Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Physiol Plant ; 176(4): e14481, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39164920

RESUMO

Potatoes (Solanum tuberosum L.) are one of the world's major staple crops. In stored potatoes, Pectobacterium carotovorum subsp carotovorum causes soft rot. As a result of the rapid spread of the disease during post-harvest storage, potato production suffers huge losses. By detecting disease early and controlling it promptly, losses can be minimized. The profile of volatiles of plants can be altered by phytopathogens. Identifying unique volatile organic compounds (VOCs) as biomarkers for early disease detection has attracted considerable research attention. This study compared the VOC profiles of healthy and soft rot inoculated potatoes (cv. "Kufri Pukhraj") over a time course using gas chromatography-mass spectrometry (GC-MS). It was found that there was a differential emission of 27 VOCs between healthy non-inoculated potatoes and soft rot inoculated potatoes. Among 27 VOCs, only five (1-octen-3-ol, 2-methylisoborneol, 3-octanone, 1,4-dimethyladamantane, and 2-methyl-2-bornene) were found exclusively in soft rot inoculated potatoes, suggesting them potential biomarker for non-destructive prediction of soft rot disease in potatoes. Reactive oxygen species (H2O2) and phytohormone methyl-jasmonate (MeJa) levels increased transiently on infection with soft rot. The analysis of the primary metabolism of soft rot infected tubers at three different stages suggests metabolic reprogramming that occurs at the early stage of infection, possibly leading to biomarker volatile emission. Based on these results, it appears that the initial potato-soft rot bacteria interaction initiates metabolic reprogramming mainly through H2O2 and the MeJa signalling pathway. In asymptomatic potatoes, these biomarkers may be promising candidates for non-destructive detection of soft rot at an early stage. These biomarkers can be used to develop an e-nose sensor to predict soft rot in the future.


Assuntos
Biomarcadores , Doenças das Plantas , Reguladores de Crescimento de Plantas , Solanum tuberosum , Compostos Orgânicos Voláteis , Solanum tuberosum/microbiologia , Solanum tuberosum/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/análise , Doenças das Plantas/microbiologia , Biomarcadores/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Ciclopentanos/metabolismo , Pectobacterium carotovorum/patogenicidade , Pectobacterium carotovorum/fisiologia , Oxilipinas/metabolismo , Oxilipinas/análise , Tubérculos/microbiologia , Tubérculos/metabolismo
2.
Plant Physiol Biochem ; 208: 108532, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38503189

RESUMO

Potatoes are a staple crop with many health benefits. Postharvest storage of potatoes takes a considerable amount of time. Potato dry rot is one of the most serious postharvest storage diseases, caused primarily by the fungus Fusarium sambucinum. It is possible to minimize losses if disease is detected early, which allows it to be controlled promptly. A phytopathogen infection can alter the volatile profile of plants. Identifying unique volatile organic compounds (VOCs) as biomarkers for early disease detection is an area of considerable research interest. In this study, we compared the VOC profiles of healthy and dry rot inoculated potatoes (cv. "Kufri Pukhraj") over a time course using gas chromatography-mass spectrometry (GC-MS). There were 29 differentially emitting VOCs between healthy and dry rot inoculated potatoes. Nevertheless, only four of these compounds (linalool tetrahydride, γ-muurolene, alloaromadendrene, and α-isomethyl ionone) were exclusively found in dry rot inoculated potatoes, and hence they were considered biomarkers. Furthermore, reactive oxygen species (ROS) levels were altered in potatoes that were inoculated with dry rot, suggesting a role for ROS signaling in differential VOC emissions. In the early stages of dry rot infection, when symptoms were barely visible, these four biomarker VOCs were robustly useful in distinguishing healthy and dry rot-infected potatoes. These novel biomarkers associated with this disease are promising candidates for non-destructive detection of dry rot in stored potatoes at an early asymptomatic stage. These biomarkers can be used to develop an e-nose sensor to predict dry rot in the future.


Assuntos
Solanum tuberosum , Compostos Orgânicos Voláteis , Espécies Reativas de Oxigênio , Compostos Orgânicos Voláteis/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Biomarcadores
3.
Int J Biol Macromol ; 265(Pt 1): 130811, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490399

RESUMO

Lipid Transfer Protein1 (LTP1) is a cationic, multifaceted protein belonging to the pathogenesis-related protein (PR14) family. Despite being involved in diverse physiological processes and defense mechanisms, the precise in-vivo role of LTP1 remains undiscovered. This work presents the characterization of recombinant Citrus sinensis LTP1 (CsLTP1) along with lipid binding studies through in-silico and in-vitro approaches. CsLTP1 demonstrated great thermal and pH stability with a huge biotechnological potential. It showed in-vitro binding capacity with jasmonic acid and lipids involved in regulating plant immune responses. Gene expression profiling indicated a significant upregulation of CsLTP1 in Candidatus-infected Citrus plants. CsLTP1 disrupted the cell membrane integrity of various pathogens, making it a potent antimicrobial agent. Further, in-vivo antimicrobial and insecticidal properties of CsLTP1 have been explored. The impact of exogenous CsLTP1 treatment on rice crop metabolism for managing blight disease has been studied using GC-MS. CsLTP1 triggered crucial metabolic pathways in rice plants while controlling the blight disease. CsLTP1 effectively inhibited Helicoverpa armigera larvae by impeding mid-gut α-amylase activity and obstructing its developmental stages. This study highlights the pivotal role of CsLTP1 in plant defense by offering insights for developing multi-target therapeutic agent or disease-resistant varieties to comprehensively tackle the challenges towards crop protection.


Assuntos
Anti-Infecciosos , Citrus sinensis , Citrus , Citrus sinensis/metabolismo , Proteínas de Transporte/metabolismo , Anti-Infecciosos/farmacologia , Anti-Infecciosos/metabolismo , Citrus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA