Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Monit Assess ; 196(1): 93, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38150146

RESUMO

There is an urgent requirement for the improvement of the white leg shrimp, Litopenaeus vannamei; health-related indices; and immunity due to emerging diseases. Recently, probiotics have been playing an important role in L. vannamei health management. Therefore, the current pond trial was to evaluate the probiotic proficiency of commercial probiotic products of THIONIL (THIO) on the enhancement of the water, soil, growth, digestibility, survival, immune-related indices, and susceptibility of L. vannamei to infection. The study was carried out in the major shrimp culturing regions of Kavali, Nellore (Andhra Pradesh), and Ponneri (Tamil Nadu), India. Six groups (lacks/ha) of the experimental L. vannamei were allocated, including a control group (THIO 0%-untreated) and groups containing 2%, 4%, 6%, 8%, and 10% of THIO that were encapsulated with commercial feed (CP Aqua). Bioassays were performed on PLs/ shrimp at various days interval of 0, 5, 25, 50, 100, and 123th to assess productivity, anti-vibrio activity, and digestive enzyme for digestibility, histological and immunological indices, and cytotoxicity in Artemia nauplii. Significant differences were observed in the increased growth (35.71 ± 3.24 g/shrimp) and digestive parameters in 10% THIO-fed shrimp. Although in contrast to the control group, the other THIO-fed prawn groups also displayed appreciable development. The findings showed that, in comparison to the control, the gill, hepatopancreas, and stomach had reduced tissue damage with 10% THIO. Furthermore, Vibrio parahaemolyticus (0.008 × 104 cfu/g) and Vibrio harveyi (0.051 × 105 cfu/g) (vibriosis) were potentially resistant to the 10% THIO-fed group. In addition, THIO-fed prawns (10%) showed significant improvements in immune-related expresses (proPO, SOD, and SOA) in comparison to the control. In conclusion, the findings showed that the THIO treatment prawns significantly improved the quality of their water (pH, ammonia, nitrogen dioxide, hydrogen sulfide, and DO) and soil (Pb, Cr, Hg, Mg, Cu, Fe, and Ni), increased and demonstrated protection against vibrio infections.


Assuntos
Poluentes Ambientais , Penaeidae , Animais , Índia , Lagoas , Monitoramento Ambiental
2.
J Tradit Complement Med ; 9(1): 5-14, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30671361

RESUMO

Virgin coconut oil (VCO) has been traditionally used as moisturizer since centuries by people in the tropical region. Clinical studies have revealed that VCO improves the symptoms of skin disorders by moisturizing and soothing the skin. However, the mechanistic action of VCO and its benefits on skin has not been elucidated in vitro. The cytotoxicity (CTC50) of VCO was 706.53 ± 2.1 and 787.15 ± 1.1 µg/mL in THP-1 (Human monocytes) and HaCaT (Human keratinocytes) cells respectively. VCO inhibited TNF-α (62.34 ± 3.2 %), IFN-γ (42.66 ± 2.9 %), IL-6 (52.07 ± 2.0 %), IL-8 (53.98 ± 1.8 %) and IL-5 (51.57 ± 2.6 %) respectively in THP-1 cells. Involucrin (INV) and filaggrin (FLG) content increased by 47.53 ± 2.1 % and 40.45 ± 1.2 % respectively in HaCaT cells. VCO increased the expression of Aquaporin-3 (AQP3), involucrin (INV) and filaggrin (FLG) and showed moderate UV protection in HaCaT cells. In vitro skin irritation studies in Reconstructed human epidermis (RHE) and NIH3T3 cells showed that VCO is a non skin irritant (IC50 > 1000 µg/mL) and non phototoxic (PIF < 2). Our study demonstrated the anti inflammatory activity of VCO by suppressing inflammatory markers and protecting the skin by enhancing skin barrier function. This is the first report on anti-inflammatory and skin protective benefits of VCO in vitro. Overall, the results warrant the use of VCO in skin care formulations.

3.
Eur J Pharmacol ; 813: 33-41, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28736282

RESUMO

Psoriasis is considered to be a systemic disease of immune dysfunction. It is still unclear what triggers the inflammatory cascade associated with psoriasis but recent evidences suggest the vital role of IL-23/IL-17A cytokine axis in etiology of psoriasis. Several studies have been conducted in psoriatic-like animal models but ethical issues and complexity surrounding it halts the screening of new anti-psoriatic drug candidates. Hence, in this study, we developed a new in-vitro model for psoriasis using imiquimod (IMQ) induced differentiated HaCaT cells which could be used for screening of new anti-psoriatic drug candidates. The differentiated HaCaT cells were treated with IMQ (100µM) to induce psoriatic like inflammation and its effect was investigated using a natural anti-psoriatic compound, curcumin. The proliferation of psoriatic-like cells was inhibited by curcumin at 25 and 50µM concentrations. The psoriatic-like cells decreased in number with increase in apoptotic and dead cells upon curcumin treatment. Curcumin inhibited the proliferation of IMQ-induced differentiated HaCaT cells (Psoriatic-like cells) by down-regulation of pro-inflammatory cytokines, interleukin-17, tumor necrosis factor-α, interferon-γ, and interleukin-6. Apart from this, curcumin significantly enhanced the skin-barrier function by up-regulation of involucrin (iNV) and filaggrin (FLG), the regulators of epidermal skin barrier. The IMQ-induced differentiated HaCaT in vitro model recapitulated some aspects of the psoriasis pathogenesis similar to murine model. Henceforth, we conclude that this model may be used for rapid screening of anti-psoriatic drug candidates and warrant further mechanistic studies.


Assuntos
Aminoquinolinas/efeitos adversos , Diferenciação Celular/efeitos dos fármacos , Curcumina/farmacologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/patologia , Psoríase/induzido quimicamente , Psoríase/patologia , Biomarcadores/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Curcumina/metabolismo , Citocinas/química , Citocinas/metabolismo , Avaliação Pré-Clínica de Medicamentos , Proteínas Filagrinas , Humanos , Imiquimode , Simulação de Acoplamento Molecular , Conformação Proteica , Pele/efeitos dos fármacos
4.
Genom Data ; 12: 44-48, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28316932

RESUMO

Chironomid larvae that inhabit in aquatic sediments play an important role as vector for bacterial pathogens. Its life cycle consists of four stages i.e. eggs, larvae, pupae and adult. In the present study we identified bacterial species associated with whole larvae of chironomids from 11 lake sediments of Bangalore region using 16s rRNA gene Sanger sequencing. We found that larvae from all lake sediments associated with bacterial species which include key pathogens. Totally we identified 65 bacterial isolates and obtained GenBank accession numbers (KX980423 - KX980487). Phylogenetic tree constructed using MEGA 7 software and tree analysis highlight the predominant bacterial community associated with larvae which include Enterobacteriaceae (43.08%; 28 isolates) and Aeromonas (24.62%; 16 isolates), Shewanella, Delftia, Bacillus (6.15%; 4 isolates each), Pseudomonas (4.62%; 3 isolates) and Exiguobacterium (3.08%; 2 isolates). Current findings state that among bacterial population Aeromonas, Enterobacter and Escherichia with serotypes are commonly associated with larvae in maximum lake points. In other hand Vibrio, Pseudomonas, Klebsiella, Shigella, Bacillus, and other bacterial species were identified moderately in all lakes. Interestingly, we identified first time Shigella Gram negative, rod shaped pathogenic organism of Enterobacteriaceae and Rheinheimera Gram negative, rod shaped organism associating chironomid larvae.

5.
PLoS One ; 11(1): e0145921, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26731545

RESUMO

Human skin is body's vital organ constantly exposed to abiotic oxidative stress. This can have deleterious effects on skin such as darkening, skin damage, and aging. Plant-derived products having skin-protective effects are well-known traditionally. Triphala, a formulation of three fruit products, is one of the most important rasayana drugs used in Ayurveda. Several skin care products based on Triphala are available that claim its protective effects on facial skin. However, the skin protective effects of Triphala extract (TE) and its mechanistic action on skin cells have not been elucidated in vitro. Gallic acid, ellagic acid, and chebulinic acid were deduced by LC-MS as the major constituents of TE. The identified key compounds were docked with skin-related proteins to predict their binding affinity. The IC50 values for TE on human dermal fibroblasts (HDF) and human keratinocytes (HaCaT) were 204.90 ± 7.6 and 239.13 ± 4.3 µg/mL respectively. The antioxidant capacity of TE was 481.33 ± 1.5 mM Trolox equivalents in HaCaT cells. Triphala extract inhibited hydrogen peroxide (H2O2) induced RBC haemolysis (IC50 64.95 µg/mL), nitric oxide production by 48.62 ± 2.2%, and showed high reducing power activity. TE also rescued HDF from H2O2-induced damage; inhibited H2O2 induced cellular senescence and protected HDF from DNA damage. TE increased collagen-I, involucrin and filaggrin synthesis by 70.72 ± 2.3%, 67.61 ± 2.1% and 51.91 ± 3.5% in HDF or HaCaT cells respectively. TE also exhibited anti-tyrosinase and melanin inhibition properties in a dose-dependent manner. TE increased the mRNA expression of collagen-I, elastin, superoxide dismutase (SOD-2), aquaporin-3 (AQP-3), filaggrin, involucrin, transglutaminase in HDF or HaCaT cells, and decreased the mRNA levels of tyrosinase in B16F10 cells. Thus, Triphala exhibits protective benefits on skin cells in vitro and can be used as a potential ingredient in skin care formulations.


Assuntos
Antioxidantes/farmacologia , Fibroblastos/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia , Animais , Antioxidantes/química , Linhagem Celular , Senescência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Fibroblastos/metabolismo , Proteínas Filagrinas , Humanos , Peróxido de Hidrogênio/metabolismo , Queratinócitos/metabolismo , Camundongos , Extratos Vegetais/química , Substâncias Protetoras/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA