RESUMO
Molecular alterations in genes involved in DNA mismatch repair (MMR) promote cancer initiation and foster tumour progression. Cancers deficient in MMR frequently show favourable prognosis and indolent progression. The functional basis of the clinical outcome of patients with tumours that are deficient in MMR is not clear. Here we genetically inactivate MutL homologue 1 (MLH1) in colorectal, breast and pancreatic mouse cancer cells. The growth of MMR-deficient cells was comparable to their proficient counterparts in vitro and on transplantation in immunocompromised mice. By contrast, MMR-deficient cancer cells grew poorly when transplanted in syngeneic mice. The inactivation of MMR increased the mutational burden and led to dynamic mutational profiles, which resulted in the persistent renewal of neoantigens in vitro and in vivo, whereas MMR-proficient cells exhibited stable mutational load and neoantigen profiles over time. Immune surveillance improved when cancer cells, in which MLH1 had been inactivated, accumulated neoantigens for several generations. When restricted to a clonal population, the dynamic generation of neoantigens driven by MMR further increased immune surveillance. Inactivation of MMR, driven by acquired resistance to the clinical agent temozolomide, increased mutational load, promoted continuous renewal of neoantigens in human colorectal cancers and triggered immune surveillance in mouse models. These results suggest that targeting DNA repair processes can increase the burden of neoantigens in tumour cells; this has the potential to be exploited in therapeutic approaches.
Assuntos
Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Reparo de Erro de Pareamento de DNA/genética , Imunoterapia/métodos , Neoplasias/imunologia , Neoplasias/patologia , Animais , Anticorpos Antineoplásicos/imunologia , Anticorpos Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Proteína 1 Homóloga a MutL/deficiência , Proteína 1 Homóloga a MutL/genética , Neoplasias/genética , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Evasão Tumoral/genética , Evasão Tumoral/imunologiaRESUMO
BACKGROUND: New ultrasensitive methods for detecting residual disease after surgery are needed in human papillomavirus-associated oropharyngeal squamous cell carcinoma (HPV+OPSCC). METHODS: To determine whether the clearance kinetics of circulating tumor human papillomavirus DNA (ctHPVDNA) is associated with postoperative disease status, a prospective observational study was conducted in 33 patients with HPV+OPSCC undergoing surgery. Blood was collected before surgery, postoperative days 1 (POD 1), 7, and 30 and with follow-up. A subcohort of 12 patients underwent frequent blood collections in the first 24 hours after surgery to define early clearance kinetics. Plasma was run on custom droplet digital polymerase chain reaction (ddPCR) assays for HPV genotypes 16, 18, 33, 35, and 45. RESULTS: In patients without pathologic risk factors for recurrence who were observed after surgery, ctHPVDNA rapidly decreased to <1 copy/mL by POD 1 (n = 8/8). In patients with risk factors for macroscopic residual disease, ctHPVDNA was markedly elevated on POD 1 (>350 copies/mL) and remained elevated until adjuvant treatment (n = 3/3). Patients with intermediate POD 1 ctHPVDNA levels (1.2-58.4 copies/mL) all possessed pathologic risk factors for microscopic residual disease (n = 9/9). POD 1 ctHPVDNA levels were higher in patients with known adverse pathologic risk factors such as extranodal extension >1 mm (P = .0481) and with increasing lymph nodes involved (P = .0453) and were further associated with adjuvant treatment received (P = .0076). One of 33 patients had a recurrence that was detected by ctHPVDNA 2 months earlier than clinical detection. CONCLUSIONS: POD 1 ctHPVDNA levels are associated with the risk of residual disease in patients with HPV+OPSCC undergoing curative intent surgery and thus could be used as a personalized biomarker for selecting adjuvant treatment in the future. LAY SUMMARY: Human papillomavirus-associated oropharyngeal squamous cell carcinoma (HPV+OPSCC) is increasing at epidemic proportions and is commonly treated with surgery. This report describes results from a study examining the clearance kinetics of circulating tumor HPV DNA (circulating tumor human papillomavirus DNA [ctHPVDNA]) following surgical treatment of HPV+OPSCC. We found that ctHPVDNA levels 1 day after surgery are associated with the risk of residual disease in patients with HPV+OPSCC and thus could be used as a personalized biomarker for selecting adjuvant treatment in the future. These findings are the first to demonstrate the potential utility of ctHPVDNA in patients with HPV+OPSCC undergoing surgery.
Assuntos
Alphapapillomavirus , DNA Tumoral Circulante , Neoplasias de Cabeça e Pescoço , Neoplasias Orofaríngeas , Infecções por Papillomavirus , Alphapapillomavirus/genética , DNA Tumoral Circulante/genética , Neoplasias de Cabeça e Pescoço/complicações , Humanos , Cinética , Papillomaviridae/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/complicaçõesRESUMO
The acquisition of adequate tumor sample is required to verify primary tumor type and specific biomarkers and to assess response to therapy. Historically, invasive surgical procedures were the standard methods to acquire tumor samples until advancements in imaging and minimally invasive equipment facilitated the paradigm shift image-guided biopsy. Image-guided biopsy has improved sampling yield and minimized risk to the patient; however, there are still limitations, such as its invasive nature and its consequent limitations to longitudinal tumor monitoring. The next paradigm shift in sampling technique will need to address these issues to provide a more reliable and less invasive technique. Recently, liquid biopsy (LB) has emerged as a non-invasive alternative to tissue sampling. This technique relies on direct sampling of blood or other bodily fluids in contact with the tumor in order to collect circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), and circulating RNAs-in particular microRNA (miRNAs). Clinical applications of LB involve different steps of cancer patient management including screening, detection of disease recurrence, and evaluation of acquired resistance. With any paradigm shift, old techniques are often relegated to a secondary option. Although image-guided biopsies may appear as a passive spectator on the rapid advancement of LB, the two techniques may well be codependent. Interventional radiology may be integral to directly sample the liquid surrounding or draining from the tumor. In addition, LB may help to correctly select the patients for image-guided loco-regional treatments, to determine its treatment endpoint, and to early detect recurrence. KEY POINTS: ⢠Liquid biopsy is a novel technology with potential high impact in the management of patients undergoing image-guided procedures. ⢠Interventional radiology procedures may increase liquid biopsy sensitivity through direct fluid sampling. ⢠Liquid biopsy techniques may provide a venue for improving patients' selection and enhance outcomes of interventional loco-regional therapies performed by interventional radiologists.
Assuntos
Neoplasias/diagnóstico , Neoplasias/patologia , Radiologia Intervencionista/métodos , Biomarcadores Tumorais/sangue , Humanos , Biópsia Guiada por Imagem/métodos , Biópsia Líquida/métodos , Células Neoplásicas Circulantes/patologia , RadiologistasRESUMO
High-grade serous epithelial ovarian cancer (HGS-EOC) is a systemic disease, with marked intra and interpatient tumor heterogeneity. The issue of spatial and temporal heterogeneity has long been overlooked, hampering the possibility to identify those genomic alterations that persist, before and after therapy, in the genome of all tumor cells across the different anatomical districts. This knowledge is the first step to clarify those molecular determinants that characterize the tumor biology of HGS-EOC and their route toward malignancy. In our study, -omics data were generated from 79 snap frozen matched tumor biopsies, withdrawn before and after chemotherapy from 24 HGS-EOC patients, gathered together from independent cohorts. The landscape of somatic copy number alterations depicts a more homogenous and stable genomic portrait than the single nucleotide variant profile. Genomic identification of significant targets in cancer analysis identified two focal and minimal common regions (FMCRs) of amplification in the cytoband 3q26.2 (region α, 193 kb long) and 8q24.3 (region ß, 495 kb long). Analysis in two external databases confirmed regions α and ß are features of HGS-EOC. The MECOM gene is located in region α, and 15 genes are in region ß. No functional data are yet available for the genes in the ß region. In conclusion, we have identified for the first time two FMCRs of amplification in HGS-EOC, opening up a potential biological role in its etiopathogenesis.
Assuntos
Carcinoma Epitelial do Ovário/genética , Cromossomos Humanos Par 3/genética , Cromossomos Humanos Par 8/genética , Variações do Número de Cópias de DNA , Neoplasias Ovarianas/genética , Biópsia , Carcinoma Epitelial do Ovário/patologia , Estudos de Coortes , Biologia Computacional , Bases de Dados Genéticas , Conjuntos de Dados como Assunto , Feminino , Genômica , Humanos , Gradação de Tumores , Neoplasias Ovarianas/patologia , Ovário/patologia , Sequenciamento do ExomaRESUMO
OBJECTIVE: Mutations in cell-free circulating DNA (cfDNA) have been studied for tracking disease relapse in colorectal cancer (CRC). This approach requires personalised assay design due to the lack of universally mutated genes. In contrast, early methylation alterations are restricted to defined genomic loci allowing comprehensive assay design for population studies. Our objective was to identify cancer-specific methylated biomarkers which could be measured longitudinally in cfDNA (liquid biopsy) to monitor therapeutic outcome in patients with metastatic CRC (mCRC). DESIGN: Genome-wide methylation microarrays of CRC cell lines (n=149) identified five cancer-specific methylated loci (EYA4, GRIA4, ITGA4, MAP3K14-AS1, MSC). Digital PCR assays were employed to measure methylation of these genes in tumour tissue DNA (n=82) and cfDNA from patients with mCRC (n=182). Plasma longitudinal assessment was performed in a patient subset treated with chemotherapy or targeted therapy. RESULTS: Methylation in at least one marker was detected in all tumour tissue samples and in 156 mCRC patient cfDNA samples (85.7%). Plasma marker prevalence was 71.4% for EYA4, 68.5% for GRIA4, 69.7% for ITGA4, 69.1% for MAP3K14-AS1% and 65.1% for MSC. Dynamics of methylation markers was not affected by treatment type and correlated with objective tumour response and progression-free survival. CONCLUSION: This five-gene methylation panel can be used to circumvent the absence of patient-specific mutations for monitoring tumour burden dynamics in liquid biopsy under different therapeutic regimens. This method might be proposed for assessing pharmacodynamics in clinical trials or when conventional imaging has limitations.
Assuntos
Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/genética , Ácidos Nucleicos Livres/metabolismo , Neoplasias Colorretais/genética , Metilação de DNA/genética , Adulto , Idoso , Biomarcadores Tumorais/sangue , Linhagem Celular Tumoral , Ácidos Nucleicos Livres/efeitos dos fármacos , Ácidos Nucleicos Livres/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Monitoramento de Medicamentos/métodos , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Mutação , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Reação em Cadeia da Polimerase , Resultado do TratamentoRESUMO
Glioblastoma (GBM) is a lethal tumor that displays remarkable genetic heterogeneity. It is also known that GBM contains a cell hierarchy driven by GBM stem-like cells (GSCs), responsible for tumor generation, therapeutic resistance, and relapse. An important and still open issue is whether phylogenetically related GSCs can be found in matched primary and recurrent GBMs, and reflect tumor genetic evolution under therapeutic pressure. To address this, we analyzed the mutational profile of GSCs isolated from either human primary GBMs (primary GSCs) or their matched tumors recurring after surgery and chemoradiotherapy (recurrent GSCs). We found that recurrent GSCs can accumulate temozolomide-related mutations over primary GSCs, following both linear and branched patterns. In the latter case, primary and recurrent GSCs share a common set of lesions, but also harbor distinctive mutations indicating that primary and recurrent GSCs derive from a putative common ancestor GSC by divergent genetic evolution. Interestingly, TP53 mutations distinctive of recurrent GSCs were detectable at low frequency in the corresponding primary tumors and likely marked pre-existent subclones that evolved under therapeutic pressure and expanded in the relapsing tumor. Consistently, recurrent GSCs displayed in vitro greater therapeutic resistance than primary GSCs. Overall, these data indicate that (a) phylogenetically related GSCs are found in matched primary and recurrent GBMs and (b) recurrent GSCs likely pre-exist in the untreated primary tumor and are both mutagenized and positively selected by chemoradiotherapy. Stem Cells 2017;35:2218-2228.
Assuntos
Dosagem de Genes/genética , Glioblastoma/genética , Células-Tronco Neoplásicas/metabolismo , Adulto , Animais , Evolução Molecular , Feminino , Glioblastoma/patologia , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/patologiaRESUMO
Cancer is a spatial and temporal dynamic disease where differently evolving genetic clones are responsible for progression. In this landscape, the genomic heterogeneity of the primary tumours can be captured by deep-sequencing representative spatial samples. However, the recognition of genetic alterations responsible for tumour evolution remains a challenging task. Recently, the "liquid biopsy" was recognized as a powerful real-time approach for the molecular monitoring of this dynamic disease. The term "liquid biopsy" generally refers to the use of circulating (cell-free) tumour DNA (ctDNA) and circulating tumour cells (CTCs) as non-invasive biomarkers for the early diagnosis, prognosis, monitoring of clinical progression, and response to treatment in different types of tumours, including the highly genomic heterogeneous breast cancer. The implementation and standardization of both approaches are still needed to achieve the required sensitivity and specificity to successfully analyze heterogenous tumours, but pivotal studies, in particular those concerning colorectal cancer, have shown the feasibility and usefulness of liquid biopsy for monitoring the Darwinian clonal evolution from an early to a metastatic stage.
Assuntos
Neoplasias da Mama/genética , Neoplasias do Colo/genética , Genômica , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/patologia , DNA Tumoral Circulante/genética , Neoplasias do Colo/diagnóstico , Neoplasias do Colo/patologia , DNA de Neoplasias/genética , Feminino , Humanos , Biópsia Líquida , Mutação , Células Neoplásicas Circulantes/patologia , PrognósticoRESUMO
A main limitation of therapies that selectively target kinase signalling pathways is the emergence of secondary drug resistance. Cetuximab, a monoclonal antibody that binds the extracellular domain of epidermal growth factor receptor (EGFR), is effective in a subset of KRAS wild-type metastatic colorectal cancers. After an initial response, secondary resistance invariably ensues, thereby limiting the clinical benefit of this drug. The molecular bases of secondary resistance to cetuximab in colorectal cancer are poorly understood. Here we show that molecular alterations (in most instances point mutations) of KRAS are causally associated with the onset of acquired resistance to anti-EGFR treatment in colorectal cancers. Expression of mutant KRAS under the control of its endogenous gene promoter was sufficient to confer cetuximab resistance, but resistant cells remained sensitive to combinatorial inhibition of EGFR and mitogen-activated protein-kinase kinase (MEK). Analysis of metastases from patients who developed resistance to cetuximab or panitumumab showed the emergence of KRAS amplification in one sample and acquisition of secondary KRAS mutations in 60% (6 out of 10) of the cases. KRAS mutant alleles were detectable in the blood of cetuximab-treated patients as early as 10 months before radiographic documentation of disease progression. In summary, the results identify KRAS mutations as frequent drivers of acquired resistance to cetuximab in colorectal cancers, indicate that the emergence of KRAS mutant clones can be detected non-invasively months before radiographic progression and suggest early initiation of a MEK inhibitor as a rational strategy for delaying or reversing drug resistance.
Assuntos
Anticorpos Monoclonais/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Mutação/genética , Proteínas Proto-Oncogênicas/genética , Proteínas ras/genética , Alelos , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados , Linhagem Celular Tumoral , Cetuximab , Neoplasias Colorretais/patologia , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/genética , Genes ras/genética , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Panitumumabe , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas p21(ras)RESUMO
BACKGROUND: Combined MET and BRAF inhibition showed clinical benefit in a patient with rectal cancer carrying BRAFV600E and MET amplification. However after 4 months, acquired resistance emerged and the patient deceased shortly after disease progression. The mechanism of resistance to this drug combination is unknown. METHODS: We analysed plasma circulating tumour DNA obtained at progression by exome sequencing and digital PCR. MET gene and mRNA in situ hybridisation analyses in two bioptic specimens obtained at progression were used to confirm the plasma data. RESULTS: We identified in plasma MET gene hyper-amplification as a potential mechanism underlying therapy resistance. Increased MET gene copy and transcript levels were detected in liver and lymph node metastatic biopsies. Finally, transduction of MET in BRAF mutant colorectal cancer cells conferred refractoriness to BRAF and MET inhibition. CONCLUSIONS: We identified in a rectal cancer patient MET gene hyper-amplification as mechanism of resistance to dual BRAF and MET inhibition.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , DNA de Neoplasias/sangue , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas Proto-Oncogênicas c-met/genética , Neoplasias Retais/tratamento farmacológico , Neoplasias Retais/genética , Linhagem Celular , Crizotinibe , Progressão da Doença , Evolução Fatal , Amplificação de Genes , Humanos , Indóis/administração & dosagem , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Pirazóis/administração & dosagem , Piridinas/administração & dosagem , Neoplasias Retais/patologia , Sulfonamidas/administração & dosagem , VemurafenibRESUMO
BACKGROUND: We previously found that dual HER2 blockade with trastuzumab and lapatinib led to inhibition of tumour growth in patient-derived xenografts of HER2-amplified metastatic colorectal cancer. In this study, we aimed to assess the antitumour activity of trastuzumab and lapatinib in patients with HER2-positive colorectal cancer. METHODS: HERACLES was a proof-of-concept, multicentre, open-label, phase 2 trial done at four Italian academic cancer centres. We enrolled adult patients with KRAS exon 2 (codons 12 and 13) wild-type and HER2-positive metastatic colorectal cancer refractory to standard of care (including cetuximab or panitumumab), an Eastern Cooperative Oncology Group performance status of 0 or 1, and at least one measurable lesion. We defined HER2 positivity in tumour samples by use of immunohistochemistry and fluorescence in-situ hybridisation in accordance with our previously validated colorectal cancer-specific diagnostic criteria. Eligible patients received intravenous trastuzumab at 4 mg/kg loading dose followed by 2 mg/kg once per week, and oral lapatinib at 1000 mg per day until evidence of disease progression. The primary endpoint was the proportion of patients achieving an objective response (defined as complete response or partial response), which was assessed by independent central review in the intention-to-treat population. This trial is registered with EudraCT, number 2012-002128-33. FINDINGS: Between Aug 27, 2012, and May 15, 2015, we screened 914 patients with KRAS exon 2 (codons 12 and 13) wild-type metastatic colorectal cancer and identified 48 (5%) patients with HER2-positive tumours, although two died before enrolment. Of these patients, 27 were eligible for the trial. All were evaluable for response. At the time of data cutoff on Oct 15, 2015, with a median follow-up of 94 weeks (IQR 51-127), eight (30%, 95% CI 14-50) of 27 patients had achieved an objective response, with one patient (4%, 95% CI -3 to 11) achieving a complete response, and seven (26%, 95% CI 9-43) achieving partial responses; 12 (44%, 95% CI 25-63) patients had stable disease. Six (22%) of 27 patients had grade 3 adverse events, which consisted of fatigue in four patients, skin rash in one patient, and increased bilirubin concentration in one patient. No grade 4 or 5 adverse events were reported. We detected no drug-related serious adverse events. INTERPRETATION: The combination of trastuzumab and lapatinib is active and well tolerated in treatment-refractory patients with HER2-positive metastatic colorectal cancer. FUNDING: Associazione Italiana Ricerca Cancro (AIRC), Fondazione Oncologia Niguarda Onlus, and Roche.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Terapia de Alvo Molecular , Recidiva Local de Neoplasia/tratamento farmacológico , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptor ErbB-2/antagonistas & inibidores , Adulto , Idoso , Biomarcadores Tumorais , Códon/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Feminino , Seguimentos , Humanos , Técnicas Imunoenzimáticas , Lapatinib , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Estadiamento de Neoplasias , Prognóstico , Quinazolinas/administração & dosagem , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Terapia de Salvação , Taxa de Sobrevida , Trastuzumab/administração & dosagemRESUMO
PURPOSE: FGFR inhibitors are effective in FGFR2-altered cholangiocarcinoma, leading to approval of reversible FGFR inhibitors, pemigatinib and infigratinib, and an irreversible inhibitor, futibatinib. However, acquired resistance develops, limiting clinical benefit. Some mechanisms of resistance have been reported, including secondary FGFR2 kinase domain mutations. Here, we sought to establish the landscape of acquired resistance to FGFR inhibition and to validate findings in model systems. EXPERIMENTAL DESIGN: We examined the spectrum of acquired resistance mechanisms detected in circulating tumor DNA or tumor tissue upon disease progression following FGFR inhibitor therapy in 82 FGFR2-altered cholangiocarcinoma patients from 12 published reports. Functional studies of candidate resistance alterations were performed. RESULTS: Overall, 49 of 82 patients (60%) had one or more detectable secondary FGFR2 kinase domain mutations upon acquired resistance. N550 molecular brake and V565 gatekeeper mutations were most common, representing 63% and 47% of all FGFR2 kinase domain mutations, respectively. Functional studies showed different inhibitors displayed unique activity profiles against FGFR2 mutations. Interestingly, disruption of the cysteine residue covalently bound by futibatinib (FGFR2 C492) was rare, observed in 1 of 42 patients treated with this drug. FGFR2 C492 mutations were insensitive to inhibition by futibatinib but showed reduced signaling activity, potentially explaining their low frequency. CONCLUSIONS: These data support secondary FGFR2 kinase domain mutations as the primary mode of acquired resistance to FGFR inhibitors, most commonly N550 and V565 mutations. Thus, development of combination strategies and next-generation FGFR inhibitors targeting the full spectrum of FGFR2 resistance mutations will be critical.
Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/genética , Mutação , Transdução de Sinais , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Inibidores de Proteínas Quinases/efeitos adversosRESUMO
A genomic understanding of the oncogenic processes and individual variability of human cancer has steadily fueled improvement in patient outcomes over the past 20 years. Mutations within tumour tissues are routinely assessed through clinical genomic diagnostic assays by academic and commercial laboratories to facilitate diagnosis, prognosis and effective treatment stratification. The application of genomics has unveiled a wealth of mutation-based biomarkers in canine cancers, suggesting that the transformative principles that have revolutionized human cancer medicine can be brought to bear in veterinary oncology. To advance clinical genomics and genomics-guided medicine in canine oncology, we have developed and validated a canine cancer next-generation sequencing gene panel for the identification of multiple mutation types in clinical specimens. With this panel, we examined the genomic landscapes of 828 tumours from 813 dogs, spanning 53 cancer types. We identified 7856 alterations, encompassing copy number variants, single nucleotide variants, indels and internal tandem duplications. Additionally, we evaluated the clinical utility of these alterations by incorporating a biomarker framework from comprehensive curation of primary canine literature and inferences from human cancer genomic biomarker literature and clinical diagnostics. Remarkably, nearly 90% of the cases exhibited mutations with diagnostic, prognostic or therapeutic implications. Our work represents a thorough assessment of genomic landscapes in a large cohort of canine cancers, the first of its kind for its comprehensive inclusion of multiple mutation types and structured annotation of biomarkers, demonstrating the clinical potential of leveraging mutation-based biomarkers in veterinary oncology.
Assuntos
Doenças do Cão , Neoplasias , Cães , Humanos , Animais , Doenças do Cão/genética , Neoplasias/genética , Neoplasias/veterinária , Genômica , Mutação , Biomarcadores Tumorais/genéticaRESUMO
PURPOSE: MEK inhibitors (MEKi) lack monotherapy efficacy in most RAS-mutant cancers. BCL-xL is an anti-apoptotic protein identified by a synthetic lethal shRNA screen as a key suppressor of apoptotic response to MEKi. PATIENTS AND METHODS: We conducted a dose escalation study (NCT02079740) of the BCL-xL inhibitor navitoclax and MEKi trametinib in patients with RAS-mutant tumors with expansion cohorts for: pancreatic, gynecologic (GYN), non-small cell lung cancer (NSCLC), and other cancers harboring KRAS/NRAS mutations. Paired pretreatment and day 15 tumor biopsies and serial cell-free (cf)DNA were analyzed. RESULTS: A total of 91 patients initiated treatment, with 38 in dose escalation. Fifty-eight percent had ≥3 prior therapies. A total of 15 patients (17%) had colorectal cancer, 19 (11%) pancreatic, 15 (17%) NSCLC, and 32 (35%) GYN cancers. The recommended phase II dose (RP2D) was established as trametinib 2 mg daily days 1 to 14 and navitoclax 250 mg daily days 1 to 28 of each cycle. Most common adverse events included diarrhea, thrombocytopenia, increased AST/ALT, and acneiform rash. At RP2D, 8 of 49 (16%) evaluable patients achieved partial response (PR). Disease-specific differences in efficacy were noted. In patients with GYN at the RP2D, 7 of 21 (33%) achieved a PR and median duration of response 8.2 months. No PRs occurred in patients with colorectal cancer, NSCLC, or pancreatic cancer. MAPK pathway inhibition was observed in on-treatment tumor biopsies. Reductions in KRAS/NRAS mutation levels in cfDNA correlated with clinical benefit. CONCLUSIONS: Navitoclax in combination with trametinib was tolerable. Durable clinical responses were observed in patients with RAS-mutant GYN cancers, warranting further evaluation in this population.
Assuntos
Compostos de Anilina , Mutação , Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Piridonas , Pirimidinonas , Sulfonamidas , Proteína bcl-X , Humanos , Feminino , Piridonas/administração & dosagem , Piridonas/efeitos adversos , Piridonas/uso terapêutico , Masculino , Pessoa de Meia-Idade , Compostos de Anilina/administração & dosagem , Compostos de Anilina/efeitos adversos , Compostos de Anilina/uso terapêutico , Pirimidinonas/administração & dosagem , Pirimidinonas/efeitos adversos , Idoso , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Proteína bcl-X/antagonistas & inibidores , Proteína bcl-X/genética , Adulto , Sulfonamidas/administração & dosagem , Sulfonamidas/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Idoso de 80 Anos ou mais , GTP Fosfo-Hidrolases/genética , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/uso terapêutico , Resultado do TratamentoRESUMO
Importance: Patient-reported outcomes (PROs), such as quality of life (QOL) and symptoms, are often associated with clinical outcomes in patients with cancer. In practice, oncologists use serum tumor markers (TMs) (ie, carcinoembryonic antigen [CEA] and carbohydrate antigen 19-9 [CA 19-9]) and imaging to monitor clinical outcomes in patients with gastrointestinal cancer. Objective: To examine associations of 1-month changes in PROs and TMs with treatment response and survival among patients with gastrointestinal cancer. Design, Setting, and Participants: This cohort study enrolled patients at Massachusetts General Hospital Cancer Center with at least 1 month follow-up from May 2019 to December 2020. Included patients were beginning first-line systemic therapy, aged 18 years or older, and had been diagnosed with metastatic pancreaticobiliary, colorectal, or gastroesophageal cancer. Data analyses took place from January 2021 to January 2022. Intervention: PROs were collected, including QOL (Functional Assessment of Cancer Therapy General [FACT-G]), physical symptoms (Edmonton Symptom Assessment System [ESAS]), and psychological symptoms (Patient Health Questionnaire-4 [PHQ4] total, PHQ4-depression, and PHQ4-anxiety), as well as TMs (CEA and CA 19-9), at the time of chemotherapy initiation and 1 month later. Main Outcomes and Measures: Associations of 1-month changes in PROs and TMs with treatment response (clinical benefit vs disease progression) at first scan, progression-free survival (PFS), and overall survival (OS), adjusted for baseline values using regression models. Results: This study included 159 patients, with 134 patients (84.3%) evaluable for analysis. Patients had a median (range) age of 64.0 (28.0-84.0) years and 86 (64.2%) were male. One-month PRO changes (FACT-G: OR, 1.07; 95% CI, 1.03-1.11; P = .001; ESAS-total: OR, 0.97; 95% CI, 0.94-1.00; P = .02; ESAS-physical: OR, 0.96; 95% CI, 0.92-1.00; P = .03; PHQ4-depression: OR, 0.67; 95% CI, 0.49-0.92; P = .01) were significantly associated with treatment response, but PHQ4-total or TMs were not. Changes in FACT-G (HR, 0.97; 95% CI, 0.95-0.99; P = .003), ESAS-total (HR, 1.03; 95% CI, 1.01-1.05; P = .004), ESAS-physical (HR, 1.03; 95% CI, 1.00-1.05; P = .02), PHQ4-depression (HR, 1.22; 95% CI, 1.01-1.48; P = .04), and CEA (HR, 1.00; 95% CI, 1.001-1.004; P = .001) were associated with PFS, but changes in PHQ4-total or TMs were not. Changes in ESAS-total (HR, 1.03, 95% CI, 1.01-1.06; P = .006) and ESAS-physical (HR, 1.04, 95% CI, 1.01-1.06; P = .015) were associated with OS, but changes in TMs were not associated with OS. Conclusions and Relevance: These findings suggest that 1-month changes in PROs can be associated with treatment response and survival in patients with advanced gastrointestinal cancer. Notably, 1-month changes in TMs were not consistently associated with these outcomes. These findings highlight the potential for monitoring early changes in PROs to associate with clinical outcomes while underscoring the need to address the QOL and symptom concerns of patients with advanced cancer.
Assuntos
Neoplasias Gastrointestinais , Qualidade de Vida , Humanos , Masculino , Feminino , Antígeno Carcinoembrionário , Biomarcadores Tumorais , Estudos de Coortes , Neoplasias Gastrointestinais/terapia , Medidas de Resultados Relatados pelo PacienteRESUMO
While BRAF inhibitor combinations with EGFR and/or MEK inhibitors have improved clinical efficacy in BRAFV600E colorectal cancer (CRC), response rates remain low and lack durability. Preclinical data suggest that BRAF/MAPK pathway inhibition may augment the tumor immune response. We performed a proof-of-concept single-arm phase 2 clinical trial of combined PD-1, BRAF and MEK inhibition with sparatlizumab (PDR001), dabrafenib and trametinib in 37 patients with BRAFV600E CRC. The primary end point was overall response rate, and the secondary end points were progression-free survival, disease control rate, duration of response and overall survival. The study met its primary end point with a confirmed response rate (24.3% in all patients; 25% in microsatellite stable patients) and durability that were favorable relative to historical controls of BRAF-targeted combinations alone. Single-cell RNA sequencing of 23 paired pretreatment and day 15 on-treatment tumor biopsies revealed greater induction of tumor cell-intrinsic immune programs and more complete MAPK inhibition in patients with better clinical outcome. Immune program induction in matched patient-derived organoids correlated with the degree of MAPK inhibition. These data suggest a potential tumor cell-intrinsic mechanism of cooperativity between MAPK inhibition and immune response, warranting further clinical evaluation of optimized targeted and immune combinations in CRC. ClinicalTrials.gov registration: NCT03668431.
Assuntos
Neoplasias Colorretais , Melanoma , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Receptor de Morte Celular Programada 1/genética , Melanoma/patologia , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Neoplasias Colorretais/genética , Mutação , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Piridonas/uso terapêutico , Pirimidinonas/uso terapêutico , Inibidores de Proteínas Quinases/farmacologiaRESUMO
PURPOSE: HPV-associated head and neck squamous cell carcinoma (HPV+HNSCC) is the most common HPV-associated malignancy in the United States and continues to increase in incidence. Current diagnostic approaches for HPV+HNSCC rely on tissue biopsy followed by histomorphologic assessment and detection of HPV indirectly by p16 IHC. Such approaches are invasive and have variable sensitivity. EXPERIMENTAL DESIGN: We conducted a prospective observational study in 140 subjects (70 cases and 70 controls) to test the hypothesis that a noninvasive diagnostic approach for HPV+HNSCC would have improved diagnostic accuracy, lower cost, and shorter diagnostic interval compared with standard approaches. Blood was collected, processed for circulating tumor HPV DNA (ctHPVDNA), and analyzed with custom ddPCR assays for HPV genotypes 16, 18, 33, 35, and 45. Diagnostic performance, cost, and diagnostic interval were calculated for standard clinical workup and compared with a noninvasive approach using ctHPVDNA combined with cross-sectional imaging and physical examination findings. RESULTS: Sensitivity and specificity of ctHPVDNA for detecting HPV+HNSCC were 98.4% and 98.6%, respectively. Sensitivity and specificity of a composite noninvasive diagnostic using ctHPVDNA and imaging/physical examination were 95.1% and 98.6%, respectively. Diagnostic accuracy of this noninvasive approach was significantly higher than standard of care (Youden index 0.937 vs. 0.707, P = 0.0006). Costs of noninvasive diagnostic were 36% to 38% less than standard clinical workup and the median diagnostic interval was 26 days less. CONCLUSIONS: A noninvasive diagnostic approach for HPV+HNSCC demonstrated improved accuracy, reduced cost, and a shorter time to diagnosis compared with standard clinical workup and could be a viable alternative in the future.
Assuntos
Ácidos Nucleicos Livres , Neoplasias de Cabeça e Pescoço , Infecções por Papillomavirus , DNA Viral/genética , Neoplasias de Cabeça e Pescoço/diagnóstico , Neoplasias de Cabeça e Pescoço/virologia , Humanos , Papillomaviridae/genética , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/diagnósticoRESUMO
PURPOSE: High-grade serous epithelial ovarian cancer (HGS-EOC) is defined by high levels of somatic copy-number alterations (SCNA) with marked spatial and temporal tumor heterogeneity. Biomarkers serving to monitor drug response and detect disease recurrence are lacking, a fact which reflects an unmet clinical need. EXPERIMENTAL DESIGN: A total of 185 plasma samples and 109 matched tumor biopsies were collected from 46 patients with HGS-EOC, and analyzed by shallow whole-genome sequencing (sWGS). The percentage of tumor fraction (TF) in the plasma was used to study the biological features of the disease at the time of diagnosis (T0) and correlated with patients' survival. Longitudinal analysis of TF was correlated with CA-125 levels and radiological images to monitor disease recurrence. RESULTS: Gain in the clonal regions, 3q26.2 and 8q24.3, was observed in the 87.8% and 78.05% of plasma samples, suggesting that plasma sWGS mirrors solid biopsies. At T0, multivariate analysis revealed that plasma TF levels were an independent prognostic marker of relapse (P < 0.022). After platinum (Pt)-based treatment, circulating tumor DNA (ctDNA) analysis showed a change in the heterogeneous pattern of genomic amplification, including an increased frequency of amplification, compared with before Pt-based treatment in the 19p31.11 and 19q13.42 regions. TF in serially collected ctDNA samples outperformed CA-125 in anticipating clinical and radiological progression by 240 days (range, 37-491). CONCLUSIONS: Our results support the notion that sWGS is an inexpensive and useful tool for the genomic analysis of ctDNA in patients with HGS-EOC to monitor disease evolution and to anticipate relapse better than serum CA-125, the routinely used clinical biomarker.See related commentary by Dhani, p. 2372.
Assuntos
Biomarcadores Tumorais , DNA Tumoral Circulante , Cistadenocarcinoma Seroso/diagnóstico , Cistadenocarcinoma Seroso/genética , Variações do Número de Cópias de DNA , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Terapia Combinada , Cistadenocarcinoma Seroso/sangue , Cistadenocarcinoma Seroso/terapia , Diagnóstico por Imagem , Feminino , Estudo de Associação Genômica Ampla , Humanos , Biópsia Líquida/métodos , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Neoplasias Ovarianas/sangue , Neoplasias Ovarianas/terapia , Sensibilidade e Especificidade , Resultado do Tratamento , Adulto JovemRESUMO
Mutant-selective KRASG12C inhibitors, such as MRTX849 (adagrasib) and AMG 510 (sotorasib), have demonstrated efficacy in KRAS G12C-mutant cancers, including non-small cell lung cancer (NSCLC). However, mechanisms underlying clinical acquired resistance to KRASG12C inhibitors remain undetermined. To begin to define the mechanistic spectrum of acquired resistance, we describe a patient with KRAS G12C NSCLC who developed polyclonal acquired resistance to MRTX849 with the emergence of 10 heterogeneous resistance alterations in serial cell-free DNA spanning four genes (KRAS, NRAS, BRAF, MAP2K1), all of which converge to reactivate RAS-MAPK signaling. Notably, a novel KRAS Y96D mutation affecting the switch-II pocket, to which MRTX849 and other inactive-state inhibitors bind, was identified that interferes with key protein-drug interactions and confers resistance to these inhibitors in engineered and patient-derived KRAS G12C cancer models. Interestingly, a novel, functionally distinct tricomplex KRASG12C active-state inhibitor RM-018 retained the ability to bind and inhibit KRASG12C/Y96D and could overcome resistance. SIGNIFICANCE: In one of the first reports of clinical acquired resistance to KRASG12C inhibitors, our data suggest polyclonal RAS-MAPK reactivation as a central resistance mechanism. We also identify a novel KRAS switch-II pocket mutation that impairs binding and drives resistance to inactive-state inhibitors but is surmountable by a functionally distinct KRASG12C inhibitor.See related commentary by Pinnelli and Trusolino, p. 1874.This article is highlighted in the In This Issue feature, p. 1861.
Assuntos
Acetonitrilas/uso terapêutico , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pulmonares/tratamento farmacológico , Piperazinas/uso terapêutico , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Piridinas/uso terapêutico , Pirimidinas/uso terapêutico , Idoso , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/secundário , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Metástase Neoplásica , Proteínas Proto-Oncogênicas p21(ras)/genéticaRESUMO
PURPOSE: Detection of persistent circulating tumor DNA (ctDNA) after curative-intent surgery can identify patients with minimal residual disease (MRD) who will ultimately recur. Most ctDNA MRD assays require tumor sequencing to identify tumor-derived mutations to facilitate ctDNA detection, requiring tumor and blood. We evaluated a plasma-only ctDNA assay integrating genomic and epigenomic cancer signatures to enable tumor-uninformed MRD detection. EXPERIMENTAL DESIGN: A total of 252 prospective serial plasma specimens from 103 patients with colorectal cancer undergoing curative-intent surgery were analyzed and correlated with recurrence. RESULTS: Of 103 patients, 84 [stage I (9.5%), II (23.8%), III (47.6%), IV (19%)] had evaluable plasma drawn after completion of definitive therapy, defined as surgery only (n = 39) or completion of adjuvant therapy (n = 45). In "landmark" plasma drawn 1-month (median, 31.5 days) after definitive therapy and >1 year follow-up, 15 patients had detectable ctDNA, and all 15 recurred [positive predictive value (PPV), 100%; HR, 11.28 (P < 0.0001)]. Of 49 patients without detectable ctDNA at the landmark timepoint, 12 (24.5%) recurred. Landmark recurrence sensitivity and specificity were 55.6% and 100%. Incorporating serial longitudinal and surveillance (drawn within 4 months of recurrence) samples, sensitivity improved to 69% and 91%. Integrating epigenomic signatures increased sensitivity by 25%-36% versus genomic alterations alone. Notably, standard serum carcinoembryonic antigen levels did not predict recurrence [HR, 1.84 (P = 0.18); PPV = 53.9%]. CONCLUSIONS: Plasma-only MRD detection demonstrated favorable sensitivity and specificity for recurrence, comparable with tumor-informed approaches. Integrating analysis of epigenomic and genomic alterations enhanced sensitivity. These findings support the potential clinical utility of plasma-only ctDNA MRD detection.See related commentary by Bent and Kopetz, p. 5449.
Assuntos
DNA Tumoral Circulante/sangue , Neoplasias Colorretais/sangue , Neoplasias Colorretais/cirurgia , Neoplasia Residual/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Colorretais/patologia , Feminino , Testes Hematológicos , Humanos , Masculino , Pessoa de Meia-Idade , Estudos ProspectivosRESUMO
We conducted next-generation DNA sequencing on 335 biliary tract cancers and characterized the genomic landscape by anatomic site within the biliary tree. In addition to frequent FGFR2 fusions among patients with intrahepatic cholangiocarcinoma (IHCC), we identified FGFR2 extracellular domain in-frame deletions (EID) in 5 of 178 (2.8%) patients with IHCC, including two patients with FGFR2 p.H167_N173del. Expression of this FGFR2 EID in NIH3T3 cells resulted in constitutive FGFR2 activation, oncogenic transformation, and sensitivity to FGFR inhibitors. Three patients with FGFR2 EIDs were treated with Debio 1347, an oral FGFR1/2/3 inhibitor, and all showed partial responses. One patient developed an acquired L618F FGFR2 kinase domain mutation at disease progression and experienced a further partial response for 17 months to an irreversible FGFR2 inhibitor, futibatinib. Together, these findings reveal FGFR2 EIDs as an alternative mechanism of FGFR2 activation in IHCC that predicts sensitivity to FGFR inhibitors in the clinic. SIGNIFICANCE: FGFR2 EIDs are transforming genomic alterations that occur predominantly in patients with IHCC. These FGFR2 EIDs are sensitive to FGFR inhibition in vitro, and patients with these alterations benefited from treatment with FGFR inhibitors in the clinic.This article is highlighted in the In This Issue feature, p. 2355.