Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 169(1): 674-89, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26195571

RESUMO

Noccaea caerulescens (formerly known as Thlaspi caerulescens), an extremophile heavy metal hyperaccumulator model plant in the Brassicaceae family, is a morphologically and phenotypically diverse species exhibiting metal tolerance and leaf accumulation of zinc, cadmium, and nickel. Here, we provide a detailed genome structure of the approximately 267-Mb N. caerulescens genome, which has descended from seven chromosomes of the ancestral proto-Calepineae Karyotype (n = 7) through an unusually high number of pericentric inversions. Genome analysis in two other related species, Noccaea jankae and Raparia bulbosa, showed that all three species, and thus probably the entire Coluteocarpeae tribe, have descended from the proto-Calepineae Karyotype. All three analyzed species share the chromosome structure of six out of seven chromosomes and an unusually high metal accumulation in leaves, which remains moderate in N. jankae and R. bulbosa and is extreme in N. caerulescens. Among these species, N. caerulescens has the most derived karyotype, with species-specific inversions on chromosome NC6, which grouped onto its bottom arm functionally related genes of zinc and iron metal homeostasis comprising the major candidate genes NICOTIANAMINE SYNTHASE2 and ZINC-INDUCED FACILITATOR-LIKE1. Concurrently, copper and organellar metal homeostasis genes, which are functionally unrelated to the extreme traits characteristic of N. caerulescens, were grouped onto the top arm of NC6. Compared with Arabidopsis thaliana, more distal chromosomal positions in N. caerulescens were enriched among more highly expressed metal homeostasis genes but not among other groups of genes. Thus, chromosome rearrangements could have facilitated the evolution of enhanced metal homeostasis gene expression, a known hallmark of metal hyperaccumulation.


Assuntos
Brassicaceae/genética , Brassicaceae/metabolismo , Genoma de Planta , Metais Pesados/metabolismo , Solo/química , Cromossomos de Plantas/genética , Diploide , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Rearranjo Gênico , Homeostase , Cariotipagem , Folhas de Planta/química , Especificidade da Espécie
2.
Plant Cell ; 24(2): 738-61, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22374396

RESUMO

The transition metal copper (Cu) is essential for all living organisms but is toxic when present in excess. To identify Cu deficiency responses comprehensively, we conducted genome-wide sequencing-based transcript profiling of Arabidopsis thaliana wild-type plants and of a mutant defective in the gene encoding SQUAMOSA PROMOTER BINDING PROTEIN-LIKE7 (SPL7), which acts as a transcriptional regulator of Cu deficiency responses. In response to Cu deficiency, FERRIC REDUCTASE OXIDASE5 (FRO5) and FRO4 transcript levels increased strongly, in an SPL7-dependent manner. Biochemical assays and confocal imaging of a Cu-specific fluorophore showed that high-affinity root Cu uptake requires prior FRO5/FRO4-dependent Cu(II)-specific reduction to Cu(I) and SPL7 function. Plant iron (Fe) deficiency markers were activated in Cu-deficient media, in which reduced growth of the spl7 mutant was partially rescued by Fe supplementation. Cultivation in Cu-deficient media caused a defect in root-to-shoot Fe translocation, which was exacerbated in spl7 and associated with a lack of ferroxidase activity. This is consistent with a possible role for a multicopper oxidase in Arabidopsis Fe homeostasis, as previously described in yeast, humans, and green algae. These insights into root Cu uptake and the interaction between Cu and Fe homeostasis will advance plant nutrition, crop breeding, and biogeochemical research.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Cobre/metabolismo , Proteínas de Ligação a DNA/metabolismo , FMN Redutase/genética , Ferro/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Homeostase , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , RNA de Plantas/genética , Fatores de Transcrição/genética , Transcriptoma
3.
Nat Commun ; 9(1): 649, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29440741

RESUMO

Domesticated species are impacted in unintended ways during domestication and breeding. Changes in the nature and intensity of selection impart genetic drift, reduce diversity, and increase the frequency of deleterious alleles. Such outcomes constrain our ability to expand the cultivation of crops into environments that differ from those under which domestication occurred. We address this need in chickpea, an important pulse legume, by harnessing the diversity of wild crop relatives. We document an extreme domestication-related genetic bottleneck and decipher the genetic history of wild populations. We provide evidence of ancestral adaptations for seed coat color crypsis, estimate the impact of environment on genetic structure and trait values, and demonstrate variation between wild and cultivated accessions for agronomic properties. A resource of genotyped, association mapping progeny functionally links the wild and cultivated gene pools and is an essential resource chickpea for improvement, while our methods inform collection of other wild crop progenitor species.


Assuntos
Cicer/genética , Produtos Agrícolas/genética , Agricultura , Cicer/classificação , Cicer/fisiologia , Ecologia , Meio Ambiente , Variação Genética , Genoma de Planta , Genômica , Genótipo , Sementes/classificação , Sementes/genética , Sementes/fisiologia
4.
PLoS One ; 6(1): e14531, 2011 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-21249189

RESUMO

Whether HIV-1 evolution in infected individuals is dominated by deterministic or stochastic effects remains unclear because current estimates of the effective population size of HIV-1 in vivo, N(e), are widely varying. Models assuming HIV-1 evolution to be neutral estimate N(e)~10²-104, smaller than the inverse mutation rate of HIV-1 (~105), implying the predominance of stochastic forces. In contrast, a model that includes selection estimates N(e)>105, suggesting that deterministic forces would hold sway. The consequent uncertainty in the nature of HIV-1 evolution compromises our ability to describe disease progression and outcomes of therapy. We perform detailed bit-string simulations of viral evolution that consider large genome lengths and incorporate the key evolutionary processes underlying the genomic diversification of HIV-1 in infected individuals, namely, mutation, multiple infections of cells, recombination, selection, and epistatic interactions between multiple loci. Our simulations describe quantitatively the evolution of HIV-1 diversity and divergence in patients. From comparisons of our simulations with patient data, we estimate N(e)~10³-104, implying predominantly stochastic evolution. Interestingly, we find that N(e) and the viral generation time are correlated with the disease progression time, presenting a route to a priori prediction of disease progression in patients. Further, we show that the previous estimate of N(e)>105 reduces as the frequencies of multiple infections of cells and recombination assumed increase. Our simulations with N(e)~10³-104 may be employed to estimate markers of disease progression and outcomes of therapy that depend on the evolution of viral diversity and divergence.


Assuntos
Simulação por Computador , Evolução Molecular , HIV-1/genética , Mutação , Linhagem Celular , Progressão da Doença , Genoma Viral , Infecções por HIV/genética , Humanos , Recombinação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA