Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
2.
Nat Chem Biol ; 16(10): 1111-1119, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32690943

RESUMO

Mass spectrometry-based discovery proteomics is an essential tool for the proximal readout of cellular drug action. Here, we apply a robust proteomic workflow to rapidly profile the proteomes of five lung cancer cell lines in response to more than 50 drugs. Integration of millions of quantitative protein-drug associations substantially improved the mechanism of action (MoA) deconvolution of single compounds. For example, MoA specificity increased after removal of proteins that frequently responded to drugs and the aggregation of proteome changes across cell lines resolved compound effects on proteostasis. We leveraged these findings to demonstrate efficient target identification of chemical protein degraders. Aggregating drug response across cell lines also revealed that one-quarter of compounds modulated the abundance of one of their known protein targets. Finally, the proteomic data led us to discover that inhibition of mitochondrial function is an off-target mechanism of the MAP2K1/2 inhibitor PD184352 and that the ALK inhibitor ceritinib modulates autophagy.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Pulmonares/metabolismo , Proteômica/métodos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Espectrometria de Massas , Proteoma
3.
Plant J ; 71(5): 736-49, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22507399

RESUMO

The floral meristem identity gene LEAFY (LFY) of Arabidopsis thaliana is essential for the formation of fertile flowers and has roles in the control of several aspects of floral development, which include phyllotaxy and organ number and identity. This gene encodes a land plant-specific transcription factor and regulates expression of a number of genes that include other floral meristem identity genes and floral homeotic genes. Although the LFY DNA-binding domain has a structure that resembles that of helix-turn-helix proteins, LFY and its orthologs represent a novel family of transcription factors that are characterized by a conserved N-terminus domain of unknown function and a C-terminus DNA-binding domain. Many transcription factors act as dimers. These dimers are essential for the biological activity of the proteins. We demonstrate that LFY forms homodimers or oligomers in solution. This association is mediated through the N-terminus conserved region of the LFY protein. Although mutant LFY proteins that cannot dimerize in solution can bind DNA, the binding is weaker than that of wild type LFY protein. LFY-LFY interactions mediated by the N-terminus domain are essential for the biological activity of this protein, as mutations that abolish the ability to self-associate cannot complement an lfy null allele. Our data indicate: (i) that LFY, and probably its orthologs in other plants, must act in complexes that contain at least two LFY molecules; and (ii) that the N-terminus is essential for stabilization of LFY complexes. This situation is integral to the ability of LFY to regulate gene expression.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sequência Conservada , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Multimerização Proteica , Estrutura Terciária de Proteína , Fatores de Transcrição/genética
4.
ACS Med Chem Lett ; 12(8): 1288-1294, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34413958

RESUMO

Determination of target engagement for candidate drug molecules in the native cellular environment is a significant challenge for drug discovery programs. The cellular thermal shift assay (CETSA) has emerged as a powerful tool for determining compound target engagement through measurement of changes to a protein's thermal stability upon ligand binding. Here, we present a HiBiT thermal shift assay (BiTSA) that deploys a quantitative peptide tag for determination of compound target engagement in the native cellular environment using a high throughput, plate-based luminescence readout. We demonstrate that BiTSA can rapidly assess cellular target engagement of small molecule ligands against their cognate targets and highlight two applications of BiTSA for differentiating small molecules targeting mutant KRAS and TP53.

5.
Cell Cycle ; 14(17): 2821-34, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26151225

RESUMO

JADE1 belongs to a small family of PHD zinc finger proteins that interacts with histone acetyl transferase (HAT) HBO1 and is associated with chromatin. We recently reported JADE1 chromatin shuttling and phosphorylation during G2/M to G1 transition, which was sensitive to Aurora A inhibition. In the current study we examined mechanisms of the cell cycle regulation by the small isoform of JADE1 protein, JADE1S, and report data showing that JADE1S has a novel function in the regulation of cytokinesis. Using FACS assays, we show that, JADE1S depletion facilitated rates of G1-cells accumulation in synchronously dividing HeLa cell cultures. Depletion of JADE1S protein in asynchronously dividing cells decreased the proportion of cytokinetic cells, and increased the proportion of multi-nuclear cells, indicative of premature and failed cytokinesis. In contrast, moderate overexpression of JADE1S increased the number of cytokinetic cells in time- and dose- dependent manner, indicating cytokinetic delay. Pharmacological inhibition of Aurora B kinase resulted in the release of JADE1S-mediated cytokinetic delay and allowed progression of abscission in cells over-expressing JADE1S. Finally, we show that JADE1S protein localized to centrosomes in interphase and mitotic cells, while during cytokinesis JADE1S localized to the midbody. Neither JADE1L nor partner of JADE1, HAT HBO1 was localized to the centrosomes or midbodies. Our study identifies the novel role for JADE1S in regulation of cytokinesis and suggests function in Aurora B kinase-mediated cytokinesis checkpoint.


Assuntos
Citocinese/fisiologia , Células Epiteliais/fisiologia , Proteínas de Homeodomínio/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Células HEK293 , Células HeLa , Humanos , Células MCF-7
6.
Cell Cycle ; 13(12): 1885-901, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24739512

RESUMO

HAT HBO1 interacts with 2 isoforms of JADE1: JADE1S and JADE1L. JADE1 promotes acetylation of nucleosomal histones by HBO1. HBO1-JADE1 complex facilitates cell proliferation by unclear mechanisms. Here we report intracellular chromatin shuttling of HBO1-JADE1 complex during mitosis coupled to phosphorylation of JADE1. In interphase of dividing cells JADE1S was localized to the nucleus and associated with chromatin. As cells approached mitosis, specifically prophase, JADE1S dissociated from chromatin and associated with cytoplasm. JADE1S chromatin re-association began in telophase and paralleled nuclear envelope membrane reassembly. By early G1, JADE1S was re-associated with chromatin and localized to the nucleus. Importantly, cytoplasmic but not chromatin-associated JADE1 protein was phosphorylated. Mass-Spectrometric analysis of JADE1S protein isolated from G2/M-arrested cells identified 6 phosphorylated amino acid residues: S89, T92, S102, S121, S392, and T468, including 3 novel sites. Temporally, JADE1S phosphorylation and dephosphorylation during mitosis correlated with JADE1S chromatin dissociation and recruitment. JADE1S chromatin recruitment was accompanied by the global histone H4 acetylation. Pharmacological inhibitor of Aurora A kinase prevented JADE1S protein band shift and chromatin dissociation, suggesting regulatory function for phosphorylation. In vivo experiments supported our in vitro results. In mouse kidneys, JADE1S transiently accumulated in the cytoplasm of tubular epithelial cells during kidney regeneration. The transient increase in the number of cells with cytoplasmic JADE1S directly correlated with activation of tubular cell proliferation and inversely correlated with the number of cells with nuclear JADE1S staining, supporting biological role of HBO1-JADE1 shuttling during organ regeneration.


Assuntos
Ciclo Celular/fisiologia , Cromatina/metabolismo , Histona Acetiltransferases/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/fisiopatologia , Animais , Linhagem Celular Tumoral , Células Epiteliais/patologia , Células Epiteliais/fisiologia , Humanos , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Glomérulos Renais/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Mitose , Complexos Multiproteicos/metabolismo , Fosforilação , Regeneração , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/fisiopatologia
7.
Int J Dev Biol ; 56(4): 207-21, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22451042

RESUMO

For successful reproduction, angiosperms must form fertile flowers at the appropriate positions and at the appropriate times. The reproductive transition is especially important for monocarpic plants that only flower once. In the model annual plant Arabidopsis thaliana, this transition is controlled through regulation of a group of genes termed floral meristem identity genes, of which LEAFY (LFY) is arguably the most important. LFY orthologs are found throughout land plants and are essential for angiosperm reproduction. These genes have also been implicated in reproductive development in gymnosperms. LFY encodes a plant-specific transcription factor that can act as either an activator or repressor depending on context, including what co-factors it is interacting with. It controls multiple aspects of floral morphogenesis, including phyllotaxis, organ number, organ identity and determinacy. Much progress has been made in elucidating the molecular mechanisms through which LFY and its orthologs contribute to a precise switch to flowering. We discuss the current state of knowledge in Arabidopsis, with an emphasis on known target genes and co-factors of LFY.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Flores/genética , Meristema/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Arabidopsis/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Meristema/crescimento & desenvolvimento , Modelos Genéticos , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA