RESUMO
Many threats to biodiversity cannot be eliminated; for example, invasive pathogens may be ubiquitous. Chytridiomycosis is a fungal disease that has spread worldwide, driving at least 90 amphibian species to extinction, and severely affecting hundreds of others1-4. Once the disease spreads to a new environment, it is likely to become a permanent part of that ecosystem. To enable coexistence with chytridiomycosis in the field, we devised an intervention that exploits host defences and pathogen vulnerabilities. Here we show that sunlight-heated artificial refugia attract endangered frogs and enable body temperatures high enough to clear infections, and that having recovered in this way, frogs are subsequently resistant to chytridiomycosis even under cool conditions that are optimal for fungal growth. Our results provide a simple, inexpensive and widely applicable strategy to buffer frogs against chytridiomycosis in nature. The refugia are immediately useful for the endangered species we tested and will have broader utility for amphibian species with similar ecologies. Furthermore, our concept could be applied to other wildlife diseases in which differences in host and pathogen physiologies can be exploited. The refugia are made from cheap and readily available materials and therefore could be rapidly adopted by wildlife managers and the public. In summary, habitat protection alone cannot protect species that are affected by invasive diseases, but simple manipulations to microhabitat structure could spell the difference between the extinction and the persistence of endangered amphibians.
Assuntos
Anuros , Quitridiomicetos , Resistência à Doença , Espécies em Perigo de Extinção , Micoses , Refúgio de Vida Selvagem , Animais , Anuros/imunologia , Anuros/microbiologia , Anuros/fisiologia , Temperatura Corporal/imunologia , Temperatura Corporal/fisiologia , Temperatura Corporal/efeitos da radiação , Quitridiomicetos/imunologia , Quitridiomicetos/patogenicidade , Quitridiomicetos/fisiologia , Resistência à Doença/imunologia , Resistência à Doença/fisiologia , Resistência à Doença/efeitos da radiação , Ecossistema , Micoses/veterinária , Micoses/microbiologia , Micoses/imunologia , Luz Solar , Animais Selvagens/imunologia , Animais Selvagens/microbiologia , Animais Selvagens/fisiologia , Espécies IntroduzidasRESUMO
RNA interference (RNAi) has not been tested in the pandemic amphibian pathogen, Batrachochytrium dendrobatidis, but developing this technology could be useful to elucidate virulence mechanisms, identify therapeutic targets, and may present a novel antifungal treatment option for chytridiomycosis. To manipulate and decipher gene function, rationally designed small interfering RNA (siRNA) can initiate the destruction of homologous messenger RNA (mRNA), resulting in the "knockdown" of target gene expression. Here, we investigate whether siRNA can be used to manipulate gene expression in B. dendrobatidis via RNAi using differing siRNA strategies to target genes involved in glutathione and ornithine synthesis. To determine the extent and duration of mRNA knockdown, target mRNA levels were monitored for 24-48 h after delivery of siRNA targeting glutamate-cysteine ligase, with a maximum of ~56% reduction in target transcripts occurring at 36 h. A second siRNA design targeting glutamate-cysteine ligase also resulted in ~53% knockdown at this time point. siRNA directed toward a different gene target, ornithine decarboxylase, achieved 17% reduction in target transcripts. Although no phenotypic effects were observed, these results suggest that RNAi is possible in B. dendrobatidis, and that gene expression can be manipulated in this pathogen. We outline ideas for further optimization steps to increase knockdown efficiency to better harness RNAi techniques for control of B. dendrobatidis.
Assuntos
Quitridiomicetos , Técnicas de Silenciamento de Genes , Glutamato-Cisteína Ligase , Interferência de RNA , RNA Mensageiro , RNA Interferente Pequeno , RNA Interferente Pequeno/genética , RNA Mensageiro/genética , Animais , Quitridiomicetos/genética , Quitridiomicetos/patogenicidade , Glutamato-Cisteína Ligase/genética , Ornitina Descarboxilase/genética , Ornitina Descarboxilase/metabolismo , Anfíbios/microbiologia , Glutationa/metabolismoRESUMO
The world's reptiles and amphibians are experiencing dramatic and ongoing losses in biodiversity, changes that can have substantial effects on ecosystems and human health. In 2022, the first Global Amphibian and Reptile Disease Conference was held, using One Health as a guiding principle. The conference showcased knowledge on numerous reptile and amphibian pathogens from several standpoints, including epidemiology, host immune defenses, wild population effects, and mitigation. The conference also provided field experts the opportunity to discuss and identify the most urgent herpetofaunal disease research directions necessary to address current and future threats to reptile and amphibian biodiversity.
Assuntos
Ecossistema , Saúde Única , Humanos , Animais , Anfíbios , Répteis , BiodiversidadeRESUMO
Wildlife health assessments help identify populations at risk of starvation, disease, and decline from anthropogenic impacts on natural habitats. We conducted an overview of available health assessment studies in noncaptive vertebrates and devised a framework to strategically integrate health assessments in population monitoring. Using a systematic approach, we performed a thorough assessment of studies examining multiple health parameters of noncaptive vertebrate species from 1982 to 2020 (n = 261 studies). We quantified trends in study design and diagnostic methods across taxa with generalized linear models, bibliometric analyses, and visual representations of study location versus biodiversity hotspots. Only 35% of studies involved international or cross-border collaboration. Countries with both high and threatened biodiversity were greatly underrepresented. Species that were not listed as threatened on the International Union for Conservation of Nature Red List represented 49% of assessed species, a trend likely associated with the regional focus of most studies. We strongly suggest following wildlife health assessment protocols when planning a study and using statistically adequate sample sizes for studies establishing reference ranges. Across all taxa blood analysis (89%), body composition assessments (81%), physical examination (72%), and fecal analyses (24% of studies) were the most common methods. A conceptual framework to improve design and standardize wildlife health assessments includes guidelines on the experimental design, data acquisition and analysis, and species conservation planning and management implications. Integrating a physiological and ecological understanding of species resilience toward threatening processes will enable informed decision making regarding the conservation of threatened species.
Importancia de los exámenes diagnósticos para la conservación de fauna silvestre Resumen Los exámenes diagnósticos de fauna silvestre ayudan a identificar poblaciones en riesgo por desnutrición, enfermedades infecciosas y disminución poblacional, causadas por impactos antropogénicos. Revisamos los estudios disponibles que llevaron a cabo exámenes diagnósticos en fauna silvestre y diseñamos un marco de trabajo para integrar dichos exámenes en monitoreos poblacionales. Empleando un enfoque sistemático, evaluamos aquellos estudios que examinaban múltiples indicadores de salud en vertebrados no cautivos entre 1982 y 2020 (n = 261 estudios). Cuantificamos las tendencias estadísticas, clasificadas por taxones, del diseño del estudio y de los métodos diagnósticos usando modelos lineales generalizados, análisis bibliométricos y representaciones visuales del lugar de estudio versus los hotspots (puntos calientes) de biodiversidad. Sólo el 35% de los estudios incluían colaboraciones internacionales o transfronterizas, y los países ricos en biodiversidad y especies amenazadas estaban gravemente subrepresentados. Las especies no clasificadas como amenazadas en la Lista Roja de la Unión Internacional para la Conservación de la Naturaleza representaban el 49% de las especies examinadas; una tendencia posiblemente asociada al enfoque regional de la mayoría de los estudios. Recomendamos encarecidamente seguir protocolos diagnósticos y manuales de técnicas del estudio de la fauna silvestre, además de usar tamaños muestrales estadísticamente adecuados al establecer rangos de referencia. Los métodos diagnósticos más comunes para todos los taxones fueronanálisis sanguíneos (89%), evaluaciones de composición corporal (81%), exámenes físicos (72%) y análisis fecales (24% de los estudios). Presentamos un marco conceptual para mejorar y estandarizar los exámenes diagnósticos en estudios de fauna silvestre; dicho marco incluye guías para el diseño experimental, para la obtención y el análisis de datos, y para elaborar planes de acción para especies amenazadas. La combinación de conocimientos fisiológicos y ecológicos, relacionados con la resiliencia biológica de especies amenazadas, facilitará una toma de decisiones eficiente para el manejo y para la conservación de la biodiversidad.
Assuntos
Animais Selvagens , Conservação dos Recursos Naturais , Animais , Biodiversidade , Ecossistema , Espécies em Perigo de ExtinçãoRESUMO
Lumholtz's tree-kangaroo (Dendrolagus lumholtzi) is one of two species of tree-kangaroos found in Queensland, Australia. There is little information about ocular anatomy and pathology in any species of tree-kangaroo, and there are claims of blindness from unknown causes in free-ranging Lumholtz's tree-kangaroos. This study investigated ocular anatomy and pathology in 80 individuals, using examination of 31 live animals and histopathologic examination of eyes from 49 carcasses. Tree-kangaroos were found to have a typical vertebrate eye with immuno-histochemical evidence for dichromatic color vision. Only 5.4% of animals had evidence of pathology from traumatic injury, infection, or a variety of nonspecific lesions. Toxoplasmosis was implicated in ocular lesions in three animals. This study did not find evidence of widespread blindness in free-ranging animals nor evidence of toxic optic neuropathy. Examinations of live animals highlighted the need to establish normal ocular examination parameters and vision testing protocols suitable for use in tree-kangaroos and the need for more comprehensive examination and testing of animals thought to have vision loss of unknown origin.
Assuntos
Oftalmopatias/veterinária , Olho/anatomia & histologia , Macropodidae , Animais , Animais Selvagens , Oftalmopatias/patologia , Feminino , Masculino , QueenslandRESUMO
Chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), is a skin disease responsible for the global decline of amphibians. Frog species and populations can vary in susceptibility, but this phenomenon remains poorly understood. Here, we investigated serotonin in the skin of infected and uninfected frogs. In more susceptible frog populations, skin serotonin rose with increasing infection intensity, but decreased in later stages of the disease. The more resistant population maintained a basal level of skin serotonin. Serotonin inhibited both Bd sporangial growth and Jurkat lymphocyte proliferation in vitro. However, serotonin accumulates in skin granular glands, and this compartmentalisation may prevent inhibition of Bd growth in vivo. We suggest that skin serotonin increases in susceptible frogs due to pathogen excretion of precursor tryptophan, but that resistant frogs are able to control the levels of serotonin. Overall, the immunosuppressive effects of serotonin may contribute to the susceptibility of frogs to chytridiomycosis.
Assuntos
Anuros/microbiologia , Quitridiomicetos , Suscetibilidade a Doenças/veterinária , Micoses/veterinária , Serotonina/metabolismo , Dermatopatias/veterinária , Pele/metabolismo , Animais , Anuros/imunologia , Anuros/metabolismo , Austrália , Proliferação de Células/efeitos dos fármacos , Quitridiomicetos/efeitos dos fármacos , Suscetibilidade a Doenças/metabolismo , Suscetibilidade a Doenças/microbiologia , Cromatografia Gasosa-Espectrometria de Massas , Micoses/imunologia , Micoses/metabolismo , Serotonina/farmacologia , Pele/química , Pele/microbiologia , Dermatopatias/metabolismo , Esporângios/efeitos dos fármacos , Esporângios/crescimento & desenvolvimento , Linfócitos T/efeitos dos fármacosRESUMO
Chytridiomycosis has been a key driver of global frog declines and extinctions, particularly for high-altitude populations across Australia and the Americas. While recent evidence shows some species are recovering, the extent of such recoveries and the mechanisms underpinning them remain poorly resolved. We surveyed the historical latitudinal and elevational range of four Australian rainforest frogs that disappeared from upland sites between 1989 and 1994 to establish their contemporary distribution and elevational limits, and investigate factors affecting population recovery. Five rainforest streams were surveyed from mountain-base to summit (30 sites in total), with swabs collected from the target species (Litoria dayi, L. nannotis, L. rheocola, and L. serrata) to determine their infection status, and data loggers deployed to measure microclimatic variation across the elevational gradient. Infection probability increased with elevation and canopy cover as it was tightly and inversely correlated with stream-side air temperature. Occupancy patterns suggest varying responses to this disease threat gradient. Two species, L. rheocola and L. serrata, were found over their full historical elevational range (≥1,000 m above sea level [asl]), while L. dayi was not detected above 400 m (formerly known up to 900 m asl) and L. nannotis was not detected above 800 m (formerly known up to 1,200 m asl). Site occupancy probability was negatively related to predicted infection prevalence for L. dayi, L. nannotis, and L. rheocola, but not L. serrata, which appears to now tolerate high fungal burdens. This study highlights the importance of environmental refuges and connectivity across disease risk gradients for the persistence and natural recovery of frogs susceptible to chytridiomycosis. Likewise, in documenting both interspecific variation in recovery rates and intraspecific differences between sites, this study suggests interactions between disease threats and host selection exist that could be manipulated. For example, translocations may be warranted where connectivity is poor or the increase in disease risk is too steep to allow recolonization, combined with assisted selection or use of founders from populations that have already undergone natural selection.
Assuntos
Quitridiomicetos , Micoses , Altitude , Animais , Anuros , Austrália , Floresta ÚmidaRESUMO
Ranaviral infections cause mass die-offs in wild and captive turtle populations. Two experimental studies were performed to first determine the susceptibility of an Australian turtle species (Emydura macquarii krefftii) to different routes of infection and second examine the effect of viral titre on the morbidity in hatchlings. All inoculation routes (intracoelomic, intramuscular and oral) produced disease, but the clinical signs, histopathology and time to onset of disease varied with the route. The median infectious and lethal doses for intramuscularly inoculated hatchlings were 102.52 (1.98-2.93) and 104.43 (3.81-5.19) TCID50 ml-1, respectively. Clinical signs began 14 to 29 days post-inoculation and the median survival time was 22 days (16-25) across all dose groups. For every 10-fold increase in dose, the odds of developing any clinical signs or severe clinical signs increased by 3.39 [P<0.01, 95â% confidence interval (CI): 1.81-6.36] and 3.71 (P<0.01, 95â% CI: 1.76-7.80), respectively. Skin lesions, previously only reported in ranaviral infection in lizards, were observed in the majority of intramuscularly inoculated hatchlings that developed ranaviral disease. The histological changes were consistent with those in previous reports for reptiles and consisted of necrosis at or near the site of injection, in the spleen, liver and oral cavity. Systemic inflammation was also observed, predominantly affecting necrotic organs. The estimates reported here can be used to model ranaviral disease and quantify and manage at-risk populations.
Assuntos
Infecções por Vírus de DNA/veterinária , Tartarugas/virologia , Animais , Infecções por Vírus de DNA/mortalidade , Infecções por Vírus de DNA/patologia , Infecções por Vírus de DNA/virologia , Fígado/patologia , Fígado/virologia , Ranavirus/genética , Ranavirus/isolamento & purificação , Ranavirus/fisiologia , Baço/patologia , Baço/virologia , Tartarugas/crescimento & desenvolvimentoRESUMO
Captive and wild amphibians are under threat of extinction from the deadly fungal pathogen Batrachochytrium dendrobatidis (Bd). The antifungal drug terbinafine (TBF) is used by pet owners to treat Bd-infected frogs; however, it is not widely used in academic or zoological institutions due to limited veterinary clinical trials. To assess TBF's efficacy, we undertook treatment trials and pharmacokinetic studies to investigate drug absorption and persistence in frog skin; and then we correlated these data to the minimal lethal concentrations (MLC) against Bd. Despite an initial reduction in zoospore load, the recommended treatment (five daily 5 min 0.01% TBF baths) was unable to cure experimentally infected alpine tree frogs and naturally infected common eastern froglets. In vitro and in vivo pharmacokinetics showed that absorbed TBF accumulates in frog skin with increased exposure, indicating its suitability for treating cutaneous pathogens via direct application. The MLC of TBF for zoosporangia was 100 µg/ml for 2 h, while the minimal inhibitory concentration was 2 µg/ml, suggesting that the drug concentration absorbed during 5 min treatments is not sufficient to cure high Bd burdens. With longer treatments of five daily 30 min baths, Bd clearance improved from 12.5% to 50%. A higher dose of 0.02% TBF resulted in 78% of animals cured; however, clearance was not achieved in all individuals due to low TBF skin persistence, as the half-life was less than 2 h. Therefore, the current TBF regime is not recommended as a universal treatment against Bd until protocols are optimized, such as with increased exposure frequency.
Assuntos
Antifúngicos/administração & dosagem , Antifúngicos/farmacocinética , Anuros/microbiologia , Quitridiomicetos/efeitos dos fármacos , Micoses/veterinária , Terbinafina/administração & dosagem , Terbinafina/farmacocinética , Animais , Antifúngicos/farmacologia , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Micoses/tratamento farmacológico , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/microbiologia , Esporos Fúngicos/efeitos dos fármacos , Terbinafina/farmacologia , Resultado do TratamentoRESUMO
Potentiating the evolution of immunity is a promising strategy for addressing biodiversity diseases. Assisted selection for infection resistance may enable the recovery and persistence of amphibians threatened by chytridiomycosis, a devastating fungal skin disease threatening hundreds of species globally. However, knowledge of the mechanisms involved in the natural evolution of immunity to chytridiomycosis is limited. Understanding the mechanisms of such resistance may help speed-assisted selection. Using a transcriptomics approach, we examined gene expression responses of endangered alpine tree frogs (Litoria verreauxii alpina) to subclinical infection, comparing two long-exposed populations with a naïve population. We performed a blinded, randomized and controlled exposure experiment, collecting skin, liver and spleen tissues at 4, 8 and 14 days postexposure from 51 wild-caught captively reared infection-naïve adult frogs for transcriptome assembly and differential gene expression analyses. We analysed our results in conjunction with infection intensity data, and the results of a large clinical survival experiment run concurrently with individuals from the same clutches. Here, we show that frogs from an evolutionarily long-exposed and phenotypically more resistant population of the highly susceptible alpine tree frog demonstrate a more robust innate and adaptive immune response at the critical early subclinical stage of infection when compared with two more susceptible populations. These results are consistent with the occurrence of evolution of resistance against chytridiomycosis, help to explain underlying resistance mechanisms, and provide genes of potential interest and sequence data for future research. We recommend further investigation of cell-mediated immunity pathways, the role of interferons and mechanisms of lymphocyte suppression.
Assuntos
Anuros/imunologia , Anuros/microbiologia , Quitridiomicetos/fisiologia , Resistência à Doença/imunologia , Imunidade , Micoses/imunologia , Micoses/microbiologia , Animais , Anuros/genética , Análise por Conglomerados , Tamanho da Ninhada , Regulação para Baixo/genética , Feminino , Ontologia Genética , Masculino , Anotação de Sequência Molecular , Família Multigênica , Análise de Sobrevida , Transcriptoma/genética , Regulação para Cima/genéticaRESUMO
In Australia, the cane toad Rhinella marina and chytrid fungus Batrachochytrium dendrobatidis (Bd) are examples of invasive species that have had dramatic impacts on native fauna. However, little is known about the interaction between Bd and cane toads. We aimed to explore the interaction of these 2 species in 3 parts. First, we collated data from the literature on Bd infection in wild cane toads. Second, we tested the susceptibility of recently metamorphosed cane toads to Bd infection. Finally, we modelled the distribution of the 2 species in Australia to identify where they overlap and, therefore, might interact. Through our data collation, we found that adult cane toads are infrequently infected and do not carry high infection burdens; however, our infection experiment showed that metamorphs are highly susceptible to infection and disease, but resistance appears to increase with increasing toad size. Niche modelling revealed overlapping distributions and the potential for cane toads to be affected by chytridiomycosis in the wild. While Bd can cause mortality in small juveniles in the laboratory, warm microhabitats used by wild toads likely prevent infection, and furthermore, high mortality of juveniles is unlikely to affect the adult populations because they are highly fecund. However, to demonstrate the impact of Bd on wild cane toad populations, targeted field studies are required to assess (1) the overall impact of chytridiomycosis on recruitment especially in cooler areas more favourable for Bd and (2) whether cane toad juveniles can amplify Bd exposure of native amphibian species in these areas.
Assuntos
Envelhecimento/fisiologia , Tamanho Corporal , Bufo marinus/microbiologia , Quitridiomicetos , Suscetibilidade a Doenças , Micoses/veterinária , Animais , Austrália/epidemiologia , Espécies Introduzidas , Micoses/epidemiologia , Micoses/microbiologiaRESUMO
Southern corroboree frogs (Pseudophryne corroboree) have declined to near extinction in the wild after the emergence of the amphibian chytrid fungus Batrachochytrium dendrobatidis in southeastern Australia in the 1980s. A major captive breeding and reintroduction program is underway to preserve this iconic species, but improving resistance to B. dendrobatidis would help the wild population to be self-sustaining. Using 3' and 5' rapid amplification of complementary DNA ends (RACE), we characterized the major histocompatibility complex (MHC) class IA locus in this species. We then used sequences generated from RACE to design primers to amplify the peptide-binding region (PBR) of this functional genetic marker. Finally, we analysed the diversity, phylogeny, and selection patterns of PBR sequences from four P. corroboree populations and compared this with other amphibian species. We found moderately high MHC class IA genetic diversity in this species and evidence of strong positive and purifying selection at sites that are associated with putative PBR pockets in other species, indicating that this gene region may be under selection for resistance to Bd. Future studies should focus on identifying alleles associated with Bd resistance in P. corroboree by performing a Bd laboratory challenge study to confirm the functional importance of our genetic findings and explore their use in artificial selection or genetic engineering to increase resistance to chytridiomycosis.
Assuntos
Anuros/genética , Espécies em Perigo de Extinção , Antígenos de Histocompatibilidade Classe II/genética , Alelos , Sequência de Aminoácidos , Animais , Austrália , Filogenia , Análise de Sequência de DNA , Homologia de Sequência de AminoácidosRESUMO
Infectious diseases are transmitted when susceptible hosts are exposed to pathogen particles that can replicate within them. Among factors that limit transmission, the environment is particularly important for indirectly transmitted parasites. To try and assess a pathogens' ability to be transmitted through the environment and mitigate risk, we need to quantify its decay where transmission occurs in space such as the microclimate harbouring the pathogen. Hendra virus, a Henipavirus from Australian Pteropid bats, spills-over to horses and humans, causing high mortality. While a vaccine is available, its limited uptake has reduced opportunities for adequate risk management to humans, hence the need to develop synergistic preventive measures, like disrupting its transmission pathways. Transmission likely occurs shortly after virus excretion in paddocks; however, no survival estimates to date have used real environmental conditions. Here, we recorded microclimate conditions and fitted models that predict temperatures and potential evaporation, which we used to simulate virus survival with a temperature-survival model and modification based on evaporation. Predicted survival was lower than previously estimated and likely to be even lower according to potential evaporation. Our results indicate that transmission should occur shortly after the virus is excreted, in a relatively direct way. When potential evaporation is low, and survival is more similar to temperature dependent estimates, transmission might be indirect because the virus can wait several hours until contact is made. We recommend restricting horses' access to trees during night time and reducing grass under trees to reduce virus survival.
Assuntos
Quirópteros/virologia , Vírus Hendra , Infecções por Henipavirus/transmissão , Microclima , Zoonoses/virologia , Animais , Austrália , Infecções por Henipavirus/veterinária , Cavalos , HumanosRESUMO
Emerging wildlife pathogens are an increasing threat to biodiversity. One of the most serious wildlife diseases is chytridiomycosis, caused by the fungal pathogen, Batrachochytrium dendrobatidis (Bd), which has been documented in over 500 amphibian species. Amphibians vary greatly in their susceptibility to Bd; some species tolerate infection, whereas others experience rapid mortality. Reservoir hosts-species that carry infection while maintaining high abundance but are rarely killed by disease-can increase extinction risk in highly susceptible, sympatric species. However, whether reservoir hosts amplify Bd in declining amphibian species has not been examined. We investigated the role of reservoir hosts in the decline of the threatened northern corroboree frog (Pseudophryne pengilleyi) in an amphibian community in southeastern Australia. In the laboratory, we characterized the response of a potential reservoir host, the (nondeclining) common eastern froglet (Crinia signifera), to Bd infection. In the field, we conducted frog abundance surveys and Bd sampling for both P. pengilleyi and C. signifera. We built multinomial logistic regression models to test whether Crinia signifera and environmental factors were associated with P. pengilleyi decline. C. signifera was a reservoir host for Bd. In the laboratory, many individuals maintained intense infections (>1000 zoospore equivalents) over 12 weeks without mortality, and 79% of individuals sampled in the wild also carried infections. The presence of C. signifera at a site was strongly associated with increased Bd prevalence in sympatric P. pengilleyi. Consistent with disease amplification by a reservoir host, P. pengilleyi declined at sites with high C. signifera abundance. Our results suggest that when reservoir hosts are present, population declines of susceptible species may continue long after the initial emergence of Bd, highlighting an urgent need to assess extinction risk in remnant populations of other declined amphibian species.
Assuntos
Anuros , Quitridiomicetos/patogenicidade , Conservação dos Recursos Naturais , Micoses/veterinária , Animais , Austrália , Espécies em Perigo de Extinção , Dinâmica PopulacionalRESUMO
Emerging pathogens can drive evolutionary shifts in host life-history traits, yet this process remains poorly documented in vertebrate hosts. Amphibian chytridiomycosis, caused by infection with the fungal pathogen Batrachochytrium dendrobatidis (Bd), is the worst recorded wildlife disease and has caused the extinction of over 100 species across multiple continents. A similar number of additional species have experienced mass declines and Bd remains a major source of mortality in many populations of declined species now persisting with the pathogen. Life-history theory predicts that increased extrinsic mortality in Bd-infected populations may alter amphibian life-history traits, but this has not been examined. Here, we investigate whether population Bd status is associated with age and size at maturity by comparing long-exposed Bd-infected populations, Bd-free populations, and museum specimens collected prior to Bd emergence for the endangered Australian frog Litoria verreauxii alpina. We show that Bd-infected populations have a higher proportion of males that mature at 1 year of age, and females that mature at 2 years of age, compared to Bd-free populations. Earlier maturation was associated with reduced size at maturity in males. Consistent with life-history theory, our findings may represent an adaptive evolutionary shift towards earlier maturation in response to high Bd-induced mortality. To our knowledge, this study provides the first evidence for a post-metamorphic Bd-associated shift in an amphibian life-history trait. Given high mortality in other Bd-challenged species, we suggest that chytridiomycosis may be a substantial new selection pressure shaping life-history traits in impacted amphibian species across multiple continents.
Assuntos
Anuros , Micoses , Animais , Anuros/microbiologia , Austrália , Quitridiomicetos , Feminino , Masculino , Micoses/microbiologiaRESUMO
Pathogens can be critical drivers of the abundance and distribution of wild animal populations. The presence of an overdispersed pathogen load distribution between hosts (where few hosts harbour heavy parasite burdens and light infections are common) can have an important stabilizing effect on host-pathogen dynamics where infection intensity determines pathogenicity. This may potentially lead to endemicity of an introduced pathogen rather than extirpation of the host and/or pathogen. Overdispersed pathogen load distributions have rarely been considered in wild animal populations as an important component of the infection dynamics of microparasites such as bacteria, viruses, protozoa and fungi. Here we examined the abundance, distribution and transmission of the model fungal pathogen Batrachochytrium dendrobatidis (Bd, cause of amphibian chytridiomycosis) between wild-caught Litoria rheocola (common mist frogs) to investigate the effects of an overdispersed pathogen load distribution on the host population in the wild. We quantified host survival, infection incidence and recovery probabilities relative to infectious burden, and compared the results of models where pathogen overdispersion either was or was not considered an important feature of host-pathogen dynamics. We found the distribution of Bd load between hosts to be highly overdispersed. We found that host survival was related to infection burden and that accounting for pathogen overdispersion allowed us to better understand infection dynamics and their implications for disease control. In addition, we found that the pattern of host infections and recoveries varied markedly with season whereby (i) infections established more in winter, consistent with temperature-dependent effects on fungal growth, and (ii) recoveries (loss of infection) occurred frequently in the field throughout the year but were less likely in winter. Our results suggest that pathogen overdispersion is an important feature of endemic chytridiomycosis and that intensity of infection determines disease impact. These findings have important implications for our understanding of chytridiomycosis dynamics and the application of management strategies for disease mitigation. We recommend quantifying individual infectious burdens rather than infection state where possible in microparasitic diseases.
Assuntos
Anuros/microbiologia , Quitridiomicetos/fisiologia , Micoses/epidemiologia , Estações do Ano , Animais , Interações Hospedeiro-Patógeno , Masculino , Micoses/transmissão , Micoses/veterinária , Dinâmica Populacional , QueenslandRESUMO
Pathogen emergence can drive major changes in host population demography, with implications for population dynamics and sensitivity to environmental fluctuations. The amphibian disease chytridiomycosis, caused by infection with the fungal pathogen Batrachochytrium dendrobatidis (Bd), is implicated in the severe decline of over 200 amphibian species. In species that have declined but not become extinct, Bd persists and can cause substantial ongoing mortality. High rates of mortality associated with Bd may drive major changes in host demography, but this process is poorly understood. Here, we compared population age structure of Bd-infected populations, Bd-free populations and museum specimens collected prior to Bd emergence for the endangered Australian frog, Litoria verreauxii alpina (alpine tree frog). We then used population simulations to investigate how pathogen-associated demographic shifts affect the ability of populations to persist in stochastic environments. We found that Bd-infected populations have a severely truncated age structure associated with very high rates of annual adult mortality. Near-complete annual adult turnover in Bd-infected populations means that individuals breed once, compared with Bd-free populations where adults may breed across multiple years. Our simulations showed that truncated age structure erodes the capacity of populations to withstand periodic recruitment failure; a common challenge for species reproducing in uncertain environments. We document previously undescribed demographic shifts associated with a globally emerging pathogen and demonstrate how these shifts alter host ecology. Truncation of age structure associated with Bd effectively reduces host niche width and can help explain the contraction of L. v. alpina to perennial waterbodies where the risk of drought-induced recruitment failure is low. Reduced capacity to tolerate other sources of mortality may explain variation in decline severity among other chytridiomycosis-challenged species and highlights the potential to mitigate disease impacts through minimizing other sources of mortality.
Assuntos
Anuros , Quitridiomicetos/fisiologia , Secas , Micoses/veterinária , Animais , Anuros/fisiologia , Austrália/epidemiologia , Demografia , Espécies em Perigo de Extinção , Feminino , Masculino , Micoses/microbiologia , Micoses/mortalidade , Dinâmica PopulacionalRESUMO
Hendra virus (HeV) is lethal to humans and horses, and little is known about its epidemiology. Biosecurity restrictions impede advances, particularly on understanding pathways of transmission. Quantifying the environmental survival of HeV can be used for making decisions and to infer transmission pathways. We estimated HeV survival with a Weibull distribution and calculated parameters from data generated in laboratory experiments. HeV survival rates based on air temperatures 24 h after excretion ranged from 2 to 10 % in summer and from 12 to 33 % in winter. Simulated survival across the distribution of the black flying fox (Pteropus alecto), a key reservoir host, did not predict spillover events. Based on our analyses we concluded that the most likely pathways of transmission did not require long periods of virus survival and were likely to involve relatively direct contact with flying fox excreta shortly after excretion.
Assuntos
Quirópteros/virologia , Vírus Hendra/genética , Vírus Hendra/isolamento & purificação , Infecções por Henipavirus/veterinária , Cavalos/virologia , Animais , Infecções por Henipavirus/transmissão , Infecções por Henipavirus/virologia , Viabilidade Microbiana , Modelos Estatísticos , Estações do AnoRESUMO
The pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd) can cause precipitous population declines in its amphibian hosts. Responses of individuals to infection vary greatly with the capacity of their immune system to respond to the pathogen. We used a combination of comparative and experimental approaches to identify major histocompatibility complex class II (MHC-II) alleles encoding molecules that foster the survival of Bd-infected amphibians. We found that Bd-resistant amphibians across four continents share common amino acids in three binding pockets of the MHC-II antigen-binding groove. Moreover, strong signals of selection acting on these specific sites were evident among all species co-existing with the pathogen. In the laboratory, we experimentally inoculated Australian tree frogs with Bd to test how each binding pocket conformation influences disease resistance. Only the conformation of MHC-II pocket 9 of surviving subjects matched those of Bd-resistant species. This MHC-II conformation thus may determine amphibian resistance to Bd, although other MHC-II binding pockets also may contribute to resistance. Rescuing amphibian biodiversity will depend on our understanding of amphibian immune defence mechanisms against Bd. The identification of adaptive genetic markers for Bd resistance represents an important step forward towards that goal.
Assuntos
Imunidade Adaptativa , Proteínas de Anfíbios/genética , Anuros , Quitridiomicetos/fisiologia , Antígenos de Histocompatibilidade Classe II/genética , Micoses/veterinária , Sequência de Aminoácidos , Proteínas de Anfíbios/química , Proteínas de Anfíbios/metabolismo , Animais , Anuros/genética , Anuros/metabolismo , Resistência à Doença , Suscetibilidade a Doenças , Antígenos de Histocompatibilidade Classe II/química , Antígenos de Histocompatibilidade Classe II/metabolismo , Dados de Sequência Molecular , Micoses/genética , Micoses/imunologia , Micoses/microbiologia , Alinhamento de Sequência/veterináriaRESUMO
Viruses that originate in bats may be the most notorious emerging zoonoses that spill over from wildlife into domestic animals and humans. Understanding how these infections filter through ecological systems to cause disease in humans is of profound importance to public health. Transmission of viruses from bats to humans requires a hierarchy of enabling conditions that connect the distribution of reservoir hosts, viral infection within these hosts, and exposure and susceptibility of recipient hosts. For many emerging bat viruses, spillover also requires viral shedding from bats, and survival of the virus in the environment. Focusing on Hendra virus, but also addressing Nipah virus, Ebola virus, Marburg virus and coronaviruses, we delineate this cross-species spillover dynamic from the within-host processes that drive virus excretion to land-use changes that increase interaction among species. We describe how land-use changes may affect co-occurrence and contact between bats and recipient hosts. Two hypotheses may explain temporal and spatial pulses of virus shedding in bat populations: episodic shedding from persistently infected bats or transient epidemics that occur as virus is transmitted among bat populations. Management of livestock also may affect the probability of exposure and disease. Interventions to decrease the probability of virus spillover can be implemented at multiple levels from targeting the reservoir host to managing recipient host exposure and susceptibility.