Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Virol ; 97(11): e0096323, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37846984

RESUMO

IMPORTANCE: Currently licensed dengue vaccines do not induce long-term protection in children without previous exposure to dengue viruses in nature. These vaccines are based on selected attenuated strains of the four dengue serotypes and employed in combination for two or three consecutive doses. In our search for a better dengue vaccine candidate, live attenuated strains were followed by non-infectious virus-like particles or the plasmids that generate these particles upon injection into the body. This heterologous prime-boost immunization induced elevated levels of virus-specific antibodies and helped to prevent dengue virus infection in a high proportion of vaccinated macaques. In macaques that remained susceptible to dengue virus, distinct mechanisms were found to account for the immunization failures, providing a better understanding of vaccine actions. Additional studies in humans in the future may help to establish whether this combination approach represents a more effective means of preventing dengue by vaccination.


Assuntos
Vacinas contra Dengue , Vírus da Dengue , Dengue , Vacinas de Partículas Semelhantes a Vírus , Animais , Humanos , Anticorpos Antivirais , Vacinas contra Dengue/administração & dosagem , Macaca fascicularis , Imunização Secundária , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem
2.
J Virol ; 87(23): 12667-74, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24049164

RESUMO

Here we present an approach that advances the throughput of a genetic analysis of a positive-sense RNA virus by simplifying virus construction. It enabled comprehensive dissection of a complex, multigene phenotype through rapid derivation of a large number of chimeric viruses and construction of a mutant library directly from a virus pool. The versatility of the approach described here expands the applicability of diverse genetic approaches to study these viruses.


Assuntos
Engenharia Genética/métodos , Vírus de RNA/genética , RNA Viral/genética , Biblioteca Gênica
3.
J Virol Methods ; 308: 114577, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35843366

RESUMO

Dengue virus (DENV) specific neutralizing and enhancing antibodies play crucial roles in dengue disease prevention and pathogenesis. DENV reporters are gaining popularity in the evaluation of these antibodies; their accessibility and acceptance may improve with more efficient production systems and indications of their antigenic equivalence to the wild-type virus. This study aimed to generate a replication competent luciferase-secreting DENV reporter (LucDENV2) and evaluate its feasibility in neutralizing and infection-enhancing antibody assays in comparison with wild-type DENV2, strain 16681, and a luciferase-secreting, single-round infectious DENV2 reporter (LucSIP). LucDENV2 replicated to similarly high levels as that of the parent 16681 virus in a commonly used mosquito cell line. LucDENV2 was neutralized in an antibody concentration-dependent manner by a monoclonal antibody specific to the flavivirus fusion loop and two antibodies specific to the E domain III, which closely resembled the neutralization patterns employing the LucSIP and wild-type DENV2. Parallel analysis of LucDENV2 and wild-type DENV2 revealed good agreement between the luciferase-based and focus-based neutralization and enhancement assays in a 96-well microplate format when employed against a set of clinical sera, suggesting comparable antigenic properties of LucDENV2 with those of the parent virus. The high-titer, replication competent, luciferase-secreting DENV reporter presented here should be a useful tool for fast and reliable quantitation of neutralizing and infection-enhancing antibodies in populations living in DENV-endemic areas.


Assuntos
Vírus da Dengue , Dengue , Animais , Anticorpos Bloqueadores , Anticorpos Neutralizantes , Anticorpos Antivirais , Vírus da Dengue/genética , Luciferases/genética , Proteínas do Envelope Viral
4.
Viruses ; 13(7)2021 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-34372598

RESUMO

Dengue virus (DENV) infection causes a spectrum of dengue diseases that have unclear underlying mechanisms. Nonstructural protein 1 (NS1) is a multifunctional protein of DENV that is involved in DENV infection and dengue pathogenesis. This study investigated the potential post-translational modification of DENV NS1 by phosphorylation following DENV infection. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), 24 potential phosphorylation sites were identified in both cell-associated and extracellular NS1 proteins from three different cell lines infected with DENV. Cell-free kinase assays also demonstrated kinase activity in purified preparations of DENV NS1 proteins. Further studies were conducted to determine the roles of specific phosphorylation sites on NS1 proteins by site-directed mutagenesis with alanine substitution. The T27A and Y32A mutations had a deleterious effect on DENV infectivity. The T29A, T230A, and S233A mutations significantly decreased the production of infectious DENV but did not affect relative levels of intracellular DENV NS1 expression or NS1 secretion. Only the T230A mutation led to a significant reduction of detectable DENV NS1 dimers in virus-infected cells; however, none of the mutations interfered with DENV NS1 oligomeric formation. These findings highlight the importance of DENV NS1 phosphorylation that may pave the way for future target-specific antiviral drug design.


Assuntos
Vírus da Dengue/química , Vírus da Dengue/patogenicidade , Proteínas não Estruturais Virais/metabolismo , Animais , Linhagem Celular , Chlorocebus aethiops , Cromatografia Líquida , Dengue/virologia , Vírus da Dengue/genética , Células Hep G2 , Humanos , Cinética , Fosforilação , Ligação Proteica , Análise de Sequência de Proteína , Espectrometria de Massas em Tandem , Células Vero , Proteínas não Estruturais Virais/genética , Replicação Viral
5.
Mol Ther Methods Clin Dev ; 21: 729-740, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-33969146

RESUMO

With sequencing as a standard frontline protocol to identify emerging viruses such Zika virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), direct utilization of sequence data to program antivirals against the viruses could accelerate drug development to treat their infections. CRISPR-Cas effectors are promising candidates that could be programmed to inactivate viral genetic material based on sequence data, but several challenges such as delivery and design of effective CRISPR RNA (crRNA) need to be addressed to realize practical use. Here, we showed that virus-like particle (VLP) could deliver PspCas13b-crRNA ribonucleoprotein (RNP) in nanomolar range to efficiently suppress dengue virus infection in primary human target cells. Shortening spacer length could significantly enhance RNA-targeting efficiency of PspCas13b in mammalian cells compared to the natural length of 30 nucleotides without compromising multiplex targeting by a crRNA array. Our results demonstrate the potentials of applying PspCas13b RNP to suppress RNA virus infection, with implications in targeting host RNA as well.

6.
DNA Res ; 27(2)2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32339222

RESUMO

Viruses are under constant evolutionary pressure to effectively interact with the host intracellular factors, while evading its immune system. Understanding how viruses co-evolve with their hosts is a fundamental topic in molecular evolution and may also aid in developing novel viral based applications such as vaccines, oncologic therapies, and anti-bacterial treatments. Here, based on a novel statistical framework and a large-scale genomic analysis of 2,625 viruses from all classes infecting 439 host organisms from all kingdoms of life, we identify short nucleotide sequences that are under-represented in the coding regions of viruses and their hosts. These sequences cannot be explained by the coding regions' amino acid content, codon, and dinucleotide frequencies. We specifically show that short homooligonucleotide and palindromic sequences tend to be under-represented in many viruses probably due to their effect on gene expression regulation and the interaction with the host immune system. In addition, we show that more sequences tend to be under-represented in dsDNA viruses than in other viral groups. Finally, we demonstrate, based on in vitro and in vivo experiments, how under-represented sequences can be used to attenuated Zika virus strains.


Assuntos
Coevolução Biológica , Evolução Molecular , Genoma Viral , Motivos de Nucleotídeos , Seleção Genética , Animais , Bactérias/genética , Bactérias/virologia , Feminino , Fungos/genética , Fungos/virologia , Interações Hospedeiro-Patógeno , Masculino , Camundongos , Oligonucleotídeos/genética , Plantas/genética , Plantas/virologia , Biologia de Sistemas/métodos , Zika virus/genética , Zika virus/patogenicidade
7.
PLoS One ; 13(3): e0194399, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29547653

RESUMO

Reporter virus is a versatile tool to visualize and to analyze virus infections. However, for flaviviruses, it is difficult to maintain the inserted reporter genes on the viral genome, limiting its use in several studies that require homogeneous virus particles and several rounds of virus replication. Here, we showed that flanking inserted GFP genes on both sides with ribosome-skipping 2A sequences improved the stability and the consistency of their fluorescent signals for dengue-virus-serotype 2 (DENV2) reporter viruses. The reporter viruses can infect known susceptible mammalian cell lines and primary CD14+ human monocytes. This design can accommodate several fluorescent protein genes, enabling the generation of multi-color DENV2-16681 reporter viruses with comparable replication capabilities, as demonstrated by their abilities to maintain their fluorescent intensities during co-infections and to exclude superinfections regardless of the fluorescent tags. The reported design of multi-color DENV2 should be useful for high-throughput analyses, single-cell analysis, and characterizations of interference and superinfection in animal models.


Assuntos
Vírus da Dengue/genética , Genoma Viral/genética , Proteínas Luminescentes/genética , Replicação Viral/genética , Animais , Linhagem Celular , Células Cultivadas , Chlorocebus aethiops , Vírus da Dengue/metabolismo , Genes Reporter/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Células K562 , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Células Vero
8.
PLoS One ; 11(4): e0153183, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27054879

RESUMO

Influenza neuraminidase (NA) proteins expressed in TK- cells infected with recombinant vaccinia virus carrying NA gene of highly pathogenic avian influenza H5N1 virus or 2009 pandemic H1N1 (H1N1pdm) virus were characterized for their biological properties, i.e., cell localization, molecular weight (MW), glycosylation and sialidase activity. Immune sera collected from BALB/c mice immunized with these recombinant viruses were assayed for binding and functional activities of anti-NA antibodies. Recombinant NA proteins were found localized in cytoplasm and cytoplasmic membrane of the infected cells. H1N1pdm NA protein had MW at about 75 kDa while it was 55 kDa for H5N1 NA protein. Hyperglycosylation was more pronounced in H1N1pdm NA compared to H5N1 NA according to N-glycosidase F treatment. Three dimensional structures also predicted that H1N1 NA globular head contained 4 and that of H5N1 contained 2 potential glycosylation sites. H5N1 NA protein had higher sialidase activity than H1N1pdm NA protein as measured by both MUNANA-based assay and fetuin-based enzyme-linked lectin assay (ELLA). Plaque reduction assay demonstrated that anti-NA antibody could reduce number of plaques and plaque size through inhibiting virus release, not virus entry. Assay for neuraminidase-inhibition (NI) antibody by ELLA showed specific and cross reactivity between H5N1 NA and H1N1pdm NA protein derived from reverse genetic viruses or wild type viruses. In contrast, replication-inhibition assay in MDCK cells showed that anti-H1N1 NA antibody moderately inhibited viruses with homologous NA gene only, while anti-H5N1 NA antibody modestly inhibited the replication of viruses containing homologous NA gene and NA gene derived from H1N1pdm virus. Anti-H1N1 NA antibody showed higher titers of inhibiting virus replication than anti-H5N1 NA antibody, which are consistent with the results on reduction in plaque numbers and sizes as well as in inhibiting NA enzymatic activity. No assay showed cross reactivity with reassorted PR8 (H1N1) virus and H3N2 wild type viruses.


Assuntos
Anticorpos Antivirais/sangue , Bioensaio , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Infecções por Orthomyxoviridae/imunologia , Proteínas Virais/imunologia , Animais , Formação de Anticorpos , Western Blotting , Reações Cruzadas , Modelos Animais de Doenças , Cães , Ensaio de Imunoadsorção Enzimática , Feminino , Imunofluorescência , Vetores Genéticos , Glicosilação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Soros Imunes , Vírus da Influenza A Subtipo H1N1/enzimologia , Vírus da Influenza A Subtipo H1N1/genética , Virus da Influenza A Subtipo H5N1/enzimologia , Virus da Influenza A Subtipo H5N1/genética , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/virologia , Replicação Viral
9.
PLoS One ; 7(5): e36318, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22563489

RESUMO

In this study, the effect of innate serum inhibitors on influenza virus infection was addressed. Seasonal influenza A(H1N1) and A(H3N2), 2009 pandemic A(H1N1) (H1N1pdm) and highly pathogenic avian influenza (HPAI) A(H5N1) viruses were tested with guinea pig sera negative for antibodies against all of these viruses as evaluated by hemagglutination-inhibition and microneutralization assays. In the presence of serum inhibitors, the infection by each virus was inhibited differently as measured by the amount of viral nucleoprotein produced in Madin-Darby canine kidney cells. The serum inhibitors inhibited seasonal influenza A(H3N2) virus the most, while the effect was less in seasonal influenza A(H1N1) and H1N1pdm viruses. The suppression by serum inhibitors could be reduced by heat inactivation or treatment with receptor destroying enzyme. In contrast, all H5N1 strains tested were resistant to serum inhibitors. To determine which structure (hemagglutinin (HA) and/or neuraminidase (NA)) on the virus particles that provided the resistance, reverse genetics (rg) was applied to construct chimeric recombinant viruses from A/Puerto Rico/8/1934(H1N1) (PR8) plasmid vectors. rgPR8-H5 HA and rgPR8-H5 HANA were resistant to serum inhibitors while rgPR8-H5 NA and PR8 A(H1N1) parental viruses were sensitive, suggesting that HA of HPAI H5N1 viruses bestowed viral resistance to serum inhibition. These results suggested that the ability to resist serum inhibition might enable the viremic H5N1 viruses to disseminate to distal end organs. The present study also analyzed for correlation between susceptibility to serum inhibitors and number of glycosylation sites present on the globular heads of HA and NA. H3N2 viruses, the subtype with highest susceptibility to serum inhibitors, harbored the highest number of glycosylation sites on the HA globular head. However, this positive correlation cannot be drawn for the other influenza subtypes.


Assuntos
Antígenos Virais/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Soro/imunologia , Animais , Antígenos Virais/química , Antígenos Virais/genética , Aves , Linhagem Celular , Glicosilação , Cobaias , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Temperatura Alta , Humanos , Vírus da Influenza A Subtipo H1N1/química , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/química , Vírus da Influenza A Subtipo H3N2/imunologia , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/patogenicidade , Influenza Aviária/virologia , Influenza Humana/virologia , Modelos Moleculares , Estrutura Terciária de Proteína , Proteínas Recombinantes/imunologia , Virulência/imunologia
10.
Nat Struct Mol Biol ; 16(11): 1148-53, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19820710

RESUMO

Targeted gene silencing by RNA interference (RNAi) requires loading of a short guide RNA (small interfering RNA (siRNA) or microRNA (miRNA)) onto an Argonaute protein to form the functional center of an RNA-induced silencing complex (RISC). In humans, Argonaute2 (AGO2) assembles with the guide RNA-generating enzyme Dicer and the RNA-binding protein TRBP to form a RISC-loading complex (RLC), which is necessary for efficient transfer of nascent siRNAs and miRNAs from Dicer to AGO2. Here, using single-particle EM analysis, we show that human Dicer has an L-shaped structure. The RLC Dicer's N-terminal DExH/D domain, located in a short 'base branch', interacts with TRBP, whereas its C-terminal catalytic domains in the main body are proximal to AGO2. A model generated by docking the available atomic structures of Dicer and Argonaute homologs into the RLC reconstruction suggests a mechanism for siRNA transfer from Dicer to AGO2.


Assuntos
Complexo de Inativação Induzido por RNA/química , Complexo de Inativação Induzido por RNA/metabolismo , Proteínas Argonautas , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 2 em Eucariotos/ultraestrutura , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Microscopia Eletrônica , Modelos Biológicos , Ligação Proteica/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/ultraestrutura , Complexo de Inativação Induzido por RNA/ultraestrutura , Ribonuclease III/genética , Ribonuclease III/ultraestrutura
11.
J Struct Biol ; 159(3): 474-82, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17646111

RESUMO

We describe a novel approach to sorting class averages of a structure in multiple conformational states in order to generate 3D reconstructions that account for conformational variability present in the sample. The method assumes that the relative Euler angles between class averages are known, then uses a common lines approach to match any given class against a set of distinct conformations from a selected view of the structure. We show the effectiveness of the method both on model data and on an experimental dataset for which the conformational variability is limited to a defined region within the structure. During our studies of hepatitis C virus (HCV) internal ribosome entry site (IRES) interaction with the human translation initiation factor eIF3, we observed that the IRES RNA included a flexible region holding multiple conformations. While current classification methods were used to produce two-dimensional averages of the complex showing these different conformations, no method existed for relating these averages in three dimensions. Our approach overcame these limitations, giving us structural insight that was previously not possible.


Assuntos
Microscopia Crioeletrônica/métodos , Imageamento Tridimensional , Modelos Moleculares , Fator de Iniciação 3 em Eucariotos/química , Hepacivirus/química , Humanos , Conformação de Ácido Nucleico , Conformação Proteica , RNA Ribossômico/química , Ribossomos/química
12.
Science ; 310(5753): 1513-5, 2005 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-16322461

RESUMO

Protein synthesis in mammalian cells requires initiation factor eIF3, a approximately 750-kilodalton complex that controls assembly of 40S ribosomal subunits on messenger RNAs (mRNAs) bearing either a 5'-cap or an internal ribosome entry site (IRES). Cryo-electron microscopy reconstructions show that eIF3, a five-lobed particle, interacts with the hepatitis C virus (HCV) IRES RNA and the 5'-cap binding complex eIF4F via the same domain. Detailed modeling of eIF3 and eIF4F onto the 40S ribosomal subunit reveals that eIF3 uses eIF4F or the HCV IRES in structurally similar ways to position the mRNA strand near the exit site of 40S, promoting initiation complex assembly.


Assuntos
Fator de Iniciação 3 em Eucariotos/fisiologia , Biossíntese de Proteínas/fisiologia , Sítios de Ligação , Fator de Iniciação 3 em Eucariotos/química , Fator de Iniciação 3 em Eucariotos/ultraestrutura , Fator de Iniciação 4F em Eucariotos/metabolismo , Células HeLa , Hepacivirus/genética , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Ribossomos/metabolismo , Relação Estrutura-Atividade
13.
J Biol Chem ; 279(28): 28835-43, 2004 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-15102847

RESUMO

Mycobacteria contain high levels of the disaccharide trehalose in free form as well as within various immunologically relevant glycolipids such as cord factor and sulfolipid-1. By contrast, most bacteria use trehalose solely as a general osmoprotectant or thermoprotectant. Mycobacterium tuberculosis and Mycobacterium smegmatis possess three pathways for the synthesis of trehalose. Most bacteria possess only one trehalose biosynthesis pathway and do not elaborate the disaccharide into more complex metabolites, suggesting a distinct role for trehalose in mycobacteria. We disabled key enzymes required for each of the three pathways in M. smegmatis by allelic replacement. The resulting trehalose biosynthesis mutant was unable to proliferate and enter stationary phase unless supplemented with trehalose. At elevated temperatures, however, the mutant was unable to proliferate even in the presence of trehalose. Genetic complementation experiments showed that each of the three pathways was able to recover the mutant in the absence of trehalose, even at elevated temperatures. From a panel of trehalose analogs, only those with the native alpha,alpha-(1,1) anomeric stereochemistry rescued the mutant, whereas alternate stereoisomers and general osmo- and thermoprotectants were inactive. These findings suggest a dual role for trehalose as both a thermoprotectant and a precursor of critical cell wall metabolites.


Assuntos
Mycobacterium smegmatis/crescimento & desenvolvimento , Mycobacterium smegmatis/metabolismo , Trealose/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Configuração de Carboidratos , Sequência de Carboidratos , Teste de Complementação Genética , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Estrutura Molecular , Mutação , Mycobacterium smegmatis/genética , Temperatura , Trealose/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA