Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Hum Mol Genet ; 27(15): 2614-2627, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29741614

RESUMO

Loss of excitatory amino acid transporters (EAATs) has been implicated in a number of human diseases including spinocerebellar ataxias, Alzhiemer's disease and motor neuron disease. EAAT4 and GLAST/EAAT1 are the two predominant EAATs responsible for maintaining low extracellular glutamate levels and preventing neurotoxicity in the cerebellum, the brain region essential for motor control. Here using genetically modified mice we identify new critical roles for EAAT4 and GLAST/EAAT1 as modulators of Purkinje cell (PC) spontaneous firing patterns. We show high EAAT4 levels, by limiting mGluR1 signalling, are essential in constraining inherently heterogeneous firing of zebrin-positive PCs. Moreover mGluR1 antagonists were found to restore regular spontaneous PC activity and motor behaviour in EAAT4 knockout mice. In contrast, GLAST/EAAT1 expression is required to sustain normal spontaneous simple spike activity in low EAAT4 expressing (zebrin-negative) PCs by restricting NMDA receptor activation. Blockade of NMDA receptor activity restores spontaneous activity in zebrin-negative PCs of GLAST knockout mice and furthermore alleviates motor deficits. In addition both transporters have differential effects on PC survival, with zebrin-negative PCs more vulnerable to loss of GLAST/EAAT1 and zebrin-positive PCs more vulnerable to loss of EAAT4. These findings reveal that glutamate transporter dysfunction through elevated extracellular glutamate and the aberrant activation of extrasynaptic receptors can disrupt cerebellar output by altering spontaneous PC firing. This expands our understanding of disease mechanisms in cerebellar ataxias and establishes EAATs as targets for restoring homeostasis in a variety of neurological diseases where altered cerebellar output is now thought to play a key role in pathogenesis.


Assuntos
Cerebelo/metabolismo , Transportador 1 de Aminoácido Excitatório/genética , Transportador 4 de Aminoácido Excitatório/genética , Células de Purkinje/fisiologia , Animais , Ataxia/genética , Sobrevivência Celular/genética , Transportador 1 de Aminoácido Excitatório/metabolismo , Transportador 4 de Aminoácido Excitatório/metabolismo , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Células de Purkinje/citologia , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
2.
Brain ; 142(1): 80-92, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30544257

RESUMO

Alterations of the N-methyl-d-aspartate receptor (NMDAR) subunit GluN2A, encoded by GRIN2A, have been associated with a spectrum of neurodevelopmental disorders with prominent speech-related features, and epilepsy. We performed a comprehensive assessment of phenotypes with a standardized questionnaire in 92 previously unreported individuals with GRIN2A-related disorders. Applying the criteria of the American College of Medical Genetics and Genomics to all published variants yielded 156 additional cases with pathogenic or likely pathogenic variants in GRIN2A, resulting in a total of 248 individuals. The phenotypic spectrum ranged from normal or near-normal development with mild epilepsy and speech delay/apraxia to severe developmental and epileptic encephalopathy, often within the epilepsy-aphasia spectrum. We found that pathogenic missense variants in transmembrane and linker domains (misTMD+Linker) were associated with severe developmental phenotypes, whereas missense variants within amino terminal or ligand-binding domains (misATD+LBD) and null variants led to less severe developmental phenotypes, which we confirmed in a discovery (P = 10-6) as well as validation cohort (P = 0.0003). Other phenotypes such as MRI abnormalities and epilepsy types were also significantly different between the two groups. Notably, this was paralleled by electrophysiology data, where misTMD+Linker predominantly led to NMDAR gain-of-function, while misATD+LBD exclusively caused NMDAR loss-of-function. With respect to null variants, we show that Grin2a+/- cortical rat neurons also had reduced NMDAR function and there was no evidence of previously postulated compensatory overexpression of GluN2B. We demonstrate that null variants and misATD+LBD of GRIN2A do not only share the same clinical spectrum (i.e. milder phenotypes), but also result in similar electrophysiological consequences (loss-of-function) opposing those of misTMD+Linker (severe phenotypes; predominantly gain-of-function). This new pathomechanistic model may ultimately help in predicting phenotype severity as well as eligibility for potential precision medicine approaches in GRIN2A-related disorders.


Assuntos
Epilepsia/genética , Transtornos do Neurodesenvolvimento/genética , Receptores de N-Metil-D-Aspartato/genética , Adolescente , Adulto , Idoso , Animais , Células Cultivadas , Córtex Cerebelar/metabolismo , Criança , Pré-Escolar , Epilepsia/fisiopatologia , Feminino , Genótipo , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Mutação , Transtornos do Neurodesenvolvimento/fisiopatologia , Fenótipo , Ratos , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/fisiologia , Adulto Jovem
3.
J Physiol ; 597(6): 1691-1704, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30604514

RESUMO

KEY POINTS: NMDA receptors are neurotransmitter-gated ion channels that are critically involved in brain cell communication Variations in genes encoding NMDA receptor subunits have been found in a range of neurodevelopmental disorders. We investigated a de novo genetic variant found in patients with epileptic encephalopathy that changes a residue located in the ion channel pore of the GluN2A NMDA receptor subunit. We found that this variant (GluN2AN615K ) impairs physiologically important receptor properties: it markedly reduces Mg2+ blockade and channel conductance, even for receptors in which one GluN2AN615K is co-assembled with one wild-type GluN2A subunit. Our findings are consistent with the GluN2AN615K mutation being the primary cause of the severe neurodevelopmental disorder in carriers. ABSTRACT: NMDA receptors are ionotropic calcium-permeable glutamate receptors with a voltage-dependence mediated by blockade by Mg2+ . Their activation is important in signal transduction, as well as synapse formation and maintenance. Two unrelated individuals with epileptic encephalopathy carry a de novo variant in the gene encoding the GluN2A NMDA receptor subunit: a N615K missense variant in the M2 pore helix (GRIN2AC1845A ). We hypothesized that this variant underlies the neurodevelopmental disorders in carriers and explored its functional consequences by electrophysiological analysis in heterologous systems. We focused on GluN2AN615K co-expressed with wild-type GluN2 subunits in physiologically relevant triheteromeric NMDA receptors containing two GluN1 and two distinct GluN2 subunits, whereas previous studies have investigated the impact of the variant in diheteromeric NMDA receptors with two GluN1 and two identical GluN2 subunits. We found that GluN2AN615K -containing triheteromers showed markedly reduced Mg2+ blockade, with a value intermediate between GluN2AN615K diheteromers and wild-type NMDA receptors. Single-channel conductance was reduced by four-fold in GluN2AN615K diheteromers, again with an intermediate value in GluN2AN615K -containing triheteromers. Glutamate deactivation rates were unaffected. Furthermore, we expressed GluN2AN615K in cultured primary mouse cortical neurons, observing a decrease in Mg2+ blockade and reduction in current density, confirming that the variant continues to have significant functional impact in neuronal systems. Our results demonstrate that the GluN2AN615K variant has substantial effects on NMDA receptor properties fundamental to the roles of the receptor in synaptic plasticity, even when expressed alongside wild-type subunits. This work strengthens the evidence indicating that the GluN2AN615K variant underlies the disabling neurodevelopmental phenotype in carriers.


Assuntos
Potenciais de Ação , Epilepsia/genética , Mutação de Sentido Incorreto , Receptores de N-Metil-D-Aspartato/genética , Animais , Células Cultivadas , Feminino , Células HEK293 , Humanos , Magnésio/metabolismo , Masculino , Camundongos , Neurônios/metabolismo , Neurônios/fisiologia , Multimerização Proteica , Receptores de N-Metil-D-Aspartato/metabolismo
4.
Hum Mol Genet ; 23(14): 3875-82, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24603075

RESUMO

Beta III spectrin is present throughout the elaborate dendritic tree of cerebellar Purkinje cells and is required for normal neuronal morphology and cell survival. Spinocerebellar ataxia type 5 (SCA5) and spectrin associated autosomal recessive cerebellar ataxia type 1 are human neurodegenerative diseases involving progressive gait ataxia and cerebellar atrophy. Both disorders appear to result from loss of ß-III spectrin function. Further elucidation of ß-III spectrin function is therefore needed to understand disease mechanisms and identify potential therapeutic options. Here, we report that ß-III spectrin is essential for the recruitment and maintenance of ankyrin R at the plasma membrane of Purkinje cell dendrites. Two SCA5-associated mutations of ß-III spectrin both reduce ankyrin R levels at the cell membrane. Moreover, a wild-type ß-III spectrin/ankyrin-R complex increases sodium channel levels and activity in cell culture, whereas mutant ß-III spectrin complexes fail to enhance sodium currents. This suggests impaired ability to form stable complexes between the adaptor protein ankyrin R and its interacting partners in the Purkinje cell dendritic tree is a key mechanism by which mutant forms of ß-III spectrin cause ataxia, initially by Purkinje cell dysfunction and exacerbated by subsequent cell death.


Assuntos
Anquirinas/metabolismo , Células de Purkinje/metabolismo , Canais de Sódio/fisiologia , Espectrina/genética , Espectrina/metabolismo , Ataxias Espinocerebelares/genética , Animais , Membrana Celular/metabolismo , Células Cultivadas , Células HEK293 , Humanos , Camundongos , Mutação , Estabilidade Proteica , Células de Purkinje/ultraestrutura , Ratos , Ratos Sprague-Dawley
5.
Brain Commun ; 6(3): fcae184, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846532

RESUMO

Amyotrophic lateral sclerosis is an age-dependent cell type-selective degenerative disease. Genetic studies indicate that amyotrophic lateral sclerosis is part of a spectrum of disorders, ranging from spinal muscular atrophy to frontotemporal dementia that share common pathological mechanisms. Amyotrophic lateral sclerosis Type 8 is a familial disease caused by mis-sense mutations in VAPB. VAPB is localized to the cytoplasmic surface of the endoplasmic reticulum, where it serves as a docking point for cytoplasmic proteins and mediates inter-organelle interactions with the endoplasmic reticulum membrane. A gene knock-in model of amyotrophic lateral sclerosis Type 8 based on the VapBP56S mutation and VapB gene deletion has been generated in rats. These animals display a range of age-dependent phenotypes distinct from those previously reported in mouse models of amyotrophic lateral sclerosis Type 8. A loss of motor neurones in VapBP56S/+ and VapBP56S/P56S animals is indicated by a reduction in the number of large choline acetyl transferase-staining cells in the spinal cord. VapB-/- animals exhibit a relative increase in cytoplasmic TDP-43 levels compared with the nucleus, but no large protein aggregates. Concomitant with these spinal cord pathologies VapBP56S/+ , VapBP56S/P56S and VapB-/- animals exhibit age-dependent changes in paw placement and exerted pressures when traversing a CatWalk apparatus, consistent with a somatosensory dysfunction. Extramotor dysfunction is reported in half the cases of motor neurone disease, and this is the first indication of an associated sensory dysfunction in a rodent model of amyotrophic lateral sclerosis. Different rodent models may offer complementary experimental platforms with which to understand the human disease.

6.
Brain Commun ; 3(3): fcab152, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34396110

RESUMO

Primary hippocampal cell cultures are routinely used as an experimentally accessible model platform for the hippocampus and brain tissue in general. Containing multiple cell types including neurons, astrocytes and microglia in a state that can be readily analysed optically, biochemically and electrophysiologically, such cultures have been used in many in vitro studies. To what extent the in vivo environment is recapitulated in primary cultures is an on-going question. Here, we compare the transcriptomic profiles of primary hippocampal cell cultures and intact hippocampal tissue. In addition, by comparing profiles from wild type and the PrP 101LL transgenic model of prion disease, we also demonstrate that gene conservation is predominantly conserved across genetically altered lines.

7.
Cells ; 10(12)2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34943911

RESUMO

Synapses are particularly susceptible to the effects of advancing age, and mitochondria have long been implicated as organelles contributing to this compartmental vulnerability. Despite this, the mitochondrial molecular cascades promoting age-dependent synaptic demise remain to be elucidated. Here, we sought to examine how the synaptic mitochondrial proteome (including strongly mitochondrial associated proteins) was dynamically and temporally regulated throughout ageing to determine whether alterations in the expression of individual candidates can influence synaptic stability/morphology. Proteomic profiling of wild-type mouse cortical synaptic and non-synaptic mitochondria across the lifespan revealed significant age-dependent heterogeneity between mitochondrial subpopulations, with aged organelles exhibiting unique protein expression profiles. Recapitulation of aged synaptic mitochondrial protein expression at the Drosophila neuromuscular junction has the propensity to perturb the synaptic architecture, demonstrating that temporal regulation of the mitochondrial proteome may directly modulate the stability of the synapse in vivo.


Assuntos
Envelhecimento/genética , Proteínas Mitocondriais/genética , Distrofias Musculares/genética , Proteoma/genética , Sinapses/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Drosophila/genética , Drosophila/fisiologia , Regulação da Expressão Gênica/genética , Humanos , Camundongos , Mitocôndrias/genética , Distrofias Musculares/patologia , Junção Neuromuscular/genética , Junção Neuromuscular/patologia , Neurônios/metabolismo
8.
Biomolecules ; 11(10)2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34680132

RESUMO

Live imaging of neuromuscular junctions (NMJs) in situ has been constrained by the suitability of ligands for inert vital staining of motor nerve terminals. Here, we constructed several truncated derivatives of the tetanus toxin C-fragment (TetC) fused with Emerald Fluorescent Protein (emGFP). Four constructs, namely full length emGFP-TetC (emGFP-865:TetC) or truncations comprising amino acids 1066-1315 (emGFP-1066:TetC), 1093-1315 (emGFP-1093:TetC) and 1109-1315 (emGFP-1109:TetC), produced selective, high-contrast staining of motor nerve terminals in rodent or human muscle explants. Isometric tension and intracellular recordings of endplate potentials from mouse muscles indicated that neither full-length nor truncated emGFP-TetC constructs significantly impaired NMJ function or transmission. Motor nerve terminals stained with emGFP-TetC constructs were readily visualised in situ or in isolated preparations using fibre-optic confocal endomicroscopy (CEM). emGFP-TetC derivatives and CEM also visualised regenerated NMJs. Dual-waveband CEM imaging of preparations co-stained with fluorescent emGFP-TetC constructs and Alexa647-α-bungarotoxin resolved innervated from denervated NMJs in axotomized WldS mouse muscle and degenerating NMJs in transgenic SOD1G93A mouse muscle. Our findings highlight the region of the TetC fragment required for selective binding and visualisation of motor nerve terminals and show that fluorescent derivatives of TetC are suitable for in situ morphological and physiological characterisation of healthy, injured and diseased NMJs.


Assuntos
Microscopia Confocal , Junção Neuromuscular/diagnóstico por imagem , Toxina Tetânica/toxicidade , Animais , Animais Recém-Nascidos , Axônios/efeitos dos fármacos , Axônios/metabolismo , Sítios de Ligação , Fluorescência , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Tecido Nervoso/efeitos dos fármacos , Tecido Nervoso/metabolismo , Junção Neuromuscular/efeitos dos fármacos , Junção Neuromuscular/patologia , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Transmissão Sináptica/efeitos dos fármacos
9.
Pharmacol Res Perspect ; 7(4): e00495, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31249692

RESUMO

N-methyl-D-aspartate (NMDA) receptors are glutamate receptors with key roles in synaptic plasticity, due in part to their Mg2+ mediated voltage-dependence. A large number of genetic variants affecting NMDA receptor subunits have been found in people with a range of neurodevelopmental disorders, including GluN2AN615K (GRIN2AC1845A) in two unrelated individuals with severe epileptic encephalopathy. This missense variant substitutes a lysine in place of an asparagine known to be important for blockade by Mg2+ and other small molecule channel blockers. We therefore measured the impact of GluN2AN615K on a range of NMDA receptor channel blockers using two-electrode voltage clamp recordings made in Xenopus oocytes. We found that GluN2AN615K resulted in block by Mg2+ 1 mmol/L being greatly reduced (89% vs 8%), block by memantine 10 µmol/L (76% vs 27%) and amantadine 100 µmol/L (45% vs 17%) being substantially reduced, block by ketamine 10 µmol/L being modestly reduced (79% vs 73%) and block by dextromethorphan 10 µmol/L being enhanced (45% vs 55%). Coapplying Mg2+ with memantine or amantadine did not reduce the GluN2AN615K block seen with either small molecule. In addition, we measured single-channel conductance of GluN2AN615K-containing NMDA receptors in outside-out patches pulled from Xenopus oocytes, finding a 4-fold reduction in conductance (58 vs 15 pS). In conclusion, the GluN2AN615K variant is associated with substantial changes to important physiological and pharmacological properties of the NMDA receptor. Our findings are consistent with GluN2AN615K having a disease-causing role, and inform potential therapeutic strategies.


Assuntos
Substituição de Aminoácidos , Oócitos/citologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Amantadina/farmacologia , Animais , Dextrometorfano/farmacologia , Feminino , Humanos , Ketamina/farmacologia , Magnésio/farmacologia , Memantina/farmacologia , Mutação de Sentido Incorreto , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Técnicas de Patch-Clamp , Receptores de N-Metil-D-Aspartato/genética , Xenopus
10.
Cells ; 8(6)2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31212843

RESUMO

Putative oogonial stem cells (OSCs) have been isolated by fluorescence-activated cell sorting (FACS) from adult human ovarian tissue using an antibody against DEAD-box helicase 4 (DDX4). DDX4 has been reported to be germ cell specific within the gonads and localised intracellularly. White et al. (2012) hypothesised that the C-terminus of DDX4 is localised on the surface of putative OSCs but is internalised during the process of oogenesis. This hypothesis is controversial since it is assumed that RNA helicases function intracellularly with no extracellular expression. To determine whether the C-terminus of DDX4 could be expressed on the cell surface, we generated a novel expression construct to express full-length DDX4 as a DsRed2 fusion protein with unique C- and N-terminal epitope tags. DDX4 and the C-terminal myc tag were detected at the cell surface by immunocytochemistry and FACS of non-permeabilised human embryonic kidney HEK 293T cells transfected with the DDX4 construct. DDX4 mRNA expression was detected in the DDX4-positive sorted cells by RT-PCR. This study clearly demonstrates that the C-terminus of DDX4 can be expressed on the cell surface despite its lack of a conventional membrane-targeting or secretory sequence. These results validate the use of antibody-based FACS to isolate DDX4-positive putative OSCs.


Assuntos
RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/metabolismo , Espaço Extracelular/metabolismo , Citometria de Fluxo/métodos , Imuno-Histoquímica/métodos , Anticorpos/farmacologia , Especificidade de Anticorpos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Tamanho Celular/efeitos dos fármacos , Epitopos/metabolismo , Feminino , Células HEK293 , Humanos , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Ovário/metabolismo , Transporte Proteico/efeitos dos fármacos , Reprodutibilidade dos Testes
11.
Sci Rep ; 8(1): 6953, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29725036

RESUMO

The existence of a population of putative stem cells with germline developmental potential (oogonial stem cells: OSCs) in the adult mammalian ovary has been marked by controversy over isolation methodology and potential for in-vitro transformation, particularly where cell sorting has been based on expression of DEAD box polypeptide 4 (DDX4). This study describes a refined tissue dissociation/fluorescence-activated cell sorting (FACS) protocol for the ovaries of adult women which results in increased cell viability and yield of putative OSCs. A FACS technique incorporating dual-detection of DDX4 with aldehyde dehydrogenase 1 (ALDH1) demonstrates the existence of two sub-populations of small DDX4-positive cells (approx. 7 µm diameter) with ALDH1 activity, distinguished by expression of differentially spliced DDX4 transcripts and of DAZL, a major regulator of germ cell differentiation. These may indicate stages of differentiation from a progenitor population and provide a likely explanation for the expression disparities reported previously. These findings provide a robust basis for the further characterisation of these cells, and exploration of their potential physiological roles and therapeutic application.


Assuntos
RNA Helicases DEAD-box/análise , Isoenzimas/análise , Células-Tronco de Oogônios/citologia , Ovário/citologia , Retinal Desidrogenase/análise , Família Aldeído Desidrogenase 1 , Separação Celular/métodos , Células Cultivadas , RNA Helicases DEAD-box/genética , Feminino , Citometria de Fluxo/métodos , Expressão Gênica , Humanos , Células-Tronco de Oogônios/metabolismo , Ovário/metabolismo , Adulto Jovem
12.
J Neurosci ; 22(13): 5432-41, 2002 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-12097495

RESUMO

Extracellular regulated kinases (ERKI/II), members of the mitogen-activated protein kinase family, play a role in long-term memory and long-term potentiation (LTP). ERKI/II is required for the induction of the early phase of LTP, and we show that it is also required for the late phase of LTP in area CA1 in vitro, induced by a protocol of brief, repeated 100 Hz trains. We also show that ERKI/II is necessary for the upregulation of the proteins encoded by the immediate early genes Zif268 and Homer after the induction of LTP in the dentate gyrus by tetanic stimulation of the perforant path in vivo or by BDNF stimulation of primary cortical cultures. To test whether the induction of persistent synaptic plasticity by stimuli such as BDNF is associated with nuclear translocation of ERKI/II, we expressed enhanced green fluorescent protein (EGFP)-ERKII in PC12 cell lines and primary cortical cultures. In both preparations, we observed translocation of EGFP-ERKII from the cytoplasm to the nucleus in cells exposed to neurotrophic factors. Our results suggest that the induction of late LTP involves translocation of ERKI/II to the nucleus in which it activates the transcription of immediate early genes. The ability to visualize the cellular redistribution of ERKII after induction of long-term synaptic plasticity may provide a method for visualizing neuronal circuits underlying information storage in the brain in vivo.


Assuntos
Hipocampo/enzimologia , Hipocampo/fisiologia , Potenciação de Longa Duração , Proteína Quinase 1 Ativada por Mitógeno/fisiologia , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Transporte Ativo do Núcleo Celular , Animais , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Células COS , Núcleo Celular/metabolismo , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Giro Denteado/enzimologia , Giro Denteado/metabolismo , Proteína 1 de Resposta de Crescimento Precoce , Proteínas Imediatamente Precoces/biossíntese , Proteínas Imediatamente Precoces/genética , Masculino , Proteína Quinase 3 Ativada por Mitógeno , Modelos Neurológicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Células PC12 , RNA Mensageiro/biossíntese , Ratos , Ratos Wistar , Fatores de Transcrição/metabolismo
13.
Ann Clin Transl Neurol ; 1(11): 867-83, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25540801

RESUMO

OBJECTIVE: Electromyography (EMG) is used routinely to diagnose neuromuscular dysfunction in a wide range of peripheral neuropathies, myopathies, and neuromuscular degenerative diseases including motor neuron diseases such as amyotrophic lateral sclerosis (ALS). Definitive neurological diagnosis may also be indicated by the analysis of pathological neuromuscular innervation in motor-point biopsies. Our objective in this study was to preempt motor-point biopsy by combining live imaging with electrophysiological analysis of slow degeneration of neuromuscular junctions (NMJs) in vivo. METHODS: We combined conventional needle electromyography with fiber-optic confocal endomicroscopy (CEM), using an integrated hand-held, 1.5-mm-diameter probe. We utilized as a test bed, various axotomized muscles in the hind limbs of anaesthetized, double-homozygous thy1.2YFP16: Wld (S) mice, which coexpress the Wallerian-degeneration Slow (Wld(S)) protein and yellow fluorescent protein (YFP) in motor neurons. We also tested exogenous vital stains, including Alexa488-α-bungarotoxin; the styryl pyridinium dye 4-Di-2-Asp; and a GFP conjugate of botulinum toxin Type A heavy chain (GFP-HcBoNT/A). RESULTS: We show that an integrated EMG/CEM probe is effective in longitudinal evaluation of functional and morphological changes that take place over a 7-day period during axotomy-induced, slow neuromuscular synaptic degeneration. EMG amplitude declined in parallel with overt degeneration of motor nerve terminals. EMG/CEM was safe and effective when nerve terminals and motor endplates were selectively stained with vital dyes. INTERPRETATION: Our findings constitute proof-of-concept, based on live imaging in an animal model, that combining EMG/CEM may be useful as a minimally invasive precursor or alternative to motor-point biopsy in neurological diagnosis and for monitoring local administration of potential therapeutics.

14.
J Clin Invest ; 124(4): 1821-34, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24590288

RESUMO

The autosomal recessive neurodegenerative disease spinal muscular atrophy (SMA) results from low levels of survival motor neuron (SMN) protein; however, it is unclear how reduced SMN promotes SMA development. Here, we determined that ubiquitin-dependent pathways regulate neuromuscular pathology in SMA. Using mouse models of SMA, we observed widespread perturbations in ubiquitin homeostasis, including reduced levels of ubiquitin-like modifier activating enzyme 1 (UBA1). SMN physically interacted with UBA1 in neurons, and disruption of Uba1 mRNA splicing was observed in the spinal cords of SMA mice exhibiting disease symptoms. Pharmacological or genetic suppression of UBA1 was sufficient to recapitulate an SMA-like neuromuscular pathology in zebrafish, suggesting that UBA1 directly contributes to disease pathogenesis. Dysregulation of UBA1 and subsequent ubiquitination pathways led to ß-catenin accumulation, and pharmacological inhibition of ß-catenin robustly ameliorated neuromuscular pathology in zebrafish, Drosophila, and mouse models of SMA. UBA1-associated disruption of ß-catenin was restricted to the neuromuscular system in SMA mice; therefore, pharmacological inhibition of ß-catenin in these animals failed to prevent systemic pathology in peripheral tissues and organs, indicating fundamental molecular differences between neuromuscular and systemic SMA pathology. Our data indicate that SMA-associated reduction of UBA1 contributes to neuromuscular pathogenesis through disruption of ubiquitin homeostasis and subsequent ß-catenin signaling, highlighting ubiquitin homeostasis and ß-catenin as potential therapeutic targets for SMA.


Assuntos
Atrofia Muscular Espinal/etiologia , Atrofia Muscular Espinal/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Enzimas Ativadoras de Ubiquitina/metabolismo , Ubiquitina/metabolismo , beta Catenina/metabolismo , Processamento Alternativo , Animais , Modelos Animais de Doenças , Drosophila , Homeostase , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Camundongos , Camundongos Knockout , Camundongos Mutantes , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Atrofia Muscular Espinal/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Transdução de Sinais , Medula Espinal/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Enzimas Ativadoras de Ubiquitina/antagonistas & inibidores , Enzimas Ativadoras de Ubiquitina/genética , Peixe-Zebra
15.
Nat Commun ; 4: 2034, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23774321

RESUMO

The recent identification of the mitochondrial Ca(2+) uniporter gene (Mcu/Ccdc109a) has enabled us to address its role, and that of mitochondrial Ca(2+) uptake, in neuronal excitotoxicity. Here we show that exogenously expressed Mcu is mitochondrially localized and increases mitochondrial Ca(2+) levels following NMDA receptor activation, leading to increased mitochondrial membrane depolarization and excitotoxic cell death. Knockdown of endogenous Mcu expression reduces NMDA-induced increases in mitochondrial Ca(2+), resulting in lower levels of mitochondrial depolarization and resistance to excitotoxicity. Mcu is subject to dynamic regulation as part of an activity-dependent adaptive mechanism that limits mitochondrial Ca(2+) overload when cytoplasmic Ca(2+) levels are high. Specifically, synaptic activity transcriptionally represses Mcu, via a mechanism involving the nuclear Ca(2+) and CaM kinase-mediated induction of Npas4, resulting in the inhibition of NMDA receptor-induced mitochondrial Ca(2+) uptake and preventing excitotoxic death. This establishes Mcu and the pathways regulating its expression as important determinants of excitotoxicity, which may represent therapeutic targets for excitotoxic disorders.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Núcleo Celular/metabolismo , Fármacos Neuroprotetores/farmacologia , Neurotoxinas/toxicidade , Proteínas Repressoras/metabolismo , Transcrição Gênica/efeitos dos fármacos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Transporte Biológico/efeitos dos fármacos , Cálcio/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Morte Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/enzimologia , Técnicas de Silenciamento de Genes , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo
16.
Hum Mol Genet ; 15(4): 625-35, 2006 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-16403805

RESUMO

Wallerian degeneration of injured neuronal axons and synapses is blocked in Wld(S) mutant mice by expression of an nicotinamide mononucleotide adenylyl transferase 1 (Nmnat-1)/truncated-Ube4b chimeric gene. The protein product of the Wld(S) gene localizes to neuronal nuclei. Here we show that Wld(S) protein expression selectively alters mRNA levels of other genes in Wld(S) mouse cerebellum in vivo and following transfection of human embryonic kidney (HEK293) cells in vitro. The largest changes, identified by microarray analysis and quantitative real-time polymerase chain reaction of cerebellar mRNA, were an approximate 10-fold down-regulation of pituitary tumour-transforming gene-1 (pttg1) and an approximate 5-fold up-regulation of a structural homologue of erythroid differentiation regulator-1 (edr1l-EST). Transfection of HEK293 cells with a Wld(S)-eGFP construct produced similar changes in mRNA levels for these and seven other genes, suggesting that regulation of gene expression by Wld(S) is conserved across different species, including humans. Similar modifications in mRNA levels were mimicked for some of the genes (including pttg1) by 1 mm nicotinamide adenine dinucleotide (NAD). However, expression levels of most other genes (including edr1l-EST) were insensitive to NAD. Pttg1(-/-) mutant mice showed no neuroprotective phenotype. Transfection of HEK293 cells with constructs comprising either full-length Nmnat-1 or the truncated Ube4b fragment (N70-Ube4b) demonstrated selective effects of Nmnat-1 (down-regulated pttg1) and N70-Ube4b (up-regulated edr1l-EST) on mRNA levels. Similar changes in pttg1 and edr1l-EST were observed in the mouse NSC34 motor neuron-like cell line following stable transfection with Wld(S). Together, the data suggest that the Wld(S) protein co-regulates expression of a consistent subset of genes in both mouse neurons and human cells. Targeting Wld(S)-induced gene expression may lead to novel therapies for neurodegeneration induced by trauma or by disease in humans.


Assuntos
Proteínas de Membrana/biossíntese , Proteínas de Neoplasias/biossíntese , Proteínas do Tecido Nervoso/metabolismo , Nicotinamida-Nucleotídeo Adenililtransferase/biossíntese , Proteínas Supressoras de Tumor/biossíntese , Ubiquitina-Proteína Ligases/biossíntese , Degeneração Walleriana/metabolismo , Animais , Linhagem Celular , Regulação da Expressão Gênica/genética , Marcação de Genes , Terapia Genética , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Proteínas de Neoplasias/genética , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Securina , Transfecção , Proteínas Supressoras de Tumor/genética , Complexos Ubiquitina-Proteína Ligase , Ubiquitina-Proteína Ligases/genética , Degeneração Walleriana/genética , Degeneração Walleriana/terapia , Ferimentos e Lesões/genética , Ferimentos e Lesões/metabolismo , Ferimentos e Lesões/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA