LOC_Os12g31350) which encodes for SSXT family protein. Both of these genes were found to be associated with anaerobic response index (increase in the coleoptile length under water in anaerobic condition with respect to control), respectively. Interestingly, OsXDH1is involved in purine catabolism pathway and acts as a scavenger of reactive oxygen species in plants, whereas SSXT is GRF1-interacting factor 3. These two candidate genes associated with AG of deep-water rice have been found to be reported for the first time. Thus, this study provides a greater resource for breeders not only for improvement of deep-water rice, but also for AG tolerant variety useful for direct-seeded rice in flood-affected areas.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Oryza/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Mapeamento Cromossômico , Germinação , Índia , Análise de Sequência com Séries de Oligonucleotídeos , Oryza/genética , Fenótipo , Melhoramento Vegetal , Proteínas de Plantas/genética
10.
Genetica ; 148(5-6): 253-268, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32949338

RESUMO

Availability of genome sequence of different legume species has provided an opportunity to characterize the abundance, distribution, and divergence of canonical intact long terminal retrotransposons (In-LTR-RT) superfamilies. Among seven legume species, Arachis ipaensis (Aip) showed the highest number of full-length canonical In-LTR-RTs (3325), followed by Glycine max (Gma, 2328), Vigna angularis (Van, 1625), Arachis durensis (Adu, 1348), Lotus japonicus (Lja, 1294), Medicago truncatula (Mtr, 788), and Circer arietinum (Car, 124). Divergence time analysis demonstrated that the amplification timeframe of LTR-RTs dramatically varied in different families. The average insertion time of Copia element varied from 0.51 (Van) to 1.37 million years ago (Mya) (Adu, and Aip), whereas that of Gypsy was between 0.22 (Mtr) and 1.82 Mya (Adu). Bayesian phylogenetic tree analysis suggested that the 1397 and 1917 reverse transcriptase (RT) domains of Copia and Gypsy families of the seven legume species were clustered into 7 and 14 major groups, respectively. The highest proportion (approximately 94.79-100%) of transposable element (TE)-associated genes assigned to pathways was mapped to metabolism-related pathways in all species. The results enabled the structural understanding of full-length In-LTR-RTs and will be valuable resource for the further study of the impact of TEs on gene structure and expression in legume species.


Assuntos
Fabaceae/genética , Filogenia , Retroelementos , Fabaceae/classificação , Genoma de Planta , Anotação de Sequência Molecular
11.
Physiol Plant ; 169(2): 194-213, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31912892

RESUMO

Saving water and enhancing rice productivity are consensually the most important research goals globally. While increasing canopy cover would enhance growth rates by higher photosynthetic carbon gain, an accompanied increase in transpiration would have a negative impact on saving water as well as for sustainability under water-limited conditions. Increased water use efficiency (WUE) by virtue of higher carbon assimilatory capacity can significantly circumvent this trade-off. Here, we report leaf mass area (LMA) has an important canopy architecture trait which when combined with superior carboxylation efficiency (CE) would achieve higher water productivity in rice. A set of 130 ethyl methanesulfonate induced mutants of an upland cultivar Nagina-22 (N22), was screened for leaf morphological traits leading to the identification of mutants differing in LMA. The wild-type, N22, along with a selected low-LMA (380-4-3) and two high-LMA mutants (392-9-1 and 457-1-3), all with comparable total leaf area, were raised under well-watered (100% Field Capacity (FC)) and water-limited (60% FC) conditions. Low Δ13 C and a higher RuBisCO content in high-LMA mutants indicated higher carboxylation efficiency, leading to increased carbon gain. Single parent backcross populations developed by crossing high and the low-LMA mutants with N22, separately, were screened for LMA, Δ13 C and growth traits. Comparison of dry matter accumulation per unit leaf area among the progenies differing in LMA and Δ13 C reiterated the association of LMA with CE. Results illustrated that high-LMA when combined with higher CE (low Δ13 C) lead to increased WUE and growth rates.


Assuntos
Carbono/metabolismo , Oryza/fisiologia , Folhas de Planta/fisiologia , Água/fisiologia , Fotossíntese
12.
Biotechnol Lett ; 42(6): 1035-1050, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32193655

RESUMO

OBJECTIVE: This study is to understand a comprehensive perspective on the molecular mechanisms underlying alternate bearing in mango (Mangifera indica L.) via transcriptome wide gene expression profiling of both regular and irregular mango varieties. RESULTS: Transcriptome data of regular (Neelam) and irregular (Dashehari) mango varieties revealed a total of 42,397 genes. Out of that 12,557 significantly differentially expressed genes were identified, of which 6453 were found to be up-regulated and 6104 were found to be down-regulated genes. Further, many of the common unigenes which were involved in hormonal regulation, metabolic processes, oxidative stress, ion homeostasis, alternate bearing etc. showed significant differences between these two different bearing habit varieties. Pathway analysis showed the highest numbers of differentially expressed genes were related with the metabolic processes (523). A total of 26 alternate bearing genes were identified and principally three genes viz; SPL-like gene (GBVX01015803.1), Rumani GA-20-oxidase-like gene (GBVX01019650.1) and LOC103420644 (GBVX01016070.1) were significantly differentially expressed (at log2FC and pval less than 0.05) while, only single gene (gbGBVW01004309.1) related with flowering was found to be differentially expressed. A total of 15 differentially expressed genes from three important pathways viz; alternate bearing, carbohydrate metabolism and hormone synthesis were validated using Real time PCR and results were at par with in silico analysis. CONCLUSIONS: Deciphering the differentially expressed genes (DEGs) and potential candidate genes associated with alternate bearing, hormone and carbohydrate metabolism pathways will help for illustrating the molecular mechanisms underlying the bearing tendencies in mango.


Assuntos
Mangifera , Transcriptoma/genética , Metabolismo dos Carboidratos/genética , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Mangifera/classificação , Mangifera/genética , Mangifera/metabolismo
13.
Plant Mol Biol ; 101(1-2): 163-182, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31273589

RESUMO

KEY MESSAGE: Deeper insights into the resistance response of Cajanus platycarpus were obtained based on comparative transcriptomics under Helicoverpa armigera infestation. Devastation by pod borer, Helicoverpa armigera is one of the major factors for stagnated productivity in Pigeonpea. Despite possessing a multitude of desirable traits including pod borer resistance, wild relatives of Cajanus spp. have remained under-utilized due to linkage drag and cross-incompatibility. Discovery and deployment of genes from them can provide means to tackle key pests like H. armigera. Transcriptomic differences between Cajanus platycarpus and Cajanus cajan during different time points (0, 18, 38, 96 h) of pod borer infestation were elucidated in this study. For the first ever time, we demonstrated captivating variations in their response; C. platycarpus apparently being reasonably agile with effectual transcriptomic reprogramming to deter the insect. Deeper insights into the differential response were obtained by identification of significant GO-terms related to herbivory followed by combined KEGG and ontology analyses. C. platycarpus portrayed a multilevel response with cardinal involvement of SAR, redox homeostasis and reconfiguration of primary metabolites leading to a comprehensive defense response. The credibility of RNA-seq analyses was ascertained by transient expression of selected putative insect resistance genes from C. platycarpus viz., chitinase (CHI4), Alpha-amylase/subtilisin inhibitor (IAAS) and Flavonoid 3_5 hydroxylase (C75A1) in Nicotiana benthamiana followed by efficacy analysis against H. armigera. qPCR validated results of the study provided innovative insights and useful leads for development of durable pod borer resistance.


Assuntos
Cajanus/genética , Resistência à Doença/genética , Mariposas/fisiologia , Doenças das Plantas/imunologia , Transcriptoma , Animais , Cajanus/imunologia , Cajanus/parasitologia , Perfilação da Expressão Gênica , Genômica , Herbivoria , Sequenciamento de Nucleotídeos em Larga Escala , Doenças das Plantas/parasitologia , Análise de Sequência de RNA
14.
Mol Genet Genomics ; 294(2): 479-492, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30604071

RESUMO

The genetic basis of selection for geographic adaptation and how it has contributed to population structure are unknown in tossa jute (Corchorus olitorius), an important bast fibre crop. We performed restriction site-associated DNA (RAD) sequencing-based (1115 RAD-SNPs) population genomic analyses to investigate genetic differentiation and population structure within a collection of 221 fibre-type lines from across nine geographic regions of the world. Indian populations, with relatively higher overall diversity, were significantly differentiated (based on FST and PCA) from the African and the other Asian populations. There is strong evidence that African C. olitorius was first introduced in peninsular India that could perhaps be its secondary centre of origin. However, multiple later introductions have occurred in central, eastern and northern India. Based on four assignment tests with different statistical bases, we infer that two ancestral subpopulations (African and Indian) structure the C. olitorius populations, but not in accordance with their geographic origins and patterns of diversity. Our results advocate recent migration of C. olitorius through introduction and germplasm exchange across geographical boundaries. We argue that high intraspecific genetic admixture could be associated with increased genetic variance within Indian populations. Employing both subpopulation (FST/GST-outlier) and individual-based (PCAdapt) tests, we detected putative RAD-SNP loci under selection and demonstrated that bast fibre production was an artificial, while abiotic and biotic stresses were natural selection pressures in C. olitorius adaptation. By reinferring the population structure without outlier loci, we propose ad interim that C. olitorius was possibly domesticated as a fibre crop in the Indian subcontinent.


Assuntos
Adaptação Fisiológica/genética , Corchorus/genética , Genética Populacional , Seleção Genética/genética , Deriva Genética , Genômica , Índia , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
15.
Mol Biol Rep ; 46(2): 2067-2084, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30759299

RESUMO

RNA editing is a process which leads to post-transcriptional alteration of the nucleotide sequence of the corresponding mRNA molecule which may or may not lead to changes at the protein level. Apart from its role in providing variability at the transcript and protein levels, sometimes, such changes may lead to abnormal expression of the mitochondrial gene leading to a cytoplasmic male sterile phenotype. Here we report the editing status of 20 major mitochondrial transcripts in both male sterile (AKCMS11) and male fertile (AKPR303) pigeonpea genotypes. The validation of the predicted editing sites was done by mapping RNA-seq reads onto the amplified mitochondrial genes, and 165 and 159 editing sites were observed in bud tissues of the male sterile and fertile plant respectively. Among the resulting amino acid alterations, the most frequent one was the conversion of hydrophilic amino acids to hydrophobic. The alterations thus detected in our study indicates differential editing, but no major change in terms of the abnormal protein structure was detected. However, the above investigation provides an insight into the behaviour of pigeonpea mitochondrial genome in native and alloplasmic state and could hold clues in identification of editing factors and their role in adaptive evolution in pigeonpea.


Assuntos
Cajanus/genética , Fertilidade/genética , Mitocôndrias/genética , Sequência de Bases , Citoplasma/metabolismo , Citosol/metabolismo , Perfilação da Expressão Gênica/métodos , Genes Mitocondriais/genética , Genes de Plantas/genética , Edição de RNA/genética , Edição de RNA/fisiologia , RNA de Plantas/genética , Transcriptoma/genética
16.
BMC Plant Biol ; 18(1): 141, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-29986650

RESUMO

BACKGROUND: Water permeability governed by seed coat is a major facet of seed crops, especially soybean, whose seeds lack physiological dormancy and experience rapid deterioration in seed viability under prolonged storage. Moreover, the physiological and chemical characteristics of soybean seeds are known to vary with seed coat color. Thus, to underpin the genes controlling water permeability in soybean seeds, we carried out an in-depth characterization of the associated genomic variation. RESULTS: In the present study, we have analyzed genomic variation between cultivated soybean and its wild progenitor with implications on seed permeability, a trait related to seed storability. Whole genome resequencing of G.max and G. soja, identified SNPs and InDels which were further characterized on the basis of their genomic location and impact on gene expression. Chromosomal density distribution of the variation was assessed across the genome and genes carrying SNPs and InDels were characterized into different metabolic pathways. Seed hardiness is a complex trait that is affected by the allelic constitution of a genetic locus as well as by a tricky web of plant hormone interactions. Seven genes that hold a probable role in the determination of seed permeability were selected and their expression differences at different stages of water imbibition were analyzed. Variant interaction network derived 205 downstream interacting partners of 7 genes confirmed their role in seed related traits. Interestingly, genes encoding for Type I- Inositol polyphosphate 5 phosphatase1 and E3 Ubiquitin ligase could differentiate parental genotypes, revealed protein conformational deformations and were found to segregate among RILs in coherence with their permeability scores. The 2 identified genes, thus showed a preliminary association with the desirable permeability characteristics. CONCLUSION: In the light of above outcomes, 2 genes were identified that revealed preliminary, but a relevant association with soybean seed permeability trait and hence could serve as a primary material for understanding the molecular pathways controlling seed permeability traits in soybean.


Assuntos
Glycine max/genética , Mutação INDEL/genética , Polimorfismo de Nucleotídeo Único/genética , Sementes/metabolismo , Cromossomos de Plantas/genética , Genes de Plantas/genética , Genes de Plantas/fisiologia , Estudo de Associação Genômica Ampla , Mutação INDEL/fisiologia , Permeabilidade , Polimorfismo de Nucleotídeo Único/fisiologia , Glycine max/metabolismo , Glycine max/fisiologia
17.
Cell Mol Life Sci ; 74(12): 2239-2261, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28204845

RESUMO

PURPOSE: microRNA (miRNA) regulates diverse biological mechanisms and metabolisms in plants and animals. Thus, the discoveries of miRNA has revolutionized the life sciences and medical research.The miRNA represses and cleaves the targeted mRNA by binding perfect or near perfect or imperfect complementary base pairs by RNA-induced silencing complex (RISC) formation during biogenesis process. One miRNA interacts with one or more mRNA genes and vice versa, hence takes part in causing various diseases. In this paper, the different microRNA target databases and their functional annotations developed by various researchers have been reviewed. The concurrent research review aims at comprehending the significance of miRNA and presenting the existing status of annotated miRNA target resources built by researchers henceforth discovering the knowledge for diagnosis and prognosis. METHODS AND RESULTS: This review discusses the applications and developmental methodologies for constructing target database as well as the utility of user interface design. An integrated architecture is drawn and a graphically comparative study of present status of miRNA targets in diverse diseases and various biological processes is performed. These databases comprise of information such as miRNA target-associated disease, transcription factor binding sites (TFBSs) in miRNA genomic locations, polymorphism in miRNA target, A-to-I edited target, Gene Ontology (GO), genome annotations, KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, target expression analysis, TF-miRNA and miRNA-mRNA interaction networks, drugs-targets interactions, etc. CONCLUSION: miRNA target databases contain diverse experimentally and computationally predicted target through various algorithms. The comparison of various miRNA target database has been performed on various parameters. The computationally predicted target databases suffer from false positive information as there is no common theory for prediction of miRNA targets. The review conclusion emphasizes the need of more intelligent computational improvement for the miRNA target identification, their functional annotations and datasbase development.


Assuntos
Bases de Dados Genéticas , MicroRNAs/genética , Anotação de Sequência Molecular , Animais , Biologia Computacional , Humanos , MicroRNAs/metabolismo , Modelos Genéticos , Polimorfismo de Nucleotídeo Único/genética
18.
J Sci Food Agric ; 97(13): 4526-4531, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28332204

RESUMO

BACKGROUND: Hexaploid wheat (Triticum aestivum L.) dominates the list of the most important human food sources ever. Its complex genetic background is the reason behind the wide diversity that exists in nutritional as well as food end-product quality. High-molecular-weight glutenin sub-units (HMW-GS) are the main grain storage proteins in the endosperm of wheat and related species. It is well established that the composition and quantity of allelic variation in HMW-GS genes substantially affect the taste and appearance of dough products and therefore work in this area is highly desired. RESULTS: A significant positive effect on wheat dough quality traits was observed among near isogenic lines of HMW-GS sub-units 20 and 2.2 in wheat variety HD2329 during quality evaluation of data generated over 2 years. A remarkably significant (P < 0.01) effect was observed on dough quality parameters like ratio of wet gluten/dry gluten, SDS sedimentation, farinogram parameters, and bread/chapatti traits whereas flour protein and dry gluten content showed an insignificant effect. CONCLUSION: HMW-GS 20 was found to be superior to HMW-GS 2.2 in terms of dough quality and both the near isogenic lines developed by us were found to be highly superior to the recurrent parent HD2329. As we know that the improvement of flour quality based on superior HMW-GS alleles is necessary to meet changing consumer demand, the study can be of immense use to future researchers who can target these HMW sub-units 20 and 2.2 in breeding programmes for the improvement of wheat end-product quality. © 2017 Society of Chemical Industry.


Assuntos
Pão/análise , Triticum/química , Cruzamento , Farinha/análise , Glutens/análise , Peso Molecular , Melhoria de Qualidade , Triticum/classificação , Triticum/genética
19.
Plant Cell Rep ; 35(6): 1273-86, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26993328

RESUMO

KEY MESSAGE: Differentially expressed antioxidant enzymes, amino acids and proteins in contrasting rice genotypes, and co-location of their genes in the QTLs mapped using bi-parental population, indicated their role in salt tolerance. Soil salinity is a major environmental constraint limiting rice productivity. Salt-tolerant 'CSR27', salt-sensitive 'MI48'and their extreme tolerant and sensitive recombinant inbred line (RIL) progenies were used for the elucidation of salt stress tolerance metabolic pathways. Salt stress-mediated biochemical and molecular changes were analyzed in the two parents along with bulked-tolerant (BT) and bulked-sensitive (BS) extreme RILs. The tolerant parent and BT RILs suffered much lower reduction in the chlorophyll as compared to their sensitive counterparts. Activities of antioxidant enzymes superoxide dismutase (SOD) and peroxidase (POD) and non-enzymatic antioxidant ascorbic acid were much higher in salt-stressed CSR27 and BT RILs than MI48 and BS RILs. Further, the tolerant lines showed significant enhancement in the levels of amino acids methionine and proline in response to salt stress in comparison to the sensitive lines. Similarly, the tolerant genotypes showed minimal reduction in cysteine content whereas sensitive genotypes showed a sharp reduction. Real time PCR analysis confirmed the induction of methionine biosynthetic pathway (MBP) enzymes cystathionine-ß synthase (CbS), S-adenosyl methionine synthase (SAMS), S-adenosyl methionine decarboxylase (SAMDC) and serine hydroxymethyl transferase (SHMT) genes in tolerant lines, suggesting potential role of the MBP in conferring salt tolerance in rice variety CSR27. Proteome profiling also confirmed higher expression of SOD, POD and plastidic CbS and other proteins in the tolerant lines, whose genes were co-located in the QTL intervals for salt tolerance mapped in the RIL population. The study signifies integrated biochemical-molecular approach for identifying salt tolerance genes for genetic improvement for stress tolerant rice varieties.


Assuntos
Oryza/genética , Tolerância ao Sal/genética , Aminoácidos/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Genótipo , Peroxidação de Lipídeos , Redes e Vias Metabólicas/genética , Redes e Vias Metabólicas/fisiologia , Oryza/fisiologia , Fotossíntese , Locos de Características Quantitativas/genética , Tolerância ao Sal/fisiologia
20.
Plant Cell Rep ; 35(11): 2295-2308, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27486025

RESUMO

KEY MESSAGE: The association of natural genetic variations of salt-responsive candidate genes belonging to different gene families with salt-tolerance phenotype and their haplotype variation in different geographic regions. Soil salinity covers a large part of the arable land of the world and is a major factor for yield losses in salt-sensitive crops, such as rice. Different gene families that respond to salinity have been identified in rice, but limited success has been achieved in developing salt-tolerant cultivars. Therefore, 21 salt stress-responsive candidate genes belonging to different gene families were re-sequenced to analyse their genetic variation and association with salt tolerance. The average single nucleotide polymorphism (SNP) density was 16 SNPs per kbp amongst these genes. The identified nucleotide and haplotype diversity showed comparatively higher genetic variation in the transporter family genes. Linkage disequilibrium (LD) analysis showed significant associations of SNPs in BADH2, HsfC1B, MIPS1, MIPS2, MYB2, NHX1, NHX2, NHX3, P5CS1, P5CS2, PIP1, SIK1, SOS1, and SOS2 genes with the salt-tolerant phenotype. A combined analysis of SNPs in the 21 candidate genes and eight other HKT transporter genes produced two separate clusters of tolerant genotypes, carrying unique SNPs in the ion transporter and osmoticum-related genes. Haplotype network analysis showed all the major and few minor alleles distributed over distant geographic regions. Minor haplotypes may be recently evolved alleles which migrated to distant geographic regions and may represent recent expansion of Indian wild rice. The analysis of genetic variation in different gene families identified the relationship between adaptive variations and functional significance of the genes. Introgression of the identified alleles from wild relatives may enhance the salt tolerance and consequently rice production in the salinity-affected areas.


Assuntos
Genes de Plantas , Estudos de Associação Genética , Haplótipos/genética , Oryza/genética , Oryza/fisiologia , Tolerância ao Sal/genética , Sementes/genética , Variação Genética , Genótipo , Geografia , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA