Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
New Phytol ; 242(1): 170-191, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38348532

RESUMO

Plants activate immunity upon recognition of pathogen-associated molecular patterns. Although phytopathogens have evolved a set of effector proteins to counteract plant immunity, some effectors are perceived by hosts and induce immune responses. Here, we show that two secreted ribonuclease effectors, SRN1 and SRN2, encoded in a phytopathogenic fungus, Colletotrichum orbiculare, induce cell death in a signal peptide- and catalytic residue-dependent manner, when transiently expressed in Nicotiana benthamiana. The pervasive presence of SRN genes across Colletotrichum species suggested the conserved roles. Using a transient gene expression system in cucumber (Cucumis sativus), an original host of C. orbiculare, we show that SRN1 and SRN2 potentiate host pattern-triggered immunity responses. Consistent with this, C. orbiculare SRN1 and SRN2 deletion mutants exhibited increased virulence on the host. In vitro analysis revealed that SRN1 specifically cleaves single-stranded RNAs at guanosine, leaving a 3'-end phosphate. Importantly, the potentiation of C. sativus responses by SRN1 and SRN2, present in the apoplast, depends on ribonuclease catalytic residues. We propose that the pathogen-derived apoplastic guanosine-specific single-stranded endoribonucleases lead to immunity potentiation in plants.


Assuntos
Cucumis sativus , Ribonucleases , Cucumis sativus/microbiologia , Fungos , Plantas , Imunidade , Doenças das Plantas/microbiologia , Imunidade Vegetal
2.
New Phytol ; 238(4): 1578-1592, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36939621

RESUMO

The hemibiotrophic fungal plant pathogen Colletotrichum orbiculare is predicted to secrete hundreds of effector proteins when the pathogen infects cucurbit crops, such as cucumber and melon, and tobacco (Nicotiana benthamiana), a distantly related Solanaceae species. Here, we report the identification of sets of C. orbiculare effector genes that are differentially required for fungal virulence to two phylogenetically distant host species. Through targeted gene knockout screening of C. orbiculare 'core' effector candidates defined based on in planta gene expression, we identified: four host-specific virulence effectors (named effector proteins for cucurbit infection, or EPCs) that are required for full virulence of C. orbiculare to cucurbit hosts, but not to the Solanaceae host N. benthamiana; and five host-nonspecific virulence effectors, which collectively contribute to fungal virulence to both hosts. During host infection, only a small subset of genes, including the host-specific EPC effector genes, showed preferential expression on one of the hosts, while gene expression profiles of the majority of other genes, including the five host-nonspecific effector genes, were common to both hosts. This work suggests that C. orbiculare adopts a host-specific effector deployment strategy, in addition to general host-blind virulence mechanisms, for adaptation to cucurbit hosts.


Assuntos
Cucumis sativus , Cucurbitaceae , Virulência/genética , Especificidade de Hospedeiro , Cucumis sativus/microbiologia , Cucurbitaceae/genética , Cucurbitaceae/metabolismo , Cucurbitaceae/microbiologia , Transcriptoma , Nicotiana/genética , Doenças das Plantas/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
3.
J Biol Chem ; 297(6): 101370, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34756891

RESUMO

Fungal plant pathogens secrete virulence-related proteins, called effectors, to establish host infection; however, the details are not fully understood yet. Functional screening of effector candidates using Agrobacterium-mediated transient expression assay in Nicotiana benthamiana identified two virulence-related effectors, named SIB1 and SIB2 (Suppression of Immunity in N. benthamiana), of an anthracnose fungus Colletotrichum orbiculare, which infects both cucurbits and N. benthamiana. The Agrobacterium-mediated transient expression of SIB1 or SIB2 increased the susceptibility of N. benthamiana to C. orbiculare, which suggested these effectors can suppress immune responses in N. benthamiana. The presence of SIB1 and SIB2 homologs was found to be limited to the genus Colletotrichum. SIB1 suppressed both (i) the generation of reactive oxygen species triggered by two different pathogen-associated molecular patterns, chitin and flg22, and (ii) the cell death response triggered by the Phytophthora infestans INF1 elicitin in N. benthamiana. We determined the NMR-based structure of SIB1 to obtain its structural insights. The three-dimensional structure of SIB1 comprises five ß-strands, each containing three disulfide bonds. The overall conformation was found to be a cylindrical shape, such as the well-known antiparallel ß-barrel structure. However, the ß-strands were found to display a unique topology, one pair of these ß-strands formed a parallel ß-sheet. These results suggest that the effector SIB1 present in Colletotrichum fungi has unique structural features and can suppress pathogen-associated molecular pattern-triggered immunity in N. benthamiana.


Assuntos
Colletotrichum/metabolismo , Proteínas Fúngicas/fisiologia , Imunidade Vegetal/fisiologia , Agrobacterium/patogenicidade , Sequência de Aminoácidos , Colletotrichum/patogenicidade , Proteínas Fúngicas/química , Interações Hospedeiro-Patógeno , Conformação Proteica , Espécies Reativas de Oxigênio/metabolismo , Homologia de Sequência de Aminoácidos , Nicotiana/metabolismo , Nicotiana/microbiologia , Virulência
4.
Plant J ; 108(4): 1005-1019, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34506685

RESUMO

Arabidopsis non-host resistance against non-adapted fungal pathogens including Colletotrichum fungi consists of pre-invasive and post-invasive immune responses. Here we report that non-host resistance against non-adapted Colletotrichum spp. in Arabidopsis leaves requires CURLY LEAF (CLF), which is critical for leaf development, flowering and growth. Microscopic analysis of pathogen behavior revealed a requirement for CLF in both pre- and post-invasive non-host resistance. The loss of a functional SEPALLATA3 (SEP3) gene, ectopically expressed in clf mutant leaves, suppressed not only the defect of the clf plants in growth and leaf development but also a defect in non-host resistance against the non-adapted Colletotrichum tropicale. However, the ectopic overexpression of SEP3 in Arabidopsis wild-type leaves did not disrupt the non-host resistance. The expression of multiple plant defensin (PDF) genes that are involved in non-host resistance against C. tropicale was repressed in clf leaves. Moreover, the Octadecanoid-responsive Arabidopsis 59 (ORA59) gene, which is required for PDF expression, was also repressed in clf leaves. Notably, when SEP3 was overexpressed in the ora59 mutant background, C. tropicale produced clear lesions in the inoculated leaves, indicating an impairment in non-host resistance. Furthermore, ora59 plants overexpressing SEP3 exhibited a defect in leaf immunity to the adapted Colletotrichum higginsianum. Since the ora59 plants overexpressing SEP3 did not display obvious leaf curling or reduced growth, in contrast to the clf mutants, these results strongly suggest that concomitant SEP3 repression and ORA59 induction via CLF are required for Arabidopsis leaf immunity to Colletotrichum fungi, uncoupled from CLF's function in growth and leaf development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Colletotrichum/fisiologia , Proteínas de Homeodomínio/metabolismo , Doenças das Plantas/imunologia , Fatores de Transcrição/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/imunologia , Proteínas de Arabidopsis/genética , Defensinas , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Mutação com Perda de Função , Doenças das Plantas/microbiologia , Imunidade Vegetal , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/imunologia , Fatores de Transcrição/genética
5.
Proc Natl Acad Sci U S A ; 116(2): 496-505, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30584105

RESUMO

Plant pathogens have optimized their own effector sets to adapt to their hosts. However, certain effectors, regarded as core effectors, are conserved among various pathogens, and may therefore play an important and common role in pathogen virulence. We report here that the widely distributed fungal effector NIS1 targets host immune components that transmit signaling from pattern recognition receptors (PRRs) in plants. NIS1 from two Colletotrichum spp. suppressed the hypersensitive response and oxidative burst, both of which are induced by pathogen-derived molecules, in Nicotiana benthamianaMagnaporthe oryzae NIS1 also suppressed the two defense responses, although this pathogen likely acquired the NIS1 gene via horizontal transfer from Basidiomycota. Interestingly, the root endophyte Colletotrichum tofieldiae also possesses a NIS1 homolog that can suppress the oxidative burst in N. benthamiana We show that NIS1 of multiple pathogens commonly interacts with the PRR-associated kinases BAK1 and BIK1, thereby inhibiting their kinase activities and the BIK1-NADPH oxidase interaction. Furthermore, mutations in the NIS1-targeting proteins, i.e., BAK1 and BIK1, in Arabidopsis thaliana also resulted in reduced immunity to Colletotrichum fungi. Finally, M. oryzae lacking NIS1 displayed significantly reduced virulence on rice and barley, its hosts. Our study therefore reveals that a broad range of filamentous fungi maintain and utilize the core effector NIS1 to establish infection in their host plants and perhaps also beneficial interactions, by targeting conserved and central PRR-associated kinases that are also known to be targeted by bacterial effectors.


Assuntos
Proteínas de Transporte/imunologia , Proteínas Fúngicas/imunologia , Magnaporthe/imunologia , Nicotiana , Doenças das Plantas , Proteínas de Plantas/imunologia , Proteínas Serina-Treonina Quinases/imunologia , Transdução de Sinais/imunologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Nicotiana/imunologia , Nicotiana/microbiologia
6.
Plant Physiol ; 176(1): 538-551, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29122987

RESUMO

Glutathione (GSH) and indole glucosinolates (IGs) exert key functions in the immune system of the model plant Arabidopsis (Arabidopsis thaliana). Appropriate GSH levels are important for execution of both pre- and postinvasive disease resistance mechanisms to invasive pathogens, whereas an intact PENETRATION2 (PEN2)-pathway for IG metabolism is essential for preinvasive resistance in this species. Earlier indirect evidence suggested that the latter pathway involves conjugation of GSH with unstable products of IG metabolism and further processing of the resulting adducts to biologically active molecules. Here we describe the identification of Glutathione-S-Transferase class-tau member 13 (GSTU13) as an indispensable component of the PEN2 immune pathway for IG metabolism. gstu13 mutant plants are defective in the pathogen-triggered biosynthesis of end products of the PEN2 pathway, including 4-O-ß-d-glucosyl-indol-3-yl formamide, indole-3-ylmethyl amine, and raphanusamic acid. In line with this metabolic defect, lack of functional GSTU13 results in enhanced disease susceptibility toward several fungal pathogens including Erysiphe pisi, Colletotrichum gloeosporioides, and Plectosphaerella cucumerina Seedlings of gstu13 plants fail also to deposit the (1,3)-ß-glucan cell wall polymer, callose, after recognition of the bacterial flg22 epitope. We show that GSTU13 mediates specifically the role of GSH in IG metabolism without noticeable impact on other immune functions of this tripeptide. We postulate that GSTU13 connects GSH with the pathogen-triggered PEN2 pathway for IG metabolism to deliver metabolites that may have numerous functions in the innate immune system of Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/microbiologia , Glucosinolatos/metabolismo , Glutationa Transferase/metabolismo , Arabidopsis/imunologia , Vias Biossintéticas/genética , Resistência à Doença , Flagelina/farmacologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Glucosinolatos/química , Glutationa/metabolismo , Indóis/química , Indóis/metabolismo , Fenótipo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Plântula/metabolismo
7.
Plant J ; 89(2): 381-393, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27711985

RESUMO

Plant immune responses triggered upon recognition of microbe-associated molecular patterns (MAMPs) typically restrict pathogen growth without a host cell death response. We isolated two Arabidopsis mutants, derived from accession Col-0, that activated cell death upon inoculation with nonadapted fungal pathogens. Notably, the mutants triggered cell death also when treated with bacterial MAMPs such as flg22. Positional cloning identified NSL1 (Necrotic Spotted Lesion 1) as a responsible gene for the phenotype of the two mutants, whereas nsl1 mutations of the accession No-0 resulted in necrotic lesion formation without pathogen inoculation. NSL1 encodes a protein of unknown function containing a putative membrane-attack complex/perforin (MACPF) domain. The application of flg22 increased salicylic acid (SA) accumulation in the nsl1 plants derived from Col-0, while depletion of isochorismate synthase 1 repressed flg22-inducible lesion formation, indicating that elevated SA is needed for the cell death response. nsl1 plants of Col-0 responded to flg22 treatment with an RBOHD-dependent oxidative burst, but this response was dispensable for the nsl1-dependent cell death. Surprisingly, loss-of-function mutations in PEN2, involved in the metabolism of tryptophan (Trp)-derived indole glucosinolates, suppressed the flg22-induced and nsl1-dependent cell death. Moreover, the increased accumulation of SA in the nsl1 plants was abrogated by blocking Trp-derived secondary metabolite biosynthesis, whereas the nsl1-dependent hyperaccumulation of PEN2-dependent compounds was unaffected when the SA biosynthesis pathway was blocked. Collectively, these findings suggest that MAMP-triggered immunity activates a genetically programmed cell death in the absence of the functional MACPF domain protein NSL1 via Trp-derived secondary metabolite-mediated activation of the SA pathway.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Proteínas Nucleares/metabolismo , Triptofano/metabolismo , Arabidopsis/citologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Morte Celular/imunologia , Membrana Celular/metabolismo , Colletotrichum/patogenicidade , Regulação da Expressão Gênica de Plantas , Variação Genética , Proteínas de Fluorescência Verde/genética , Mutação , Proteínas Nucleares/genética , Células Vegetais/metabolismo , Folhas de Planta , Plantas Geneticamente Modificadas , Domínios Proteicos , Espécies Reativas de Oxigênio/metabolismo , Ácido Salicílico/metabolismo
8.
Mol Plant Microbe Interact ; 31(1): 101-111, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29059009

RESUMO

The hemibiotrophic pathogen Colletotrichum orbiculare preferentially expresses a necrosis and ethylene-inducing peptide 1 (Nep1)-like protein named NLP1 during the switch to necrotrophy. Here, we report that the constitutive expression of NLP1 in C. orbiculare blocks pathogen infection in multiple Cucurbitaceae cultivars via their enhanced defense responses. NLP1 has a cytotoxic activity that induces cell death in Nicotiana benthamiana. However, C. orbiculare transgenic lines constitutively expressing a mutant NLP1 lacking the cytotoxic activity still failed to infect cucumber, indicating no clear relationship between cytotoxic activity and the NLP1-dependent enhanced defense. NLP1 also possesses the microbe-associated molecular pattern (MAMP) sequence called nlp24, recognized by Arabidopsis thaliana at its central region, similar to NLPs of other pathogens. Surprisingly, inappropriate expression of a mutant NLP1 lacking the MAMP signature is also effective for blocking pathogen infection, uncoupling the infection block from the corresponding MAMP. Notably, the deletion analyses of NLP1 suggested that the C-terminal region of NLP1 is critical to enhance defense in cucumber. The expression of mCherry fused with the C-terminal 32 amino acids of NLP1 was enough to trigger the defense of cucurbits, revealing that the C-terminal region of the NLP1 protein is recognized by cucurbits and, then, terminates C. orbiculare infection.


Assuntos
Colletotrichum/metabolismo , Cucurbitaceae/microbiologia , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Doenças das Plantas/microbiologia , Sequência de Aminoácidos , Morte Celular , Colletotrichum/patogenicidade , Cucurbitaceae/imunologia , Fenótipo , Relação Estrutura-Atividade , Virulência
9.
Plant Signal Behav ; 15(12): 1823120, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32985920

RESUMO

Arabidopsis thaliana exhibits durable 'non-host' resistance against the hemibiotrophic fungal pathogen Colletotrichum tropicale that infects mulberry plants. Arabidopsis non-host resistance comprises two layers of defense: preinvasive and postinvasive resistance. The EDR1 protein kinase contributes to Arabidopsis preinvasive resistance against C. tropicale by inducing the expression of plant defensin (PDF) genes. Here we report that the expressions of multiple PDF genes were strongly induced in Arabidopsis upon invasion by C. tropicale. Invasion by a necrotrophic pathogen, Alternaria brassicicola, also induced PDF expression. Importantly, PDF expression triggered upon invasion by both pathogens was inhibited in edr1 mutants, indicating the requirement of EDR1 for PDF expression in postinvasive resistance by Arabidopsis. Analysis of ora59 mutants also revealed that this gene is critical for induced PDF expression following pathogen invasion. Furthermore, inoculation assays of A. brassicicola indicated that ORA59 is involved in postinvasive resistance against the pathogen, suggesting invasion-triggered PDF expression contributes to postinvasive resistance in Arabidopsis.


Assuntos
Alternaria/fisiologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/microbiologia , Defensinas/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/microbiologia , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/genética , Defensinas/metabolismo , Resistência à Doença , Doenças das Plantas/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA