RESUMO
The blue crab (BC) Portunus segnis is considered an invasive species colonizing Tunisian coasts since 2014. This work aims to explore its associated bacteria potential to produce anionic exopolysaccharides (EPSs) in order to open up new ways of valorization. In this study, different BC samples were collected from the coastal area of Sfax, Tunisia. First, bacterial DNA was extracted from seven different fractions (flesh, gills, viscera, carapace scraping water, and three wastewaters from the production plant) and then sequenced using the metabarcoding approach targeting the V3-V4 region of the 16S rDNA to describe their microbiota composition. Metabarcoding data showed that the dominant bacterial genera were mainly Psychrobacter, Vagococcus, and Vibrio. In parallel, plate counting assays were performed on different culture media, and about 250 bacterial strains were isolated and identified by sequencing the 16S rDNA. EPS production by this new bacterial diversity was assessed to identify new compounds of biotechnological interest. The identification of the bacterial strains in the collection confirmed the dominance of Psychrobacter spp. strains. Among them, 43 were identified as EPS producers, as revealed by Stains-all dye in agarose gel electrophoresis. A Buttiauxella strain produced an EPS rich in both neutral sugars including rare sugars such as rhamnose and fucose and uronic acids. This original composition allows us to assume its potential for biotechnological applications and, more particularly, for developing innovative therapeutics. This study highlights bacterial strains associated with BC; they are a new untapped source for discovering innovative bioactive compounds for health and cosmetic applications, such as anionic EPS.
Assuntos
Braquiúros , Microbiota , Animais , Braquiúros/genética , Bactérias , Açúcares , DNA Ribossômico/genética , Polissacarídeos BacterianosRESUMO
Sulfated glycosaminoglycans (GAGs) are fundamental constituents of both the cell surface and extracellular matrix. By playing a key role in cell-cell and cell-matrix interactions, GAGs are involved in many physiological and pathological processes. To design GAG mimetics with similar therapeutic potential as the natural ones, the specific structural features, among them sulfate content, sulfation pattern, and chain length, should be considered. In the present study, we describe a sulfation method based on microwave radiation to obtain highly sulfated derivatives as GAG mimetics. The starting low-molecular-weight (LMW) derivative was prepared from the infernan exopolysaccharide, a highly branched naturally slightly sulfated heteropolysaccharide synthesized by the deep-sea hydrothermal vent bacterium Alteromonas infernus. LMW highly sulfated infernan derivatives obtained by conventional heating sulfation have already been shown to display GAG-mimetic properties. Here, the potential of microwave-assisted sulfation versus that of the conventional method to obtain GAG mimetics was explored. Structural analysis by NMR revealed that highly sulfated derivatives from the two methods shared similar structural features, emphasizing that microwave-assisted sulfation with a 12-fold shorter reaction time is as efficient as the classical one.
Assuntos
Glicosaminoglicanos , Micro-Ondas , Glicosaminoglicanos/química , Sulfatos/química , Espectroscopia de Ressonância Magnética , Matriz Extracelular/metabolismoRESUMO
Bacteria are well-known to synthesize high molecular weight polysaccharides excreted in extracellular domain, which constitute their protective microenvironment. Several bacterial exopolysaccharides (EPS) are commercially available for skincare applications in cosmetic products due to their unique structural features, conferring valuable biological and/or textural properties. This review aims to give an overview of bacterial EPS, an important group of macromolecules used in cosmetics as actives and functional ingredients. For this purpose, the main chemical characteristics of EPS are firstly described, followed by the basics of the development of cosmetic ingredients. Then, a focus on EPS production, including upstream and downstream processes, is provided. The diversity of EPS used in the cosmetic industry, and more specifically of marine-derived EPS is highlighted. Marine bacteria isolated from extreme environments are known to produce EPS. However, their production processes are highly challenging due to high or low temperatures; yield must be improved to reach economically viable ingredients. The biological properties of marine-derived EPS are then reviewed, resulting in the highlight of the challenges in this field.
Assuntos
Bactérias , Polissacarídeos Bacterianos , Polissacarídeos Bacterianos/farmacologia , Polissacarídeos Bacterianos/química , Peso Molecular , Temperatura Baixa , Ambientes ExtremosRESUMO
Antimetastatic properties on both murine and human osteosarcoma cell lines (POS-1 and KHOS) have been evidenced using exopolysaccharide (EPS) derivatives, produced by Alteromonas infernus bacterium. These derivatives had no significant effect on the cell cycle neither a pro-apoptotic effect on osteosarcoma cells. Based on this observation, these EPSs could be employed as new drug delivery systems for therapeutic uses. A theranostic approach, i.e., combination of a predictive biomarker with a therapeutic agent, has been developed notably by combining with true pair of theranostic radionuclides, such as scandium 47Sc/44Sc. However, it is crucial to ensure that, once complexation is done, the biological properties of the vector remain intact, allowing the molecular tropism of the ligand to recognize its molecular target. It is important to assess if the biological properties of EPS evidenced on osteosarcoma cell lines remain when scandium is complexed to the polymers and can be extended to other cancer cell types. Scandium-EPS complexes were thus tested in vitro on human cell lines: MNNG/HOS osteosarcoma, A375 melanoma, A549 lung adenocarcinoma, U251 glioma, MDA231 breast cancer, and Caco2 colon cancer cells. An xCELLigence Real Cell Time Analysis (RTCA) technology assay was used to monitor for 160 h, the proliferation kinetics of the different cell lines. The tested complexes exhibited an anti-proliferative effect, this effect was more effective compared to EPS alone. This increase of the antiproliferative properties was explained by a change in conformation of EPS complexes due to their polyelectrolyte nature that was induced by complexation. Alterations of both growth factor-receptor signaling, and transmembrane protein interactions could be the principal cause of the antiproliferative effect. These results are very promising and reveal that EPS can be coupled to scandium for improving its biological effects and also suggesting that no major structural modification occurs on the ligand.
Assuntos
Alteromonas/metabolismo , Proliferação de Células/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Polissacarídeos Bacterianos/farmacologia , Escândio/farmacologia , Células A549 , Animais , Células CACO-2 , Complexos de Coordenação , Heparina/farmacologia , Humanos , Cinética , Camundongos , Neoplasias/patologia , Polissacarídeos Bacterianos/isolamento & purificaçãoRESUMO
(1) Background: Exopolysaccharide (EPS) derivatives, produced by Alteromonas infernus bacterium, showed anti-metastatic properties. They may represent a new class of ligands to be combined with theranostic radionuclides, such as 47Sc/44Sc. The goal of this work was to investigate the feasibility of such coupling. (2) Methods: EPSs, as well as heparin used as a drug reference, were characterized in terms of molar mass and dispersity using Asymmetrical Flow Field-Flow Fractionation coupled to Multi-Angle Light Scattering (AF4-MALS). The intrinsic viscosity of EPSs at different ionic strengths were measured in order to establish the conformation. To determine the stability constants of Sc with EPS and heparin, a Free-ion selective radiotracer extraction (FISRE) method has been used. (3) Results: AF4-MALS showed that radical depolymerization produces monodisperse EPSs, suitable for therapeutic use. EPS conformation exhibited a lower hydrodynamic volume for the highest ionic strengths. The resulting random-coiled conformation could affect the complexation with metal for high concentration. The LogK of Sc-EPS complexes have been determined and showing that they are comparable to the Sc-Hep. (4) Conclusions: EPSs are very promising to be coupled with the theranostic pair of scandium for Nuclear Medicine.
Assuntos
Alteromonas/química , Complexos de Coordenação/química , Polissacarídeos/química , Escândio/química , Configuração de Carboidratos , Fracionamento por Campo e Fluxo , Hidrodinâmica , Luz , Medicina Nuclear , Concentração Osmolar , Espalhamento de Radiação , Nanomedicina Teranóstica , ViscosidadeRESUMO
Articular cartilage is an avascular, non-innervated connective tissue with limited ability to regenerate. Articular degenerative processes arising from trauma, inflammation or due to aging are thus irreversible and may induce the loss of the joint function. To repair cartilaginous defects, tissue engineering approaches are under intense development. Association of cells and signalling proteins, such as growth factors, with biocompatible hydrogel matrix may lead to the regeneration of the healthy tissue. One current strategy to enhance both growth factor bioactivity and bioavailability is based on the delivery of these signalling proteins in microcarriers. In this context, the aim of the present study was to develop microcarriers by encapsulating Transforming Growth Factor-ß1 (TGF-ß1) into microparticles based on marine exopolysaccharide (EPS), namely GY785 EPS, for further applications in cartilage engineering. Using a capillary microfluidic approach, two microcarriers were prepared. The growth factor was either encapsulated directly within the microparticles based on slightly sulphated derivative or complexed firstly with the highly sulphated derivative before being incorporated within the microparticles. TGF-ß1 release, studied under in vitro model conditions, revealed that the majority of the growth factor was retained inside the microparticles. Bioactivity of released TGF-ß1 was particularly enhanced in the presence of highly sulphated derivative. It comes out from this study that GY785 EPS based microcarriers may constitute TGF-ß1 reservoirs spatially retaining the growth factor for a variety of tissue engineering applications and in particular cartilage regeneration, where the growth factor needs to remain in the target location long enough to induce robust regenerative responses.
Assuntos
Alteromonas/química , Portadores de Fármacos/química , Polissacarídeos/química , Fator de Crescimento Transformador beta1/administração & dosagem , Disponibilidade Biológica , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/fisiologia , Linhagem Celular , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/farmacocinética , Portadores de Fármacos/isolamento & purificação , Composição de Medicamentos/métodos , Implantes de Medicamento , Liberação Controlada de Fármacos , Humanos , Fontes Hidrotermais/microbiologia , Microfluídica , Polissacarídeos/isolamento & purificação , Regeneração/efeitos dos fármacos , Alicerces Teciduais/química , Fator de Crescimento Transformador beta1/farmacocinéticaRESUMO
Bacteria have developed a unique strategy to survive in extreme environmental conditions through the synthesis of an extracellular polymeric matrix conferring upon the cells a protective microenvironment. The main structural component of this complex network constitutes high-molecular weight hydrophilic macromolecules, namely exopolysaccharides (EPS). EPS composition with the presence of particular chemical features may closely be related to the specific conditions in which bacteria evolve. Deep-sea hydrothermal vent bacteria have already been shown to produce EPS rich in hexosamines and uronic acids, frequently bearing some sulfate groups. Such a particular composition ensures interesting functional properties, including biological activities mimicking those known for glycosaminoglycans (GAG). The aim of the present study was to go further into the exploration of the deep-sea hydrothermal vent IFREMER (French Research Institute for Exploitation of the Sea) collection of bacteria to discover new strains able to excrete EPS endowed with GAG-like structural features. After the screening of our whole collection containing 692 strains, 38 bacteria have been selected for EPS production at the laboratory scale. EPS-producing strains were identified according to 16S rDNA phylogeny. Chemical characterization of the obtained EPS highlighted their high chemical diversity with the presence of atypical compositional patterns. These EPS constitute potential bioactives for a number of biomedical applications, including regenerative medicines and cancer treatment.
Assuntos
Bactérias/classificação , Polissacarídeos Bacterianos/metabolismo , Água do Mar/microbiologia , Análise de Sequência de DNA/métodos , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , DNA Bacteriano/análise , DNA Ribossômico/análise , França , Hexosaminas/metabolismo , Fontes Hidrotermais , Filogenia , RNA Ribossômico 16S/análise , Ácidos Urônicos/metabolismoRESUMO
Bacteria from deep-sea hydrothermal vents constitute an attractive source of bioactive molecules. In particular, exopolysaccharides (EPS) produced by these bacteria become a renewable source of both biocompatible and biodegradable molecules. The low molecular weight (LMW) derivatives of the GY785 EPS produced by the deep-sea hydrothermal vent strain Alteromonas infernus have previously displayed some biological properties, similar to those of glycosaminoglycans (GAG), explored in cancer and tissue engineering. These GAG-mimetic derivatives are obtained through a free radical depolymerization process, which could, however, affect their structural integrity. In a previous study, we have shown that A. infernus produces depolymerizing enzymes active on its own EPS. In the present study, an enzymatic reaction was optimized to generate LMW derivatives of the GY785 EPS, which could advantageously replace the present bioactive derivatives obtained by a chemical process. Analysis by mass spectrometry of the oligosaccharide fractions released after enzymatic treatment revealed that mainly a lyase activity was responsible for the polysaccharide depolymerization. The repeating unit of the GY785 EPS produced by enzyme cleavage was then fully characterized.
Assuntos
Alteromonas/química , Oligossacarídeos/química , Polissacarídeos Bacterianos/química , Espectrometria de MassasRESUMO
Alteromonas infernus bacterium isolated from deep-sea hydrothermal vents can produce by fermentation a high molecular weight exopolysaccharide (EPS) called GY785. This EPS described as a new source of glycosaminoglycan-like molecule presents a great potential for pharmaceutical and biotechnological applications. However, this unusual EPS is secreted by a Gram-negative bacterium and can be therefore contaminated by endotoxins, in particular the lipopolysaccharides (LPS). Biochemical and chemical analyses of the LPS extracted from A. infernus membranes have shown the lack of the typical LPS architecture since 3-deoxy-D-manno-oct-2-ulopyranosonic acid (Kdo), glucosamine (GlcN), and phosphorylated monosaccharides were not present. Unlike for other Gram-negative bacteria, the results revealed that the outer membrane of A. infernus bacterium is most likely composed of peculiar glycolipids. Furthermore, the presence of these glycolipids was also detected in the EPS batches produced by fermentation. Different purification and chemical detoxification methods were evaluated to efficiently purify the EPS. Only the method based on a differential solubility of EPS and glycolipids in deoxycholate detergent showed the highest decrease in the endotoxin content. In contrast to the other tested methods, this new protocol can provide an effective method for obtaining endotoxin-free EPS without any important modification of its molecular weight, monosaccharide composition, and sulfate content.
Assuntos
Alteromonas/metabolismo , Endotoxinas/metabolismo , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/isolamento & purificação , Alteromonas/efeitos dos fármacos , Detergentes/farmacologia , Endotoxinas/química , Endotoxinas/deficiência , Endotoxinas/isolamento & purificação , Fermentação , Glicolipídeos/química , Glicolipídeos/metabolismo , Fontes Hidrotermais/microbiologia , Lipopolissacarídeos/química , Lipopolissacarídeos/deficiência , Peso Molecular , Monossacarídeos/farmacologia , Polissacarídeos Bacterianos/biossíntese , Polissacarídeos Bacterianos/metabolismoRESUMO
Osteosarcoma is the most frequent malignant primary bone tumor characterized by a high potency to form lung metastases. In this study, the effect of three oversulfated low molecular weight marine bacterial exopolysaccharides (OS-EPS) with different molecular weights (4, 8 and 15 kDa) were first evaluated in vitro on human and murine osteosarcoma cell lines. Different biological activities were studied: cell proliferation, cell adhesion and migration, matrix metalloproteinase expression. This in vitro study showed that only the OS-EPS 15 kDa derivative could inhibit the invasiveness of osteosarcoma cells with an inhibition rate close to 90%. Moreover, this derivative was potent to inhibit both migration and invasiveness of osteosarcoma cell lines; had no significant effect on their cell cycle; and increased slightly the expression of MMP-9, and more highly the expression of its physiological specific tissue inhibitor TIMP-1. Then, the in vivo experiments showed that the OS-EPS 15 kDa derivative had no effect on the primary osteosarcoma tumor induced by osteosarcoma cell lines but was very efficient to inhibit the establishment of lung metastases in vivo. These results can help to better understand the mechanisms of GAGs and GAG-like derivatives in the biology of the tumor cells and their interactions with the bone environment to develop new therapeutic strategies.
Assuntos
Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Polissacarídeos Bacterianos/farmacologia , Animais , Organismos Aquáticos/química , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Glicosaminoglicanos/farmacologia , Humanos , Neoplasias Pulmonares/prevenção & controle , Neoplasias Pulmonares/secundário , Masculino , Metaloproteinases da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Camundongos Nus , Mimetismo Molecular , Invasividade Neoplásica/prevenção & controle , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Osteossarcoma/secundário , Inibidores Teciduais de Metaloproteinases/metabolismoRESUMO
Vibrio diabolicus, a marine bacterium originating from deep-sea hydrothermal vents, produces the HE800 exopolysaccharide with high value for biotechnological purposes, especially for human health. Its genome was sequenced and analyzed; phylogenetic analysis using the core genome revealed V. diabolicus is close to another deep-sea Vibrio sp. (Ex25) within the Harveyi clade and Alginolyticus group. A genetic locus homologous to the syp cluster from Vibrio fischeri was demonstrated to be involved in the HE800 production. However, few genetic particularities suggest that the regulation of syp expression may be different in V. diabolicus. The presence of several types of glycosyltransferases within the locus indicates a capacity to generate diversity in the glycosidic structure, which may confer an adaptability to environmental conditions. These results contribute to better understanding exopolysaccharide biosynthesis and for developing new efficient processes to produce this molecule for biotechnological applications.
Assuntos
Vias Biossintéticas , DNA Bacteriano/genética , Loci Gênicos , Genoma Bacteriano , Polissacarídeos/biossíntese , Análise de Sequência de DNA , Vibrio/genética , Análise por Conglomerados , DNA Bacteriano/química , Dados de Sequência Molecular , Filogenia , Água do Mar/microbiologia , Homologia de Sequência , Vibrio/isolamento & purificaçãoRESUMO
Glycosaminoglycans (GAGs) are essential constituents of the cell surface and extracellular matrix, where they are involved in several cellular processes through their interactions with various proteins. For successful tissue regeneration, developing an appropriate matrix supporting biological activities of cells in a similar manner than GAGs remains still challenging. In this context, this study aims to design a thermosensitive polysaccharide that could further be used as hydrogel for tissue engineering applications. For this purpose, infernan, a marine bacterial exopolysaccharide (EPS) endowed with GAG-mimetic properties was grafted with a thermosensitive polymer, poly(N-isopropylacrylamide) (pNIPAM). Eight grafted polysaccharides were obtained by varying EPS/pNIPAM molar ratio and the molecular weight of pNIPAM. Their physicochemical characteristics and their thermosensitive properties were determined using a multi-technique, experimental approach. In parallel, molecular dynamics and Monte Carlo simulations were applied at two different scales to elucidate, respectively, the molecular conformation of grafted infernan chain and their ability to form an infinite network undergoing a sol-gel transition near the percolation, a necessary condition in hydrogel formation. It comes out from this study that thermosensitive infernan was successfully developed and its potential use in tissue regeneration as a hydrogel scaffold will further be assessed.
Assuntos
Glicosaminoglicanos , Hidrogéis , Temperatura , Hidrogéis/química , PolissacarídeosRESUMO
Diabolican is an exopolysaccharide (EPS) produced by Vibrio diabolicus HE800, a mesophilic bacterium firstly isolated from a deep-sea hydrothermal field. Its glycosaminoglycan (GAG)-like structure, consisting of a tetrasaccharide repeating unit composed of two aminosugars (N-acetyl-glucosamine and N-acetyl-galactosamine) and two glucuronic acid units, suggested to subject it to regioselective sulfation processes, in order to obtain some sulfated derivatives potentially acting as GAG mimics. To this aim, a multi-step semi-synthetic approach, relying upon tailored sequence of regioselective protection, sulfation and deprotection steps, was employed in this work. The chemical structure of the obtained sulfated diabolican derivatives was characterized by a multi-technique analytic approach, in order to define both degree of sulfation (DS) and sulfation pattern within the polysaccharide repeating unit, above all. Finally, binding affinity for some growth factors relevant for biomedical applications was measured for both starting diabolican and sulfated derivatives thereof. Collected data suggested that sulfation pattern could be a key structural element for the selective interaction with signaling proteins not only in the case of native GAGs, as already known, but also for GAG-like structures obtained by regioselective sulfation of naturally unsulfated polysaccharides.
Assuntos
Polissacarídeos , Sulfatos , Sulfatos/química , Polissacarídeos/química , Glicosaminoglicanos , Oligossacarídeos , Peptídeos e Proteínas de Sinalização IntercelularRESUMO
Mesenchymal stem cells (MSCs) are considered as an attractive source of cells for cartilage engineering due to their availability and capacity for expansion and multipotency. Differentiation of MSC into chondrocytes is crucial to successful cartilage regeneration and can be induced by various biological agents, including polysaccharides that participate in many biological processes through interactions with growth factors. Here, we hypothesize that growth factor-induced differentiation of MSC can be increased by chemically oversulfated marine polysaccharides. To test our hypothesis, human adipose tissue-derived MSCs (hATSCs) were cultured in pellets with transforming growth factor (TGF)-ß1-supplemented chondrogenic medium containing either the polysaccharide GY785 DR or its oversulfated isoform GY785 DRS. Chondrogenesis was monitored by the measurement of pellet volume, quantification of DNA, collagens, glycosaminoglycans (GAGs), and immunohistological staining. Our data revealed an increase in pellet volume, total collagens, and GAG production with GY785 DRS and chondrogenic medium. The enhanced chondrogenic differentiation of hATSC was further demonstrated by the increased expression of several chondrogenic markers by real-time reverse transcription-polymerase chain reaction. In addition, surface plasmon resonance analyses revealed that TGF-ß1 bound GY785 DRS with higher affinity compared to GY785 DR. In association with TGF-ß1, GY785 DRS was found to upregulate the phosphorylation of extracellular signal-regulated kinase 1/2, indicating that oversulfated polysaccharide affects the mitogen activated protein kinase signaling activity. These results demonstrate the upregulation of TGF-ß1-dependent stem cell chondrogenesis by a chemically oversulfated marine polysaccharide. This polysaccharide of marine origin is easily producible and therefore could be considered a promising additive to drive efficient and reliable MSC chondrogenesis for cartilage tissue engineering.
Assuntos
Tecido Adiposo Branco/citologia , Cartilagem/fisiologia , Condrogênese/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Polissacarídeos/farmacologia , Regeneração , Antígenos de Diferenciação/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Insulina/farmacologia , Insulina/fisiologia , Células-Tronco Mesenquimais/metabolismo , Medicina Regenerativa , Transdução de Sinais , Engenharia Tecidual , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta1/fisiologiaRESUMO
Biopolymers produced by marine organisms can offer useful tools for regenerative medicine. Particularly, HE800 exopolysaccharide (HE800 EPS) secreted by a deep-sea hydrothermal bacterium displays an interesting glycosaminoglycan-like feature resembling hyaluronan. Previous studies demonstrated its effectiveness to enhance in vivo bone regeneration and to support osteoblastic cell metabolism in culture. Thus, in order to assess the usefulness of this high-molecular weight polymer in tissue engineering and tissue repair, in vitro reconstructed connective tissues containing HE800 EPS were performed. We showed that this polysaccharide promotes both collagen structuring and extracellular matrix settle by dermal fibroblasts. Furthermore, from the native HE800 EPS, a low-molecular weight sulfated derivative (HE800 DROS) displaying chemical analogy with heparan-sulfate, was designed. Thus, it was demonstrated that HE800 DROS mimics some properties of heparan-sulfate, such as promotion of fibroblast proliferation and inhibition of matrix metalloproteinase (MMP) secretion. Therefore, we suggest that the HE800EPS family can be considered as an innovative biotechnological source of glycosaminoglycan-like compounds useful to design biomaterials and drugs for tissue engineering and repair.
Assuntos
Fibroblastos/efeitos dos fármacos , Glicosaminoglicanos/farmacologia , Polissacarídeos Bacterianos/farmacologia , Engenharia Tecidual/métodos , Materiais Biocompatíveis/isolamento & purificação , Materiais Biocompatíveis/farmacologia , Biotecnologia/métodos , Proliferação de Células/efeitos dos fármacos , Tecido Conjuntivo/metabolismo , Colágenos Fibrilares/química , Fibroblastos/metabolismo , Glicosaminoglicanos/isolamento & purificação , Humanos , Polissacarídeos Bacterianos/isolamento & purificação , Vibrio/químicaRESUMO
A previously reported bacterial bioemulsifier, here termed microbactan, was further analyzed to characterize its lipid component, molecular weight, ionic character and toxicity, along with its bioemulsifying potential for hydrophobic substrates at a range of temperatures, salinities and pH values. Analyses showed that microbactan is a high molecular weight (700 kDa), non-ionic molecule. Gas chromatography of the lipid fraction revealed the presence of palmitic, stearic, and oleic acids; thus microbactan may be considered a glycolipoprotein. Microbactan emulsified aromatic hydrocarbons and oils to various extents; the highest emulsification index was recorded against motor oil (96%). The stability of the microbactan-motor oil emulsion model reached its highest level (94%) at 50 °C, pH 10 and 3.5% NaCl content. It was not toxic to Artemia salina nauplii. Microbactan is, therefore, a non-toxic and non-ionic bioemulsifier of high molecular weight with affinity for a range of oily substrates. Comparative phylogenetic assessment of the 16S rDNA gene of Microbacterium sp. MC3B-10 with genes derived from other marine Microbacterium species suggested that this genus is well represented in coastal zones. The chemical nature and stability of the bioemulsifier suggest its potential application in bioremediation of marine environments and in cosmetics.
Assuntos
Actinomycetales/metabolismo , Emulsificantes/metabolismo , Actinomycetales/classificação , Animais , Artemia/efeitos dos fármacos , Biodegradação Ambiental , Emulsificantes/química , Emulsificantes/toxicidade , Hidrocarbonetos Aromáticos/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Óleos/química , Ácido Oleico/química , Ácido Palmítico/química , Filogenia , Ácidos Esteáricos/química , TemperaturaRESUMO
The transfer of toxic cyanobacterial Microcystis blooms from freshwater to estuaries constitutes a serious environmental problem worldwide that is expected to expand in scale and intensity with anthropogenic and climate change. The formation and maintenance of Microcystis in colonial form is conditioned to the presence of extracellular polymeric substances (EPS). In this study, we attempted to better understand how the mucilaginous colonial form of Microcystis evolves under environmental stress conditions. In particular, we studied and compared the production and the composition of EPS fractions (attached and free) from natural colonies of a Microcystis bloom and from a unicellular M. aeruginosa strain under salinity and nutrient stress (representing a land-sea continuum). Our results highlighted a greater production of EPS from the natural colonies of Microcystis than the unicellular one under nutrient and combined stress conditions dominated by the attached form. In comparison to the unicellular Microcystis, EPS produced by the colonial form were characterized by high molecular weight polysaccharides which were enriched in uronic acids and hexosamines, notably for the free fraction in response to increased salinities. This complex extracellular matrix gives the cells the ability to aggregate and allows the colonial cyanobacterial population to cope with osmotic shock.
Assuntos
Cianobactérias , Microcystis , Matriz Extracelular de Substâncias Poliméricas , Salinidade , PolissacarídeosRESUMO
Mucopolysaccharidosis IIIA is a hereditary disease caused by mutations in the sulfamidase enzyme that participates in catabolism of heparan sulfate (HS), leading to HS fragment accumulation and multisystemic failure. No cure exists and death occurs around the second decade of life. Two low molecular weight highly sulfated compounds derived from marine diabolican and infernan exopolysaccharides (A5_3 and A5_4, respectively) with heparanase inhibiting properties were tested in a MPSIIIA cell line model, resulting in limited degradation of intracellular HS. Next, we observed the effects of intraperitoneal injections of the diabolican derivative A5_3 from 4 to 12 weeks of age on MPSIIIA mice. Brain metabolism and microstructure, levels of proteins and genes involved in MPSIIIA brain pathophysiology were also investigated. 1H-Magnetic Resonance Spectroscopy (MRS) indicated deficits in energetic metabolism, tissue integrity and neurotransmission at both 4 and 12 weeks in MPSIIIA mice, with partial protective effects of A5_3. Ex-vivo Diffusion Tensor Imaging (DTI) showed white matter microstructural damage in MPSIIIA, with noticeable protective effects of A5_3. Protein and gene expression assessments displayed both pro-inflammatory and pro-apoptotic profiles in MPSIIIA mice, with benefits of A5_3 counteracting neuroinflammation. Overall, derivative A5_3 was well tolerated and was shown to be efficient in preventing brain metabolism failure and inflammation, resulting in preserved brain microstructure in the context of MPSIIIA.
RESUMO
The exopolysaccharide (EPS) HE800 is a marine-derived polysaccharide (from 8 × 10(5) to 1.5 × 10(6) g mol(-1)) produced by Vibrio diabolicus and displaying original structural features close to those of glycosaminoglycans. In order to confer new biological activities to the EPS HE800 or to improve them, structural modifications need to be performed. In particular, depolymerisation is required to generate low-molecular-weight derivatives. To circumvent the use of chemical methods that lack specificity and reproducibility, enzymes able to perform such reaction are sought. This study reports the screening for enzymes capable of depolymerising the EPS HE800. A large diversity of enzyme sources has been studied: commercially available glycoside hydrolases with broad substrate specificity, lyases, and proteases as well as growing microorganisms. Interestingly, we found that the genus Enterococcus and, more particularly, the strain Enterococcus faecalis were able to depolymerise the EPS HE800. Partial characterization of the enzymatic activity gives evidence for a random and incomplete depolymerisation pattern that yields low-molecular-weight products of 40,000 g mol(-1). Genomic analysis and activity assays allowed the identification of a relevant open reading frame (ORF) which encodes an endo-N-acetyl-galactosaminidase. This study establishes the foundation for the development of an enzymatic depolymerisation process.
Assuntos
Enterococcus faecalis/enzimologia , Hexosaminidases/isolamento & purificação , Hexosaminidases/metabolismo , Programas de Rastreamento/métodos , Polissacarídeos Bacterianos/metabolismo , Vibrio/metabolismo , Hidrólise , Peso Molecular , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Polissacarídeos Bacterianos/químicaRESUMO
In the field of tissue engineering, in order to restore tissue functionality hydrogels that closely mimic biological and mechanical properties of the extracellular matrix are intensely developed. Mechanical properties including relaxation of the surrounding microenvironment regulate essential cellular processes. However, the mechanical properties of engineered hydrogels are particularly complex since they involve not only a nonlinear elastic behavior but also time-dependent responses. An accurate determination of these properties at microscale, i.e. as probed by cells, becomes an essential step to further design hydrogel-based biomaterials able to induce specific cellular responses. Atomic Force Microscopy (AFM) with contact sizes of the order of few micrometers constitutes an appropriate technique to determine the origin of relaxation mechanisms occurring in hydrogels. In the present study, AFM force relaxation experiments are conducted on chemically and physically crosslinked hydrogels respectively based on a synthetic polymer, polyacrylamide and a natural polymer, a bacterial exopolysaccharide infernan, produced by the deep-sea hydrothermal vent bacterium, Alteromonas infernus. Two distinct relaxation mechanisms are clearly evidenced depending on the nature of hydrogel network crosslinks. Chemically crosslinked hydrogel exhibits poroelastic relaxations, whereas physically crosslinked hydrogel shows time-dependent responses arising from viscoelastic effects. In addition, two relaxation processes are revealed in ionic physical hydrogel originating from chain rearrangement and breaking/reforming of the ionic crosslinks. The effect of the ionic strength on both the long-term elastic modulus and relaxation times of physical hydrogels was also shown. These findings highlight that physical hydrogels with well-defined time-dependent mechanical properties could be tuned for an optimized response of cells.