RESUMO
Storage of non-polar lipids in ubiquitous eukaryotic organelles, lipid droplets (LDs), prevents the toxic consequences of unesterified fatty acids and provides a lipid reservoir that can be promptly used to satisfy cellular needs under multiple metabolic and physiological conditions. Tight temporal and spatial control of LD biogenesis and mobilization of neutral lipids is essential for the correct channelling of lipid intermediates to their various cellular destinations and the maintenance of cellular homeostasis. These functions are mediated by multiple interactions between LDs and other intracellular organelles that are required for the delivery of stored lipids. Here we review recent advances in the interactions of LDs with the endoplasmic reticulum (ER), mitochondria and vacuole/lysosome. This article is part of a Special Issue entitled: Membrane Contact Sites edited by Christian Ungermann and Benoit Kornmann.
Assuntos
Homeostase , Membranas Intracelulares/metabolismo , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Animais , Humanos , Proteínas Associadas a Gotículas Lipídicas/genética , Proteínas Associadas a Gotículas Lipídicas/metabolismoRESUMO
Perilipins (PLINs) play a key role in energy storage by orchestrating the activity of lipases on the surface of lipid droplets. Failure of this activity results in severe metabolic disease in humans. Unlike all other lipid droplet-associated proteins, PLINs localize almost exclusively to the phospholipid monolayer surrounding the droplet. To understand how they sense and associate with the unique topology of the droplet surface, we studied the localization of human PLINs inSaccharomyces cerevisiae,demonstrating that the targeting mechanism is highly conserved and that 11-mer repeat regions are sufficient for droplet targeting. Mutations designed to disrupt folding of this region into amphipathic helices (AHs) significantly decreased lipid droplet targetingin vivoandin vitro Finally, we demonstrated a substantial increase in the helicity of this region in the presence of detergent micelles, which was prevented by an AH-disrupting missense mutation. We conclude that highly conserved 11-mer repeat regions of PLINs target lipid droplets by folding into AHs on the droplet surface, thus enabling PLINs to regulate the interface between the hydrophobic lipid core and its surrounding hydrophilic environment.
Assuntos
Proteínas de Transporte/química , Gotículas Lipídicas/química , Proteínas de Membrana/química , Fosfoproteínas/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Transporte Biológico , Células COS , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Chlorocebus aethiops , Expressão Gênica , Humanos , Interações Hidrofóbicas e Hidrofílicas , Gotículas Lipídicas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Micelas , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Perilipina-1 , Perilipina-2 , Perilipina-3 , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Transporte Proteico , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Alinhamento de Sequência , Transgenes , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismoRESUMO
AIMS/HYPOTHESIS: In mammals, the evolutionary conserved family of Mg(2+)-dependent phosphatidate phosphatases (PAP1), involved in phospholipid and triacylglycerol synthesis, consists of lipin-1, lipin-2 and lipin-3. While mutations in the murine Lpin1 gene cause lipodystrophy and its knockdown in mouse 3T3-L1 cells impairs adipogenesis, deleterious mutations of human LPIN1 do not affect adipose tissue distribution. However, reduced LPIN1 and PAP1 activity has been described in participants with type 2 diabetes. We aimed to characterise the roles of all lipin family members in human adipose tissue and adipogenesis. METHODS: The expression of the lipin family was analysed in adipose tissue in a cross-sectional study. Moreover, the effects of lipin small interfering RNA (siRNA)-mediated depletion on in vitro human adipogenesis were assessed. RESULTS: Adipose tissue gene expression of the lipin family is altered in type 2 diabetes. Depletion of every lipin family member in a human Simpson-Golabi-Behmel syndrome (SGBS) pre-adipocyte cell line, alters expression levels of adipogenic transcription factors and lipid biosynthesis genes in early stages of differentiation. Lipin-1 knockdown alone causes a 95% depletion of PAP1 activity. Despite the reduced PAP1 activity and alterations in early adipogenesis, lipin-silenced cells differentiate and accumulate neutral lipids. Even combinatorial knockdown of lipins shows mild effects on triacylglycerol accumulation in mature adipocytes. CONCLUSIONS/INTERPRETATION: Overall, our data support the hypothesis of alternative pathways for triacylglycerol synthesis in human adipocytes under conditions of repressed lipin expression. We propose that induction of alternative lipid phosphate phosphatases, along with the inhibition of lipid hydrolysis, contributes to the maintenance of triacylglycerol content to near normal levels.
Assuntos
Adipócitos/metabolismo , Fosfatidato Fosfatase/metabolismo , Triglicerídeos/metabolismo , Células 3T3-L1 , Adipogenia/genética , Adipogenia/fisiologia , Tecido Adiposo/metabolismo , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Células Cultivadas , Estudos Transversais , Feminino , Humanos , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/fisiologia , Lipodistrofia/genética , Lipodistrofia/metabolismo , Masculino , Camundongos , Proteínas Associadas a Pancreatite , Fosfatidato Fosfatase/genética , RNA Interferente Pequeno/genéticaRESUMO
In the yeast Saccharomyces cerevisiae, the DGK1-encoded diacylglycerol kinase catalyzes the CTP-dependent phosphorylation of diacylglycerol to form phosphatidate. This enzyme, in conjunction with PAH1-encoded phosphatidate phosphatase, controls the levels of phosphatidate and diacylglycerol for phospholipid synthesis, membrane growth, and lipid droplet formation. In this work, we showed that a functional level of diacylglycerol kinase is regulated by the Reb1p transcription factor. In the electrophoretic mobility shift assay, purified recombinant Reb1p was shown to specifically bind its consensus recognition sequence (CGGGTAA, -166 to -160) in the DGK1 promoter. Analysis of cells expressing the PDGK1-lacZ reporter gene showed that mutations (GTâTG) in the Reb1p-binding sequence caused an 8.6-fold reduction in ß-galactosidase activity. The expression of DGK1(reb1), a DGK1 allele containing the Reb1p-binding site mutation, was greatly lower than that of the wild type allele, as indicated by analyses of DGK1 mRNA, Dgk1p, and diacylglycerol kinase activity. In the presence of cerulenin, an inhibitor of de novo fatty acid synthesis, the dgk1Δ mutant expressing DGK1(reb1) exhibited a significant defect in growth as well as in the synthesis of phospholipids from triacylglycerol mobilization. Unlike DGK1, the DGK1(reb1) expressed in the dgk1Δ pah1Δ mutant did not result in the nuclear/endoplasmic reticulum membrane expansion, which occurs in cells lacking phosphatidate phosphatase activity. Taken together, these results indicate that the Reb1p-mediated regulation of diacylglycerol kinase plays a major role in its in vivo functions in lipid metabolism.
Assuntos
Proteínas de Ligação a DNA/metabolismo , Metabolismo dos Lipídeos , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Fatores de Transcrição/metabolismo , Sequência de Bases , Sítios de Ligação , Núcleo Celular/metabolismo , Retículo Endoplasmático/metabolismo , Ácidos Graxos/biossíntese , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Genes Reporter , Metabolismo dos Lipídeos/genética , Dados de Sequência Molecular , Mutação/genética , Fosfolipídeos/biossíntese , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Triglicerídeos/metabolismo , beta-Galactosidase/metabolismoRESUMO
Lipins are evolutionarily conserved Mg(2+)-dependent phosphatidate phosphatase (PAP) enzymes with essential roles in lipid biosynthesis. Mammals express three paralogues: lipins 1, 2, and 3. Loss of lipin 1 in mice inhibits adipogenesis at an early stage of differentiation and results in a lipodystrophic phenotype. The role of lipins at later stages of adipogenesis, when cells initiate the formation of lipid droplets, is less well characterized. We found that depletion of lipin 1, after the initiation of differentiation in 3T3-L1 cells but before the loading of lipid droplets with triacylglycerol, results in a reciprocal increase of lipin 2, but not lipin 3. We generated 3T3-L1 cells where total lipin protein and PAP activity levels are down-regulated by the combined depletion of lipins 1 and 2 at day 4 of differentiation. These cells still accumulated triacylglycerol but displayed a striking fragmentation of lipid droplets without significantly affecting their total volume per cell. This was due to the lack of the PAP activity of lipin 1 in adipocytes after day 4 of differentiation, whereas depletion of lipin 2 led to an increase of lipid droplet volume per cell. We propose that in addition to their roles during early adipogenesis, lipins also have a role in lipid droplet biogenesis.
Assuntos
Adipogenia , Lipídeos/biossíntese , Proteínas Nucleares/metabolismo , Fosfatidato Fosfatase/metabolismo , Células 3T3-L1 , Animais , Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Fosfatidato Fosfatase/antagonistas & inibidores , Fosfatidato Fosfatase/genética , RNA Interferente Pequeno , Triglicerídeos/metabolismoRESUMO
Phospholipids play important roles in nuclear function as dynamic building blocks for the biogenesis of the nuclear membrane, as well as signals by which the nucleus communicates with other organelles, and regulate a variety of nuclear events. The mechanisms underlying the nuclear roles of phospholipids remain poorly understood. Lipins represent a family of phosphatidic acid (PA) phosphatases that are conserved from yeasts to humans and perform essential functions in lipid metabolism. Several studies have identified key roles for lipins and their regulators in nuclear envelope organization, gene expression and the maintenance of lipid homeostasis in yeast and metazoans. This review discusses recent advances in understanding the roles of lipins in nuclear structure and function. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.
Assuntos
Núcleo Celular/metabolismo , Metabolismo dos Lipídeos , Membrana Nuclear/metabolismo , Fosfatidato Fosfatase/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Regulação da Expressão Gênica , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Fosfatidato Fosfatase/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismoRESUMO
Adaptation to hypoxia involves hypoxia-inducible transcription factors (HIFs) and requires reprogramming of cellular metabolism that is essential during both physiological and pathological processes. In contrast to the established role of HIF-1 in glucose metabolism, the involvement of HIFs and the molecular mechanisms concerning the effects of hypoxia on lipid metabolism are poorly characterized. Here, we report that exposure of human cells to hypoxia causes accumulation of triglycerides and lipid droplets. This is accompanied by induction of lipin 1, a phosphatidate phosphatase isoform that catalyzes the penultimate step in triglyceride biosynthesis, whereas lipin 2 remains unaffected. Hypoxic upregulation of lipin 1 expression involves predominantly HIF-1, which binds to a single distal hypoxia-responsive element in the lipin 1 gene promoter and causes its activation under low oxygen conditions. Accumulation of hypoxic triglycerides or lipid droplets can be blocked by siRNA-mediated silencing of lipin 1 expression or kaempferol-mediated inhibition of HIF-1. We conclude that direct control of lipin 1 transcription by HIF-1 is an important regulatory feature of lipid metabolism and its adaptation to hypoxia.
Assuntos
Hipóxia Celular/fisiologia , Fator 1 Induzível por Hipóxia/metabolismo , Fosfatidato Fosfatase/biossíntese , Triglicerídeos/metabolismo , Hipóxia Celular/genética , Linhagem Celular Tumoral , Células HeLa , Humanos , Fator 1 Induzível por Hipóxia/genética , Fosfatidato Fosfatase/genética , Regiões Promotoras Genéticas , Triglicerídeos/biossíntese , Triglicerídeos/genética , Regulação para CimaRESUMO
Triglycerides constitute an inert storage form for fatty acids deposited in lipid droplets and are mobilized to provide metabolic energy or membrane building blocks. The biosynthesis of triglycerides is highly conserved within eukaryotes and normally involves the sequential esterification of activated fatty acids with a glycerol backbone. Some eukaryotes, however, can also use cellular membrane lipids as direct fatty acid donors for triglyceride synthesis. The biological significance of a pathway that generates triglycerides at the expense of organelle membranes has remained elusive. Here we review current knowledge on how cells use membrane lipids as fatty acid donors for triglyceride synthesis and discuss the hypothesis that a primary function of this pathway is to regulate membrane lipid remodeling and organelle function.
Assuntos
Lipídeos de Membrana , Organelas , Triglicerídeos , Triglicerídeos/metabolismo , Triglicerídeos/biossíntese , Humanos , Animais , Lipídeos de Membrana/metabolismo , Organelas/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos/biossíntese , Membrana Celular/metabolismoRESUMO
The biogenesis of membrane-bound organelles involves the synthesis, remodelling and degradation of their constituent phospholipids. How these pathways regulate organelle size, remains still poorly understood. Here we demonstrate that a lipid degradation pathway inhibits the expansion of the endoplasmic reticulum (ER) membrane. Phospholipid diacylglycerol acyltransferases (PDATs) use endogenous phospholipids as fatty acyl donors to generate triglyceride stored in lipid droplets. The significance of this non-canonical triglyceride biosynthetic pathway has remained elusive. We find that the activity of the yeast PDAT Lro1 is regulated by a membrane-proximal domain facing the luminal side of the ER bilayer. To reveal the biological roles of PDATs, we engineered an Lro1 variant with derepressed activity. We show that active Lro1 mediates the retraction of ER membrane expansion driven by phospholipid synthesis. Furthermore, the subcellular distribution and membrane turnover activity of Lro1 are controlled by diacylglycerol, produced by the activity of Pah1, a conserved member of the lipin family. Collectively, our findings reveal a lipid metabolic network that regulates endoplasmic reticulum biogenesis by converting phospholipids into storage lipids.
RESUMO
Regulation of membrane lipid composition is crucial for many aspects of cell growth and development. Lipins, a novel family of phosphatidate (PA) phosphatases that generate diacylglycerol (DAG) from PA, are emerging as essential regulators of fat metabolism, adipogenesis, and organelle biogenesis. The mechanisms that govern lipin translocation onto membranes are largely unknown. Here we show that recruitment of the yeast lipin (Pah1p) is regulated by PA levels onto the nuclear/endoplasmic reticulum (ER) membrane. Recruitment requires the transmembrane protein phosphatase complex Nem1p-Spo7p. Once dephosphorylated, Pah1p can bind to the nuclear/ER membrane independently of Nem1p-Spo7p via a short amino-terminal amphipathic helix. Dephosphorylation enhances the activity of Pah1p, both in vitro and in vivo, but only in the presence of a functional helix. The helix is required for both phospholipid and triacylglycerol biosynthesis. Our data suggest that dephosphorylation of Pah1p by the Nem1p-Spo7p complex enables the amphipathic helix to anchor Pah1p onto the nuclear/ER membrane allowing the production of DAG for lipid biosynthesis.
Assuntos
Membranas Intracelulares/metabolismo , Lipídeos de Membrana/biossíntese , Fosfatidato Fosfatase/metabolismo , Ácidos Fosfatídicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Biologia Computacional , Diglicerídeos/metabolismo , Fluorescência , Processamento de Imagem Assistida por Computador , Cinética , Proteínas de Membrana/metabolismo , Micelas , Proteínas Nucleares/metabolismo , Fosforilação , Estrutura Secundária de ProteínaRESUMO
Eukaryotic cell division involves the segregation of chromosomes between two daughter cells and must be coordinated with extensive rearrangement of their nuclear envelopes. In this issue, Saik et al. (2023 J. Cell Biol. https://doi.org/10.1083/jcb.202208137) show that a SUMOylation cascade at the inner nuclear membrane elevates the levels of phosphatidic acid, a key phospholipid precursor, to support the need for nuclear membrane expansion during mitosis.
Assuntos
Membrana Nuclear , Ácidos Fosfatídicos , Sumoilação , Cromossomos , Mitose , Membrana Nuclear/genéticaRESUMO
The Saccharomyces cerevisiae PAH1-encoded phosphatidate phosphatase (PAP) catalyzes the penultimate step in the synthesis of triacylglycerol and plays a role in the transcriptional regulation of phospholipid synthesis genes. PAP is phosphorylated at multiple Ser and Thr residues and is dephosphorylated for in vivo function by the Nem1p-Spo7p protein phosphatase complex localized in the nuclear/endoplasmic reticulum membrane. In this work, we characterized seven previously identified phosphorylation sites of PAP that are within the Ser/Thr-Pro motif. When expressed on a low copy plasmid, wild type PAP could not complement the pah1Δ mutant in the absence of the Nem1p-Spo7p complex. However, phosphorylation-deficient PAP (PAP-7A) containing alanine substitutions for the seven phosphorylation sites bypassed the requirement of the phosphatase complex and complemented the pah1Δ nem1Δ mutant phenotypes, such as temperature sensitivity, nuclear/endoplasmic reticulum membrane expansion, decreased triacylglycerol synthesis, and derepression of INO1 expression. Subcellular fractionation coupled with immunoblot analysis showed that PAP-7A was highly enriched in the membrane fraction. In fluorescence spectroscopy analysis, the PAP-7A showed tighter association with phospholipid vesicles than wild type PAP. Using site-directed mutagenesis of PAP, we identified Ser(602), Thr(723), and Ser(744), which belong to the seven phosphorylation sites, as the sites phosphorylated by the CDC28 (CDK1)-encoded cyclin-dependent kinase. Compared with the dephosphorylation mimic of the seven phosphorylation sites, alanine substitution for Ser(602), Thr(723), and/or Ser(744) had a partial effect on circumventing the requirement for the Nem1p-Spo7p complex.
Assuntos
Proteína Quinase CDC28 de Saccharomyces cerevisiae/metabolismo , Fosfatidato Fosfatase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteína Quinase CDC28 de Saccharomyces cerevisiae/genética , Retículo Endoplasmático/enzimologia , Inositol/farmacocinética , Metabolismo dos Lipídeos/fisiologia , Mutagênese Sítio-Dirigida , Membrana Nuclear/enzimologia , Fenótipo , Fosfatidato Fosfatase/genética , Ácidos Fosfatídicos/metabolismo , Fosforilação/fisiologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Serina/metabolismo , Treonina/metabolismo , Triglicerídeos/metabolismoRESUMO
The nuclear envelope constitutes a selective barrier that segregates chromatin into the nucleus of eukaryotic cells [...].
Assuntos
Núcleo Celular , Membrana Nuclear , Membrana Nuclear/metabolismo , Núcleo Celular/metabolismo , Cromatina/metabolismo , Células Eucarióticas , LipídeosRESUMO
The lipid composition of biological membranes is crucial for many aspects of organelle function, including growth, signalling, and transport. Lipins represent a novel family of lipid phosphatases that dephosphorylate phosphatidic acid (PA) to produce diacylglycerol (DAG), and perform key functions in phospholipid and triacylglycerol biosynthesis and gene expression. In addition to its role in lipid biosynthesis, the yeast lipin Pah1p and its regulators are required for the maintenance of a spherical nuclear shape. This review summarizes recent advances in our understanding of the yeast lipin Pah1p and highlights the possible roles of phospholipid metabolism in nuclear membrane biogenesis.
Assuntos
Lipídeos de Membrana/biossíntese , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestrutura , Proteínas Nucleares/biossíntese , Fosfatidato Fosfatase/biossíntese , Proteínas de Saccharomyces cerevisiae/biossíntese , Animais , Metabolismo dos Lipídeos , Lipídeos de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Fosfatidato Fosfatase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMO
The regulation of lipid homeostasis is essential for normal cell physiology, and its disruption can lead to disease. Lipid droplets (LDs) are ubiquitous organelles dedicated to storing nonpolar lipids that are used for metabolic energy production or membrane biogenesis. LDs normally emerge from, and associate with, the endoplasmic reticulum and interact with other cytoplasmic organelles to deliver the stored lipids. Recently, LDs were found to reside also at the inner side of the nuclear envelope and inside the nucleus in yeast and mammalian cells. This unexpected finding raises fundamental questions about the nature of the inner nuclear membrane, its connection with the endoplasmic reticulum and the pathways of LD formation. In this viewpoint, we will highlight recent developments relating to these questions and discuss possible roles of LDs in nuclear physiology.
Assuntos
Núcleo Celular/metabolismo , Retículo Endoplasmático/metabolismo , Gotículas Lipídicas/metabolismo , Membrana Nuclear/metabolismo , Animais , Homeostase , Humanos , Metabolismo dos Lipídeos , Modelos Biológicos , Saccharomyces cerevisiae/metabolismoRESUMO
Azole resistant fungal infections remain a health problem for the immune compromised. Current therapies are limited due to rises in new resistance mechanisms. Therefore, it is important to identify new drug targets for drug discovery and novel therapeutics. Arv1 (are1 are2 required for viability 1) function is highly conserved between multiple pathogenic fungal species. Candida albicans (C. albicans) cells lacking CaArv1 are azole hypersusceptible and lack virulence. Saccharomyces cerevisiae (S. cerevisiae) Scarv1 cells are also azole hypersusceptible, a phenotype reversed by expression of CaArv1, indicating conservation in the molecular mechanism for azole susceptibility. To define the relationship between Arv1 function and azole susceptibility, we undertook a structure/function analysis of ScArv1. We identified several conserved amino acids within the ScArv1 homology domain (ScAhd) required for maintaining normal azole susceptibility. Erg11 lanosterol 14-α-demethylase is the rate-limiting enzyme in sterol biosynthesis and is the direct target of azole antifungals, so we used our ScArv1 mutants in order to explore the relationship between ScArv1 and ScErg11. Specific ScArv1 mutants ectopically expressed from a low copy plasmid were unable to restore normal azole susceptibility to Scarv1 cells and had reduced Erg11 protein levels. Erg11 protein stability depended on its ability to form a heterodimeric complex with Arv1. Complex formation was required for maintaining normal azole susceptibility. Scarv1 cells expressing orthologous CaArv1 mutants also had reduced CaErg11 levels, were unable to form a CaArv1-CaErg11 complex, and were azole hypersusceptible. Scarv1 cells expressing CaArv1 mutants unable to interact with CaErg11 could not sustain proper levels of the azole resistant CaErg11Y132F F145L protein. Caarv1/Caarv1 cells expressing CaArv1 mutants unable to interact with CaErg11 were found to lack virulence using a disseminated candidiasis mouse model. Expressing CaErg11Y132F F145L did not reverse the lack of virulence. We hypothesize that the role of Arv1 in Erg11-dependent azole resistance is to stabilize Erg11 protein level. Arv1 inhibition may represent an avenue for treating azole resistance.
Assuntos
Candida albicans/patogenicidade , Candidíase/microbiologia , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Esterol 14-Desmetilase/metabolismo , Virulência , Sequência de Aminoácidos , Animais , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candidíase/tratamento farmacológico , Sistema Enzimático do Citocromo P-450/genética , Farmacorresistência Fúngica , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência , Esterol 14-Desmetilase/genéticaRESUMO
How adult neurons coordinate lipid metabolism to regenerate axons remains elusive. We found that depleting neuronal lipin1, a key enzyme controlling the balanced synthesis of glycerolipids through the glycerol phosphate pathway, enhanced axon regeneration after optic nerve injury. Axotomy elevated lipin1 in retinal ganglion cells, which contributed to regeneration failure in the CNS by favorably producing triglyceride (TG) storage lipids rather than phospholipid (PL) membrane lipids in neurons. Regrowth induced by lipin1 depletion required TG hydrolysis and PL synthesis. Decreasing TG synthesis by deleting neuronal diglyceride acyltransferases (DGATs) and enhancing PL synthesis through the Kennedy pathway promoted axon regeneration. In addition, peripheral neurons adopted this mechanism for their spontaneous axon regeneration. Our study reveals a critical role of lipin1 and DGATs as intrinsic regulators of glycerolipid metabolism in neurons and indicates that directing neuronal lipid synthesis away from TG synthesis and toward PL synthesis may promote axon regeneration.
Assuntos
Axônios/fisiologia , Regeneração Nervosa/fisiologia , Traumatismos do Nervo Óptico/metabolismo , Traumatismos do Nervo Óptico/fisiopatologia , Fosfatidato Fosfatase/metabolismo , Fosfolipídeos/metabolismo , Triglicerídeos/metabolismo , Animais , Axotomia , Células Cultivadas , Diacilglicerol O-Aciltransferase/metabolismo , Feminino , Técnicas de Introdução de Genes , Hidrólise , Masculino , Camundongos , Camundongos Transgênicos , PTEN Fosfo-Hidrolase/genética , Fosfatidato Fosfatase/genética , Fosfolipídeos/biossíntese , Cultura Primária de Células , RNA não Traduzido/genética , Células Ganglionares da Retina/metabolismo , Opsinas de Bastonetes/genéticaRESUMO
Cells dynamically adjust organelle organization in response to growth and environmental cues. This requires regulation of synthesis of phospholipids, the building blocks of organelle membranes, or remodeling of their fatty-acyl (FA) composition. FAs are also the main components of triacyglycerols (TGs), which enable energy storage in lipid droplets. How cells coordinate FA metabolism with organelle biogenesis during cell growth remains unclear. Here, we show that Lro1, an acyltransferase that generates TGs from phospholipid-derived FAs in yeast, relocates from the endoplasmic reticulum to a subdomain of the inner nuclear membrane. Lro1 nuclear targeting is regulated by cell cycle and nutrient starvation signals and is inhibited when the nucleus expands. Lro1 is active at this nuclear subdomain, and its compartmentalization is critical for nuclear integrity. These data suggest that Lro1 nuclear targeting provides a site of TG synthesis, which is coupled with nuclear membrane remodeling.
Assuntos
Compartimento Celular , Membrana Nuclear/metabolismo , Saccharomyces cerevisiae/metabolismo , Triglicerídeos/biossíntese , Biocatálise , Ciclo Celular , Nucléolo Celular/metabolismo , Forma do Núcleo Celular , Homeostase , Imageamento Tridimensional , Gotículas Lipídicas/metabolismo , Fosfolipídeos/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMO
Cell and organelle membranes consist of a complex mixture of phospholipids (PLs) that determine their size, shape, and function. Phosphatidylcholine (PC) is the most abundant phospholipid in eukaryotic membranes, yet how cells sense and regulate its levels in vivo remains unclear. Here we show that PCYT1A, the rate-limiting enzyme of PC synthesis, is intranuclear and re-locates to the nuclear membrane in response to the need for membrane PL synthesis in yeast, fly, and mammalian cells. By aligning imaging with lipidomic analysis and data-driven modeling, we demonstrate that yeast PCYT1A membrane association correlates with membrane stored curvature elastic stress estimates. Furthermore, this process occurs inside the nucleus, although nuclear localization signal mutants can compensate for the loss of endogenous PCYT1A in yeast and in fly photoreceptors. These data suggest an ancient mechanism by which nucleoplasmic PCYT1A senses surface PL packing defects on the inner nuclear membrane to control PC homeostasis.