Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Biol ; 22(1): 65, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486242

RESUMO

BACKGROUND: DNA methylation has been documented to play vital roles in diseases and biological processes. In bovine, little is known about the regulatory roles of DNA methylation alterations on production and health traits, including mastitis. RESULTS: Here, we employed whole-genome DNA methylation sequencing to profile the DNA methylation patterns of milk somatic cells from sixteen cows with naturally occurring Staphylococcus aureus (S. aureus) subclinical mastitis and ten healthy control cows. We observed abundant DNA methylation alterations, including 3,356,456 differentially methylated cytosines and 153,783 differential methylation haplotype blocks (dMHBs). The DNA methylation in regulatory regions, including promoters, first exons and first introns, showed global significant negative correlations with gene expression status. We identified 6435 dMHBs located in the regulatory regions of differentially expressed genes and significantly correlated with their corresponding genes, revealing their potential effects on transcriptional activities. Genes harboring DNA methylation alterations were significantly enriched in multiple immune- and disease-related pathways, suggesting the involvement of DNA methylation in regulating host responses to S. aureus subclinical mastitis. In addition, we found nine discriminant signatures (differentiates cows with S. aureus subclinical mastitis from healthy cows) representing the majority of the DNA methylation variations related to S. aureus subclinical mastitis. Validation of seven dMHBs in 200 cows indicated significant associations with mammary gland health (SCC and SCS) and milk production performance (milk yield). CONCLUSIONS: In conclusion, our findings revealed abundant DNA methylation alterations in milk somatic cells that may be involved in regulating mammary gland defense against S. aureus infection. Particularly noteworthy is the identification of seven dMHBs showing significant associations with mammary gland health, underscoring their potential as promising epigenetic biomarkers. Overall, our findings on DNA methylation alterations offer novel insights into the regulatory mechanisms of bovine subclinical mastitis, providing further avenues for the development of effective control measures.


Assuntos
Mastite Bovina , Infecções Estafilocócicas , Bovinos , Animais , Feminino , Humanos , Staphylococcus aureus , Metilação de DNA , Mastite Bovina/genética , Mastite Bovina/metabolismo , Haplótipos , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/veterinária
2.
Biol Reprod ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38857381

RESUMO

Choline is a vital micronutrient that can be utilized in the formation of betaine and multiple phospholipids. In this study, we aimed to confirm, and expand on previous findings, how choline impacts embryos from the first 7 days of development to affect postnatal phenotype. Bos indicus embryos were cultured in a choline-free medium (termed vehicle) or medium supplemented with 1.8 mM choline Blastocyst-stage embryos were transferred into crossbred recipients. Once born, calves were evaluated at birth, 94 d, 178 d and at weaning (average age = 239 d). Following weaning, all calves were enrolled into a feed efficiency trial before being separated by sex, with males being slaughtered at approximately 580 d of age and females followed until their first pregnancy check. Results confirm that exposure of 1.8 mM choline chloride during the first 7 d of development alters postnatal characteristics of the resultant calves. Calves of both sexes from choline-treated embryos were consistently heavier through weaning and males had heavier testes at 3 mo of age. There were sex-dependent alterations in DNA methylation in whole blood caused by choline treatment. After weaning, feed efficiency was affected by an interaction with sex, with choline calves being more efficient for females and less efficient for males. Calves from choline-treated embryos were heavier, or tended to be heavier, than calves from vehicle embryos at all observations after weaning. Carcass weight was heavier for choline calves and the cross-sectional area of the Longissumus thoracis muscle was increased by choline. Few females became pregnant during the experiment although numerically more choline females were pregnant than vehicle females. Results confirm that exposure of the preimplantation embryo to 1.8 mM choline can alter phenotypes of the resultant calves through the first 19 months after birth.

3.
J Dairy Sci ; 107(3): 1510-1522, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37690718

RESUMO

The Resilient Dairy Genome Project (RDGP) is an international large-scale applied research project that aims to generate genomic tools to breed more resilient dairy cows. In this context, improving feed efficiency and reducing greenhouse gases from dairy is a high priority. The inclusion of traits related to feed efficiency (e.g., dry matter intake [DMI]) or greenhouse gases (e.g., methane emissions [CH4]) relies on available genotypes as well as high quality phenotypes. Currently, 7 countries (i.e., Australia, Canada, Denmark, Germany, Spain, Switzerland, and United States) contribute with genotypes and phenotypes including DMI and CH4. However, combining data are challenging due to differences in recording protocols, measurement technology, genotyping, and animal management across sources. In this study, we provide an overview of how the RDGP partners address these issues to advance international collaboration to generate genomic tools for resilient dairy. Specifically, we describe the current state of the RDGP database, data collection protocols in each country, and the strategies used for managing the shared data. As of February 2022, the database contains 1,289,593 DMI records from 12,687 cows and 17,403 CH4 records from 3,093 cows and continues to grow as countries upload new data over the coming years. No strong genomic differentiation between the populations was identified in this study, which may be beneficial for eventual across-country genomic predictions. Moreover, our results reinforce the need to account for the heterogeneity in the DMI and CH4 phenotypes in genomic analysis.


Assuntos
Gases de Efeito Estufa , Feminino , Animais , Bovinos , Genômica , Genótipo , Austrália , Metano
4.
Reproduction ; 165(5): 557-568, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36912765

RESUMO

In brief: Bull fertility is an important economic trait, this study identified some DNA methylation biomarkers that are associated with bull fertility. Abstract: Subfertile bulls may cause huge economic losses in dairy production since their semen could be used to inseminate thousands of cows by artificial insemination. This study adopted whole-genome enzymatic methyl sequencing and aimed to identify candidate DNA methylation markers in bovine sperm that correlate with bull fertility. Twelve bulls were selected (high bull fertility = 6; low bull fertility = 6) based on the industry's internally used Bull Fertility Index. After sequencing, a total of 450 CpG had a DNA methylation difference higher than 20% (q < 0.01) had been screened. The 16 most significant differentially methylated regions (DMRs) were identified using a 10% methylation difference cut-off (q < 5.88 × 10-16). Interestingly, most of the differentially methylated cytosines (DMCs) and DMRs were distributed on the X and Y chromosomes, demonstrating that the sex chromosomes play essential roles in bull fertility. Additionally, the functional classification showed that the beta-defensin family, zinc finger protein family, and olfactory and taste receptors could be clustered. Moreover, the enriched G protein-coupled receptors such as neurotransmitter receptors, taste receptors, olfactory receptors, and ion channels indicated that the acrosome reaction and capacitation processes are pivotal for bull fertility. In conclusion, this study identified the sperm-derived bull fertility-associated DMRs and DMCs at the whole genome level, which could complement and integrate into the existing genetic evaluation methods, increasing our decisive capacity to select good bulls and explain bull fertility better in the future.


Assuntos
Metilação de DNA , Sêmen , Feminino , Bovinos , Masculino , Animais , Espermatozoides/metabolismo , Genoma , Inseminação Artificial/veterinária , Fertilidade/genética
5.
Reproduction ; 166(1): F15-F26, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37140978

RESUMO

In brief: This review discusses advances in the knowledge of epigenetic mechanisms regulating mitochondrial DNA and the relationship with reproductive biology. Abstract: Initially perceived simply as an ATP producer, mitochondria also participate in a wide range of other cellular functions. Mitochondrial communication with the nucleus, as well as signaling to other cellular compartments, is critical to cell homeostasis. Therefore, during early mammalian development, mitochondrial function is reported as a key element for survival. Any mitochondrial dysfunction may reflect in poor oocyte quality and may impair embryo development with possible long-lasting consequences to cell functions and the overall embryo phenotype. Growing evidence suggests that the availability of metabolic modulators can alter the landscape of epigenetic modifications in the nuclear genome providing an important layer for the regulation of nuclear-encoded gene expression. However, whether mitochondria could also be subjected to such similar epigenetic alterations and the mechanisms involved remain largely obscure and controversial. Mitochondrial epigenetics, also known as 'mitoepigenetics' is an intriguing regulatory mechanism in mitochondrial DNA (mtDNA)-encoded gene expression. In this review, we summarized the recent advances in mitoepigenetics, with a special focus on mtDNA methylation in reproductive biology and preimplantation development. A better comprehension of the regulatory role of mitoepigenetics will help the understanding of mitochondrial dysfunction and provide novel strategies for in vitro production systems and assisted reproduction technologies, as well as prevent metabolic related stress and diseases.


Assuntos
Metilação de DNA , Mitocôndrias , Animais , Mitocôndrias/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Epigênese Genética , Embrião de Mamíferos/metabolismo , Mamíferos/genética
6.
J Dairy Sci ; 106(6): 4380-4396, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37028966

RESUMO

The use of assisted-reproduction technologies such as in vitro fertilization (IVF) is increasing, particularly in dairy cattle. The question of consequences in later life has not yet been directly addressed by studies on large animal populations. Studies on rodents and early data from humans and cattle suggest that in vitro manipulation of gametes and embryos could result in long-term alteration of metabolism, growth, and fertility. Our goal was to better describe these presumed consequences in the population of dairy cows produced by IVF in Québec (Canada) and to compare them to animals conceived by artificial insemination (AI) or multiple ovulation embryo transfer (MOET). To do so, we leveraged a large phenotypic database (2.5 million animals and 4.5 million lactations) from milk records in Québec aggregated by Lactanet (Sainte-Anne-de-Bellevue, QC, Canada) and spanning 2012 to 2019. We identified 304,163, 12,993, and 732 cows conceived by AI, MOET, and IVF, respectively, for a total of 317,888 Holstein animals from which we retrieved information for 576,448, 24,192, and 1,299 lactations (total = 601,939), respectively. Genetic energy-corrected milk yield (GECM) and Lifetime Performance Index (LPI) of the parents of cows were used to normalize for genetic potential across animals. When compared with the general Holstein population, MOET and IVF cows outperformed AI cows. However, when comparing those same MOET and IVF cows with only herdmates and accounting for their higher GECM in the models, we found no statistical difference between the conception methods for milk production across the first 3 lactations. We also found that the rate of Lifetime Performance Index improvement of the IVF population during the 2012 to 2019 period was less than the rate observed in the AI population. Fertility analysis revealed that MOET and IVF cows also scored 1 point lower than their parents on the daughter fertility index and had a longer interval from first service to conception, with an average of 35.52 d compared with 32.45 for MOET and 31.87 for AI animals. These results highlight the challenges of elite genetic improvement while attesting to the progress the industry has made in minimizing epigenetic disturbance during embryo production. Nonetheless, additional work is required to ensure that IVF animals can maintain their performance and fertility potential.


Assuntos
Fertilidade , Leite , Feminino , Humanos , Bovinos , Animais , Leite/metabolismo , Fertilização , Fertilização in vitro/veterinária , Lactação , Inseminação Artificial/veterinária , Transferência Embrionária/veterinária , Ovulação
7.
J Dairy Sci ; 106(8): 5517-5536, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37291036

RESUMO

Staphylococcus aureus is one of the most prevalent contagious bacterial pathogen of bovine mastitis. The subclinical mastitis it causes has long-term economic implications and it is difficult to control. To further understanding of the genetic basis of mammary gland defense against S. aureus infection, the transcriptomes of milk somatic cells from 15 cows with persistent natural S. aureus infection (S. aureus-positive, SAP) and 10 healthy control cows (HC) were studied by deep RNA-sequencing technology. Comparing the transcriptomes of SAP to HC group revealed 4,077 differentially expressed genes (DEG; 1,616 up- and 2,461 downregulated). Functional annotation indicated enrichment of DEG in 94 Gene Ontology (GO) and 47 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Terms related to the immune response and disease processes were mostly enriched for by upregulated DEG, whereas biological process terms related to cell adhesion, cell movement and localization, and tissue development were mostly enriched for by downregulated DEG. Weighted gene co-expression network analysis grouped DEG into 7 modules, the most important module (colored turquoise by software and here referred to as Turquoise module) was positively significantly correlated with S. aureus subclinical mastitis. The 1,546 genes in the Turquoise module were significantly enriched in 48 GO terms and 72 KEGG pathways, with 80% of them being disease- and immune-related terms [e.g., immune system process (GO:0002376), cytokine-cytokine receptor interaction (bta04060) and S. aureus infection (bta05150)]. Some DEG such as IFNG, IL18, IL1B, NFKB1, CXCL8, and IL12B were enriched in immune and disease pathways suggesting their possible involvement in the regulation of the host response to S. aureus infection. Four modules (Yellow, Brown, Blue, and Red) were negatively correlated (significantly) with S. aureus subclinical mastitis, and were enriched in functional annotations involved in the regulation of cell migration, cell communication, metabolic process, and blood circulatory system development, respectively. Application of sparse partial least squares discriminant analysis to genes of the Turquoise module identified 5 genes (NR2F6, PDLIM5, RAB11FIP5, ACOT4, and TMEM53) capable of explaining the majority of the differences in the expression patterns between SAP and HC cows. In conclusion, this study has furthered understanding of the genetic changes in the mammary gland and the molecular mechanisms underlying S. aureus mastitis, as well as revealed a list of candidate discriminant genes with potential regulatory roles in response to S. aureus infection.


Assuntos
Doenças dos Bovinos , Mastite Bovina , Infecções Estafilocócicas , Animais , Bovinos , Feminino , Staphylococcus aureus/genética , Mastite Bovina/microbiologia , Perfilação da Expressão Gênica/veterinária , Infecções Estafilocócicas/veterinária , Infecções Estafilocócicas/genética
8.
Int J Mol Sci ; 24(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37373515

RESUMO

Staphylococcus chromogenes (SC) is a common coagulase-negative staphylococcus described as an emerging mastitis pathogen and commonly found in dairy farms. This study investigated the potential involvement of DNA methylation in subclinical mastitis caused by SC. The whole-genome DNA methylation patterns and transcriptome profiles of milk somatic cells from four cows with naturally occurring SC subclinical mastitis (SCM) and four healthy cows were characterized by next-generation sequencing, bioinformatics, and integration analyses. Comparisons revealed abundant DNA methylation changes related to SCM, including differentially methylated cytosine sites (DMCs, n = 2,163,976), regions (DMRs, n = 58,965), and methylation haplotype blocks (dMHBs, n = 53,098). Integration of methylome and transcriptome data indicated a negative global association between DNA methylation at regulatory regions (promoters, first exons, and first introns) and gene expression. A total of 1486 genes with significant changes in the methylation levels of their regulatory regions and corresponding gene expression showed significant enrichment in biological processes and pathways related to immune functions. Sixteen dMHBs were identified as candidate discriminant signatures, and validation of two signatures in more samples further revealed the association of dMHBs with mammary gland health and production. This study demonstrated abundant DNA methylation changes with possible involvement in regulating host responses and potential as biomarkers for SCM.


Assuntos
Mastite Bovina , Infecções Estafilocócicas , Bovinos , Animais , Feminino , Humanos , Metilação de DNA , Transcriptoma , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/veterinária , Mastite Bovina/genética , Staphylococcus/genética , Leite
9.
Biol Reprod ; 106(2): 230-234, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-34939644

RESUMO

In human in vitro fertilization, the main uncertainty factor impacting on success is oocyte quality, which largely depends on the follicular status at the time of collection. Decades of debate ensued to find the perfect stimulation protocol demonstrated the complexity of the ovarian response to exogenous gonadotropins and the dynamic nature of late folliculogenesis. Although several follicular markers, proteins, RNA from granulosa cells or microRNA, and follicular fluid metabolites have been associated with outcome, the possibility to influence them during stimulation remains elusive. The heterogeneity of the follicle's maturity following control ovarian stimulation is also an important factor to explain average poor oocyte quality still observed today. In this review, the analogy between the apple ripening on the tree and follicular development is presented to focus the attention on a biphasic process: growth and differentiation. The molecular analysis of the progressive follicular differentiation indicates two competing phenomena: growth and differentiation, where a delicate balance must operate from one to the other to ensure proper maturity at ovulation. As long as follicle-stimulating hormone (FSH) stimulates growth, follicles remain green, and it is only when FSH is replaced by luteinizing hormone that the ripening process begins, and "apples" become red. Both fruits, follicles and apples, depend on a perfect timing of events to generate offspring.


Assuntos
Frutas , Folículo Ovariano , Animais , Hormônio Foliculoestimulante/metabolismo , Células da Granulosa/metabolismo , Humanos , Mamíferos , Folículo Ovariano/metabolismo
10.
Mol Reprod Dev ; 89(7): 290-297, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35698757

RESUMO

Imprinted genes are inherited with different DNA methylation patterns depending on the maternal or paternal origin of the allele. In cattle (Bos taurus), abnormal methylation of these genes is linked to the large offspring syndrome, a neonatal overgrowth phenotype analogous to the human Beckwith-Wiedemann syndrome. We hypothesized that in bovine oocytes, some of the methylation patterns on maternally imprinted genes are acquired in the last phase of folliculogenesis. The pyrosequencing analysis of IGF2R, KCNQ1, PLAGL1, and SNRPN imprinted genes showed no clear progression of methylation in oocytes from follicles 1-2 mm (late pre antral/early antral) and up. Instead, these oocytes displayed complete methylation at the imprinted differentially methylated regions (>80%). Other mechanisms related to imprint maintenance should be investigated to explain the hypomethylation at IGF2R, KCNQ1, PLAGL1, and SNRPN maternally imprinted sites observed in some bovine embryos.


Assuntos
Metilação de DNA , Impressão Genômica , Animais , Bovinos , Proteínas de Ciclo Celular , Humanos , Canal de Potássio KCNQ1/genética , Oogênese , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Proteínas Centrais de snRNP/genética
11.
FASEB J ; 35(10): e21882, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34460963

RESUMO

In cattle, several calves born after IVP ("in vitro" embryo production) present similar birthweight to those generated after MOET (multiple ovulation and embryo transfer). However, the underlying molecular patterns in organs involved in the developmental process are unknown and could indicate physiological programming. The objectives of this study were: (1) to compare epigenomic and transcriptomic modifications in the hypothalamus, pituitary, gonadal and adrenal organs between 3 months old ovum pick-up-IVP and MOET male calves (n = 4 per group) and (2) to use blood epigenomic data to proxy methylation of the inner organs. Extracted gDNA and RNA were sequenced through whole-genome bisulfite sequencing and RNA sequencing, respectively. Next, bioinformatic analyses determined differentially methylated cytosines (DMC) and differentially expressed genes (DEG) (FDR < 0.05) in IVP versus MOET samples and the KEGG pathways that were overrepresented by genes associated with DMC or DEG (FDR < 0.1). Pathways related to hypothalamus, pituitary, gonadal (HPG) axis activation (GnRH secretion in the hypothalamus, GnRH signaling in the pituitary, and steroidogenesis in the testicle) were enriched in IVP calves. Modeling the effect of the methylation levels and the group on the expression of all the genes involved in these pathways confirmed their upregulation in HPG organs in IVP calves. The application of the DIABLO method allowed the identification of 15 epigenetic and five transcriptomic biomarkers, which were able to predict the embryo origin using the epigenomic data from the blood. In conclusion, the use of an integrated epigenomic-transcriptomic approach suggested an early activation of the HPG axis in male IVP calves compared to MOET counterparts, and the identification of potential biomarkers allowed the use of blood samples to proxy methylation levels of the relevant internal organs.


Assuntos
Transferência Embrionária , Epigenômica , Hormônio Liberador de Gonadotropina , Transdução de Sinais , Transcriptoma , Animais , Bovinos , Feminino , Hormônio Liberador de Gonadotropina/biossíntese , Hormônio Liberador de Gonadotropina/genética , Masculino , Especificidade de Órgãos
12.
BMC Genomics ; 22(1): 408, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34082721

RESUMO

BACKGROUND: Morphological evaluation of embryos has been used to screen embryos for transfer. However, the repeatability and accuracy of this method remains low. Thus, evaluation of an embryo's gene expression signature with respect to its developmental capacity could provide new opportunities for embryo selection. Since the gene expression outline of an embryo is considered as an aggregate of its intrinsic characteristics and culture conditions, we have compared transcriptome profiles of in vivo and in vitro derived blastocysts in relation to pregnancy outcome to unravel the discrete effects of developmental competence and environmental conditions on bovine embryo gene expression outlines. To understand whether the gene expression patterns could be associated with blastocyst developmental competency, the global transcriptome profile of in vivo (CVO) and in vitro (CVT) derived competent blastocysts that resulted in pregnancy was investigated relative to that of in vivo (NVO) and in vitro (NVT) derived blastocysts which did not establish initial pregnancy, respectively while to unravel the effects of culture condition on the transcriptome profile of embryos, the transcriptional activity of the CVO group was compared to the CVT group and the NVO group was compared to the NVT ones. RESULTS: A total of 700 differentially expressed genes (DEGs) were identified between CVO and NVO blastocysts. These gene transcripts represent constitutive regions, indel variants, 3'-UTR sequence variants and novel transcript regions. The majority (82%) of these DEGs, including gene clusters like ATP synthases, eukaryotic translation initiation factors, ribosomal proteins, mitochondrial ribosomal proteins, NADH dehydrogenase and cytochrome c oxidase subunits were enriched in the CVO group. These DEGs were involved in pathways associated with glycolysis/glycogenesis, citrate acid cycle, pyruvate metabolism and oxidative phosphorylation. Similarly, a total of 218 genes were differentially expressed between CVT and NVT groups. Of these, 89%, including TPT1, PDIA6, HSP90AA1 and CALM, were downregulated in the CVT group and those DEGs were overrepresented in pathways related to protein processing, endoplasmic reticulum, spliceasome, ubiquitone mediated proteolysis and steroid biosynthesis. On the other hand, although both the CVT and CVO blastocyst groups resulted in pregnancy, a total of 937 genes were differential expressed between the two groups. Compared to CVO embryos, the CVT ones exhibited downregulation of gene clusters including ribosomal proteins, mitochondrial ribosomal protein, eukaryotic translation initiation factors, ATP synthases, NADH dehydrogenase and cytochrome c oxidases. Nonetheless, downregulation of these genes could be associated with pre and postnatal abnormalities observed after transfer of in vitro embryos. CONCLUSION: The present study provides a detailed inventory of differentially expressed gene signatures and pathways specifically reflective of the developmental environment and future developmental capacities of bovine embryos suggesting that transcriptome activity observed in blastocysts could be indicative of further pregnancy success but also adaptation to culture environment.


Assuntos
Blastocisto , Desenvolvimento Embrionário , Animais , Bovinos , Embrião de Mamíferos , Desenvolvimento Embrionário/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Gravidez , Transcriptoma
13.
Mol Reprod Dev ; 88(12): 805-816, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34841613

RESUMO

Circulating levels of nonesterified fatty acids (NEFAs) are elevated in some females, which can impair oocyte maturation and embryo development, and may alter the phenotype of the progeny. However, the effects of NEFAs on human embryo development are not clear due to ethical limitations. Thus, we used pig as the model to investigate the impacts of NEFAs on oocyte and embryo due to their similar reproductive and metabolic physiologies to humans. In this study, porcine cumulus-oocyte complexes were in vitro maturated under a pathologically high concentration of NEFAs (468 µM palmitic acid, 194 µM stearic acid, and 534 µM oleic acid) with the presence of granulosa cell monolayer, in contrast to control without NEFAs. The mature oocytes were fertilized to produce embryos for further analysis of the transcriptome and DNA methylation patterns. The elevated level of NEFAs decreased the blastocyst rate and delayed the blastocyst development. Ingenuity pathway analysis showed that the most affected gene pathways were related mainly to cell activities, metabolism, and inflammation. These findings indicated that oocytes exposed to the exogenous high level of NEFAs during in vitro maturation resulted in altered gene expression and DNA methylation of early embryos, which have detrimental impacts on blastocyst quality.


Assuntos
Ácidos Graxos não Esterificados , Técnicas de Maturação in Vitro de Oócitos , Animais , Blastocisto/metabolismo , Células do Cúmulo/metabolismo , Desenvolvimento Embrionário , Ácidos Graxos não Esterificados/metabolismo , Ácidos Graxos não Esterificados/farmacologia , Feminino , Células da Granulosa , Técnicas de Maturação in Vitro de Oócitos/métodos , Oócitos/metabolismo , Suínos
14.
Reprod Fertil Dev ; 34(2): 203-213, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35231267

RESUMO

In the field of animal reproduction, the environment associated with gametes and embryos refers to the parents' condition as well as conditions surrounding gametes and embryos in vivo or in vitro . This environment is now known to influence not only the functionality of the early embryo but potentially the future phenotype of the offspring. Using transcriptomic and epigenetic molecular analysis, and the bovine model, recent research has shown that both the female and the male metabolic status, for example age, can affect gene expression and gene programming in the embryo. Evidence demonstrates that milking cows, which are losing weight at the time of conception, generates compromised embryos and offspring with a unique metabolic signature. A similar phenomenon has been associated with different culture conditions and the IVF procedure. The general common consequence of these situations is an embryo behaving on 'economy' mode where translation, cell division and ATP production is reduced, potentially to adapt to the perceived future environment. Few epidemiological studies have been done in bovines to assess if these changes result in a different phenotype and more studies are required to associate specific molecular changes in embryos with visible consequences later in life.


Assuntos
Desenvolvimento Embrionário , Fertilização in vitro , Animais , Bovinos , Técnicas de Cultura Embrionária/veterinária , Embrião de Mamíferos , Feminino , Fertilização , Fertilização in vitro/métodos , Fertilização in vitro/veterinária , Masculino , Fenótipo , Gravidez
15.
Reprod Fertil Dev ; 34(2): 214-233, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35231384

RESUMO

This paper offers a framework to help animal scientists engage in critical thinking about their own practices. Its objective is to reinforce their ability to participate in debates and discussions about the ethics surrounding the use of modern animal reproductive technologies (ART). This will be achieved first by exploring some of the most important philosophical conceptualizations of animals in Western philosophy, which are shaping the way humans interact with them. Then, we will analyse whether modern ART constitute ethically significant innovations in comparison with more traditional animal breeding practices, or whether they stand in continuity with the latter. This will be followed by a review some of the most important ethical issues with modern ART, where human, animal welfare, environmental and socio-economic issues will be discussed.


Assuntos
Bem-Estar do Animal , Técnicas Reprodutivas , Animais , Filosofia , Técnicas Reprodutivas/veterinária
16.
BMC Genomics ; 21(1): 798, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33198638

RESUMO

BACKGROUND: Sperm miRNAs were reported to regulate spermatogenesis and early embryonic development in some mammals including bovine. The dairy cattle breeding industry now tends to collect semen from younger bulls under high selection pressure at a time when semen quality may be suboptimal compared to adult bulls. Whether the patterns of spermatic miRNAs are affected by paternal age and/or impact early embryogenesis is not clear. Hence, we generated small non-coding RNA libraries of sperm collected from same bulls at 10, 12, and 16 months of age, using 16 months as control for differential expression and functional analysis. RESULTS: We firstly excluded all miRNAs present in measurable quantity in oocytes according to the literature. Of the remaining miRNAs, ten sperm-borne miRNAs were significantly differentially expressed in younger bulls (four in the 10 vs 16 months contrast and six in the 12 vs 16 months contrast). Targets of miRNAs were identified and compared to the transcriptomic database of two-cell embryos, to genes related to two-cell competence, and to the transcriptomic database of blastocysts. Ingenuity pathway analysis of the targets of these miRNAs suggested potential influence on the developmental competence of two-cell embryos and on metabolism and protein synthesis in blastocysts. CONCLUSIONS: The results showed that miRNA patterns in sperm are affected by the age of the bull and may mediate the effects of paternal age on early embryonic development.


Assuntos
Desenvolvimento Embrionário , MicroRNAs , Análise do Sêmen , Animais , Blastocisto , Bovinos , Desenvolvimento Embrionário/genética , Feminino , Masculino , MicroRNAs/genética , Gravidez , Espermatozoides
17.
Biol Reprod ; 103(3): 583-598, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32427331

RESUMO

The female reproductive function largely depends on timing and coordination between follicle-stimulating hormone (FSH) and luteinizing hormone. Even though it was suggested that these hormones act on granulosa cells via shared signaling pathways, mainly protein kinases A, B, and C (PKA, PKB, and PKC), there is still very little information available on how these signaling pathways are regulated by each hormone to provide such differences in gene expression throughout folliculogenesis. To obtain a global picture of the principal upstream factors involved in PKA, PKB, and PKC signaling in granulosa cells, human granulosa-like tumor cells (KGN) were treated with FSH or specific activators (forskolin, SC79, and phorbol 12-myristate 13-acetate) for each pathway to analyze gene expression with RNA-seq technology. Normalization and cutoffs (FC 1.5, P ≤ 0.05) revealed 3864 differentially expressed genes between treatments. Analysis of major upstream regulators showed that PKA is a master kinase of early cell differentiation as its activation resulted in the gene expression profile that accompanies granulosa cell differentiation. Our data also revealed that the activation of PKC in granulosa cells is also a strong differentiation signal that could control "advanced" differentiation in granulosa cells and the inflammatory cascade that occurs in the dominant follicle. According to our results, PKB activation provides support for PKA-stimulated gene expression and is also involved in granulosa cell survival throughout follicular development. Taken together, our results provide new information on PKA, PKB, and PKC signaling pathways and their roles in stimulating a follicle at the crossroad between maturation/ovulation and atresia.


Assuntos
Gonadotropinas/fisiologia , Tumor de Células da Granulosa/genética , Neoplasias Ovarianas/genética , Proteínas Quinases/genética , Proteínas Quinases/fisiologia , Transdução de Sinais/genética , Sobrevivência Celular , Feminino , Hormônio Foliculoestimulante/farmacologia , Regulação da Expressão Gênica no Desenvolvimento , Tumor de Células da Granulosa/fisiopatologia , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Humanos , Inflamação/genética , Inflamação/fisiopatologia , Neoplasias Ovarianas/fisiopatologia , Transcriptoma
18.
Biol Reprod ; 103(3): 599-607, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32483601

RESUMO

The patient's response to an IVF stimulation protocol is highly variable and thus difficult to predict. When a cycle fails, there are often no apparent or obvious reasons to explain the failure. Having clues on what went wrong during stimulation could serve as a basis to improve and personalize the next protocol. This exploratory study aimed to investigate if it is possible to distinguish different failure causes or different follicular responses in a population of nonpregnant IVF patients. Using qRT-PCR, we analyzed a panel of genes indicative of different failure causes in patients who did not achieve pregnancy following an IVF cycle. For each patient, a pool of follicular cells from all aspirated follicles was used as a sample which gives a global picture of the patient's ovary and not a specific picture of each follicle. We performed hierarchical clustering analysis to split the patients according to the gene expression pattern. Hierarchical analysis showed that the population of nonpregnant IVF patients could be divided into three clusters. Gene expression was significantly different, and each cluster displayed a particular gene expression pattern. Follicular cells from patients in clusters 1, 2 and 3 displayed respectively a pattern of gene expression related to large incompetent follicles with a higher apoptosis (over matured), to follicles not ready to ovulate (under mature) and to an excess of inflammation with no visible symptoms. This study reinforces the idea that women often have different response to the same protocol and would benefit from more personalized treatments.


Assuntos
Fertilização in vitro/métodos , Expressão Gênica/genética , Infertilidade/genética , Infertilidade/terapia , Adulto , Apoptose , Análise por Conglomerados , DNA Complementar/biossíntese , DNA Complementar/genética , Transferência Embrionária , Feminino , Humanos , Inflamação/patologia , Folículo Ovariano , Ovulação , Indução da Ovulação , Medicina de Precisão , Falha de Tratamento
19.
Reproduction ; 159(6): 679-691, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32191913

RESUMO

In the last years, many studies focused on the understanding of the possible role of zinc in the control of mammalian oogenesis, mainly on oocyte maturation and fertilization. However, little is known about the role of zinc at earlier stages, when the growing oocyte is actively transcribing molecules that will regulate and sustain subsequent stages of oocyte and embryonic development. In this study, we used the bovine model to gain insights into the possible involvement of zinc in oocyte development. We first mined the EmbryoGENE transcriptomic dataset, which revealed that several zinc transporters and methallothionein are impacted by physiological conditions throughout the final phase of oocyte growth and differentiation. We then observed that zinc supplementation during in vitro culture of growing oocytes is beneficial to the acquisition of meiotic competence when subsequently subjected to standard in vitro maturation. Furthermore, we tested the hypothesis that zinc supplementation might support transcription in growing oocytes. This hypothesis was indirectly confirmed by the experimental evidence that the content of labile zinc in the oocyte decreases when a major drop in transcription occurs in vivo. Accordingly, we observed that zinc sequestration with a zinc chelator rapidly reduced global transcription in growing oocytes, which was reversed by zinc supplementation in the culture medium. Finally, zinc supplementation impacted the chromatin state by reducing the level of global DNA methylation, which is consistent with the increased transcription. In conclusion, our study suggests that altering zinc availability by culture-medium supplementation supports global transcription, ultimately enhancing meiotic competence.


Assuntos
Meiose/fisiologia , Oócitos/crescimento & desenvolvimento , Oogênese/fisiologia , Transcriptoma , Zinco/farmacologia , Animais , Proteínas de Transporte/metabolismo , Bovinos , Metilação de DNA/efeitos dos fármacos , Feminino , Técnicas de Maturação in Vitro de Oócitos , Meiose/efeitos dos fármacos , Metalotioneína/metabolismo , Oócitos/química , Oócitos/efeitos dos fármacos , Oogênese/efeitos dos fármacos , Zinco/análise
20.
Mol Reprod Dev ; 87(8): 910-924, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32677283

RESUMO

In the dairy industry, the high selection pressure combined with the increased efficiency of assisted reproduction technologies (ART) are leading toward the use of younger females for reproduction purposes, with the aim to reduce the interval between generations. This situation could impair embryo quality, decreasing the success rate of the ART procedures and the values of resulting offspring. Young Holstein heifers (n = 10) were subjected to ovarian stimulation and oocyte collection at 8, 11, and 14 months of age. All the oocytes were fertilized in vitro with semen from one adult bull, generating three pools of embryos per animal. Each animal was its own control for the evaluation of the effects of age. The EmbryoGENE platform was used to compare the DNA methylation status of blastocysts obtained from oocytes collected at 8 versus 14 and 11 versus 14 months of age. Age-related contrast analysis identified 5,787 and 3,658 differentially methylated regions (DMRs) in blastocysts from heifers at 8 versus 14 and 11 versus 14 months of age, respectively. For both contrasts, the DMRs were distributed nonrandomly in the different DNA regions. The DNA from embryos from 8-month-old donors was more hypermethylated, while the DNA from embryos from 11-month-old donors displayed an intermediate phenotype. According to Ingenuity Pathway Analysis, the upstream regulator genes cellular tumor antigen p53, transforming growth factor ß1, tumor necrosis factor, and hepatocyte nuclear factor 4α are particularly associated with methylation sensitive targets, which were more hypermethylated in embryos from younger donors.


Assuntos
Blastocisto/metabolismo , Metilação de DNA/fisiologia , Doação de Oócitos/veterinária , Fatores Etários , Animais , Estudos de Casos e Controles , Bovinos , Células Cultivadas , Embrião de Mamíferos , Desenvolvimento Embrionário , Feminino , Fertilização in vitro/veterinária , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Oócitos/metabolismo , Maturidade Sexual/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA