RESUMO
The early appearance of broadly neutralizing antibodies (bNAbs) in serum is associated with spontaneous hepatitis C virus (HCV) clearance, but to date, the majority of bNAbs have been isolated from chronically infected donors. Most of these bNAbs use the VH1-69 gene segment and target the envelope glycoprotein E2 front layer. Here, we performed longitudinal B cell receptor (BCR) repertoire analysis on an elite neutralizer who spontaneously cleared multiple HCV infections. We isolated 10,680 E2-reactive B cells, performed BCR sequencing, characterized monoclonal B cell cultures, and isolated bNAbs. In contrast to what has been seen in chronically infected donors, the bNAbs used a variety of VH genes and targeted at least three distinct E2 antigenic sites, including sites previously thought to be non-neutralizing. Diverse front-layer-reactive bNAb lineages evolved convergently, acquiring breadth-enhancing somatic mutations. These findings demonstrate that HCV clearance-associated bNAbs are genetically diverse and bind distinct antigenic sites that should be the target of vaccine-induced bNAbs.
Assuntos
Hepacivirus , Hepatite C , Humanos , Anticorpos Amplamente Neutralizantes , Epitopos , Anticorpos Neutralizantes , Proteínas do Envelope Viral/genéticaRESUMO
Antibodies targeting the hepatitis C virus (HCV) envelope glycoprotein E2 are associated with delayed disease progression, and these antibodies can also facilitate spontaneous clearance of infection in some individuals. However, many infected people demonstrate low titer and delayed anti-E2 antibody responses. Since a goal of HCV vaccine development is induction of high titers of anti-E2 antibodies, it is important to define the mechanisms underlying these suboptimal antibody responses. By staining lymphocytes with a cocktail of soluble E2 (sE2) glycoproteins, we detected HCV E2-specific (sE2+) B cells directly ex vivo at multiple acute infection timepoints in 29 HCV-infected subjects with a wide range of anti-E2 IgG titers, including 17 persistently infected subjects and 12 subjects with spontaneous clearance of infection. We performed multi-dimensional flow cytometric analysis of sE2+ and E2-nonspecific (sE2-) class-switched B cells (csBC). In sE2+ csBC from both persistence and clearance subjects, frequencies of resting memory B cells (rMBC) were reduced, frequencies of activated MBC (actMBC) and tissue-like MBC (tlMBC) were increased, and expression of FCRL5, an IgG receptor, was significantly upregulated. Across all subjects, plasma anti-E2 IgG levels were positively correlated with frequencies of sE2+ rMBC and sE2+ actMBC, while anti-E2 IgG levels were negatively correlated with levels of FCRL5 expression on sE2+ rMBC and PD-1 expression on sE2+ actMBC. Upregulation of FCRL5 on sE2+ rMBC and upregulation of PD-1 on sE2+ actMBC may limit anti-E2 antibody production in vivo. Strategies that limit upregulation of these molecules could potentially generate higher titers of protective antibodies against HCV or other pathogens.
Assuntos
Linfócitos B/imunologia , Anticorpos Anti-Hepatite C/imunologia , Hepatite C/imunologia , Receptor de Morte Celular Programada 1/imunologia , Receptores Fc/imunologia , Hepacivirus/imunologia , Humanos , Proteínas do Envelope Viral/imunologiaRESUMO
Th17 cells favor glycolytic metabolism, and pyruvate dehydrogenase (PDH) is the key bifurcation enzyme, which in its active dephosphorylated form advances the oxidative phosphorylation from glycolytic pathway. The transcriptional factor, inducible cAMP early repressor/cAMP response element modulator (ICER/CREM), has been shown to be induced in Th17 cells and to be overexpressed in CD4+ T cells from the patients with systemic lupus erythematosus (SLE). We found that glycolysis and lactate production in in vitro Th17-polarized T cells was reduced and that the expression of pyruvate dehydrogenase phosphatase catalytic subunit 2 (PDP2), an enzyme that converts the inactive PDH to its active form, and PDH enzyme activity were increased in Th17 cells from ICER/CREM-deficient animals. ICER was found to bind to the Pdp2 promoter and suppress its expression. Furthermore, forced expression of PDP2 in CD4+ cells reduced the in vitro Th17 differentiation, whereas shRNA-based suppression of PDP2 expression increased in vitro Th17 differentiation and augmented experimental autoimmune encephalomyelitis. At the translational level, PDP2 expression was decreased in memory Th17 cells from patients with SLE and forced expression of PDP2 in CD4+ T cells from lupus-prone MRL/lpr mice and patients with SLE suppressed Th17 differentiation. These data demonstrate the direct control of energy production during Th17 differentiation in health and disease by the transcription factor ICER/CREM at the PDH metabolism bifurcation level.
Assuntos
Diferenciação Celular , Regulação Enzimológica da Expressão Gênica , Fosfoproteínas Fosfatases/biossíntese , Elementos de Resposta , Células Th17/enzimologia , Animais , Domínio Catalítico , Modulador de Elemento de Resposta do AMP Cíclico/genética , Modulador de Elemento de Resposta do AMP Cíclico/imunologia , Modulador de Elemento de Resposta do AMP Cíclico/metabolismo , Encefalomielite Autoimune Experimental/enzimologia , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Feminino , Humanos , Lúpus Eritematoso Sistêmico/enzimologia , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/patologia , Masculino , Camundongos , Camundongos Knockout , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/imunologia , Células Th17/imunologia , Células Th17/patologiaAssuntos
COVID-19 , Médicos/psicologia , Pesquisadores/educação , Ciência , Doenças Transmissíveis , Humanos , SARS-CoV-2 , EspecializaçãoRESUMO
Clinical trials reveal that plasmid DNA (pDNA)-based gene delivery must be improved to realize its potential to treat human disease. Current pDNA platforms suffer from brief transgene expression, primarily due to the spread of transcriptionally repressive chromatin initially deposited on plasmid bacterial backbone sequences. Minicircle (MC) DNA lacks plasmid backbone sequences and correspondingly confers higher levels of sustained transgene expression upon delivery, accounting for its success in preclinical gene therapy models. In this study, we show for the first time that MC DNA also functions as a vaccine platform. We used a luciferase reporter transgene to demonstrate that intradermal delivery of MC DNA, relative to pDNA, resulted in significantly higher and persistent levels of luciferase expression in mouse skin. Next, we immunized mice intradermally with DNA encoding a peptide that, when presented by the appropriate major histocompatibility complex class I molecule, was recognized by endogenous CD8(+) T cells. Finally, immunization with peptide-encoding MC DNA, but not the corresponding full-length (FL) pDNA, conferred significant protection in mice challenged with Listeria monocytogenes expressing the model peptide. Together, our results suggest intradermal delivery of MC DNA may prove more efficacious for prophylaxis than traditional pDNA vaccines.
Assuntos
Linfócitos T CD8-Positivos/imunologia , DNA Circular/imunologia , Epitopos de Linfócito T/imunologia , Plasmídeos/imunologia , Transferência Adotiva , Animais , Apresentação de Antígeno/imunologia , Linhagem Celular , DNA Circular/genética , Epitopos de Linfócito T/genética , Feminino , Expressão Gênica , Ordem dos Genes , Genes Reporter , Vetores Genéticos/genética , Humanos , Listeriose/imunologia , Listeriose/prevenção & controle , Camundongos , Plasmídeos/genética , Pele/metabolismo , Transgenes/imunologia , Vacinas de DNA/genética , Vacinas de DNA/imunologiaRESUMO
Introduction: Early development of broadly neutralizing antibodies (bNAbs) targeting the hepatitis C virus (HCV) envelope glycoprotein E2 is associated with spontaneous clearance of infection, so induction of bNAbs is a major goal of HCV vaccine development. However, the molecular antibody features important for broad neutralization are not known. Methods: To identify B cell repertoire features associated with broad neutralization, we performed RNA sequencing of the B cell receptors (BCRs) of HCV E2-reactive B cells of HCV-infected individuals with either high or low plasma neutralizing breadth. We then produced a monoclonal antibody (mAb) expressed by pairing the most abundant heavy and light chains from public clonotypes identified among clearance, high neutralization subjects. Results: We found distinctive BCR features associated with broad neutralization of HCV, including long heavy chain complementarity determining region 3 (CDRH3) regions, specific VH gene usage, increased frequencies of somatic hypermutation, and particular VH gene mutations. Most intriguing, we identified many E2-reactive public BCR clonotypes (heavy and light chain clones with the same V and J-genes and identical CDR3 sequences) present only in subjects who produced highly neutralizing plasma. The majority of these public clonotypes were shared by two subjects who cleared infection. A mAb expressing the most abundant public heavy and light chains from these clearance, high neutralization subjects had features enriched in high neutralization clonotypes, such as increased somatic hypermutation frequency and usage of IGHV1-69, and was cross-neutralizing. Discussion: Together, these results demonstrate distinct BCR repertoires associated with high plasma neutralizing capacity. Further characterization of the molecular features and function of these antibodies can inform HCV vaccine development.
Assuntos
Hepacivirus , Hepatite C , Humanos , Anticorpos Amplamente Neutralizantes , Formação de Anticorpos , Anticorpos Neutralizantes , Anticorpos Monoclonais , Regiões Determinantes de Complementaridade/genéticaRESUMO
[This corrects the article DOI: 10.3389/fimmu.2023.1135841.].
RESUMO
BackgroundSome clinical features of severe COVID-19 represent blood vessel damage induced by activation of host immune responses initiated by the coronavirus SARS-CoV-2. We hypothesized autoantibodies against angiotensin-converting enzyme 2 (ACE2), the SARS-CoV-2 receptor expressed on vascular endothelium, are generated during COVID-19 and are of mechanistic importance.MethodsIn an opportunity sample of 118 COVID-19 inpatients, autoantibodies recognizing ACE2 were detected by ELISA. Binding properties of anti-ACE2 IgM were analyzed via biolayer interferometry. Effects of anti-ACE2 IgM on complement activation and endothelial function were demonstrated in a tissue-engineered pulmonary microvessel model.ResultsAnti-ACE2 IgM (not IgG) autoantibodies were associated with severe COVID-19 and found in 18/66 (27.2%) patients with severe disease compared with 2/52 (3.8%) of patients with moderate disease (OR 9.38, 95% CI 2.38-42.0; P = 0.0009). Anti-ACE2 IgM autoantibodies were rare (2/50) in non-COVID-19 ventilated patients with acute respiratory distress syndrome. Unexpectedly, ACE2-reactive IgM autoantibodies in COVID-19 did not undergo class-switching to IgG and had apparent KD values of 5.6-21.7 nM, indicating they are T cell independent. Anti-ACE2 IgMs activated complement and initiated complement-binding and functional changes in endothelial cells in microvessels, suggesting they contribute to the angiocentric pathology of COVID-19.ConclusionWe identify anti-ACE2 IgM as a mechanism-based biomarker strongly associated with severe clinical outcomes in SARS-CoV-2 infection, which has therapeutic implications.FUNDINGBill & Melinda Gates Foundation, Gates Philanthropy Partners, Donald B. and Dorothy L. Stabler Foundation, and Jerome L. Greene Foundation; NIH R01 AR073208, R01 AR069569, Institutional Research and Academic Career Development Award (5K12GM123914-03), National Heart, Lung, and Blood Institute R21HL145216, and Division of Intramural Research, National Institute of Allergy and Infectious Diseases; National Science Foundation Graduate Research Fellowship (DGE1746891).
Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Autoanticorpos , Células Endoteliais , Humanos , Imunoglobulina M , SARS-CoV-2RESUMO
Dysfunctional immune activation accumulates during chronic viral infection and contributes to disease pathogenesis. In HIV-1, immune activation is exacerbated by concurrent infection with hepatitis C virus (HCV), accelerating depletion of CD4+ T cells. HIV-1 suppression with antiretroviral therapy (ART) generally reconstitutes CD4+ T cell counts, while also reducing the proportion that is activated. Whether this immune reconstitution also reduces the complexity of the CD4+ T cell population is unknown. We sought to characterize the relationship between activated CD4+ T cell repertoire diversity and immune reconstitution following ART in HIV-1/HCV coinfection. We extracted T cell receptor (TCR) sequences from RNA sequencing data obtained from activated CD4+ T cells of HIV-1/HCV coinfected individuals before and after treatment with ART (clinical trial NCT01285050). There was notable heterogeneity in both the extent of CD4+ T cell reconstitution and in the change in activated CD4+ TCR repertoire diversity following ART. Decreases in activated CD4+ TCR repertoire diversity following ART were predictive of the degree of CD4+ T cell reconstitution. The association of decreased activated CD4+ TCR repertoire diversity and improved CD4+ T cell reconstitution may represent loss of nonspecifically activated TCR clonotypes, and possibly selective expansion of specifically activated CD4+ clones. These results provide insight into the dynamic relationship between activated CD4+ TCR diversity and CD4+ T cell recovery of HIV-1/HCV coinfected individuals after suppression of HIV-1 viremia.
Assuntos
Coinfecção , Infecções por HIV , HIV-1 , Hepatite C , Terapia Antirretroviral de Alta Atividade , Contagem de Linfócito CD4 , Linfócitos T CD4-Positivos , Coinfecção/tratamento farmacológico , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Hepatite C/complicações , Hepatite C/tratamento farmacológico , HumanosRESUMO
Multiple studies have shown loss of severe acute respiratory syndrome coronavirus 2-specific (SARS-CoV-2-specific) antibodies over time after infection, raising concern that humoral immunity against the virus is not durable. If immunity wanes quickly, millions of people may be at risk for reinfection after recovery from coronavirus disease 2019 (COVID-19). However, memory B cells (MBCs) could provide durable humoral immunity even if serum neutralizing antibody titers decline. We performed multidimensional flow cytometric analysis of S protein receptor binding domain-specific (S-RBD-specific) MBCs in cohorts of ambulatory patients with COVID-19 with mild disease (n = 7), and hospitalized patients with moderate to severe disease (n = 7), at a median of 54 days (range, 39-104 days) after symptom onset. We detected S-RBD-specific class-switched MBCs in 13 of 14 participants, failing only in the individual with the lowest plasma levels of anti-S-RBD IgG and neutralizing antibodies. Resting MBCs (rMBCs) made up the largest proportion of S-RBD-specific MBCs in both cohorts. FCRL5, a marker of functional memory on rMBCs, was more dramatically upregulated on S-RBD-specific rMBCs after mild infection than after severe infection. These data indicate that most SARS-CoV-2-infected individuals develop S-RBD-specific, class-switched rMBCs that resemble germinal center-derived B cells induced by effective vaccination against other pathogens, providing evidence for durable B cell-mediated immunity against SARS-CoV-2 after mild or severe disease.
Assuntos
Linfócitos B/imunologia , COVID-19/imunologia , SARS-CoV-2 , Adulto , Idoso , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Sítios de Ligação/imunologia , COVID-19/virologia , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Humanos , Imunidade Celular , Switching de Imunoglobulina , Memória Imunológica , Masculino , Pessoa de Meia-Idade , Pandemias , SARS-CoV-2/imunologia , Índice de Gravidade de Doença , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Fatores de TempoRESUMO
Multiple studies have shown loss of SARS-CoV-2 specific antibodies over time after infection, raising concern that humoral immunity against the virus is not durable. If immunity wanes quickly, millions of people may be at risk for reinfection after recovery from COVID-19. However, memory B cells (MBC) could provide durable humoral immunity even if serum neutralizing antibody titers decline. We performed multi-dimensional flow cytometric analysis of S protein receptor binding domain (S-RBD)-specific MBC in cohorts of ambulatory COVID-19 patients with mild disease, and hospitalized patients with moderate to severe disease, at a median of 54 (39-104) days after onset of symptoms. We detected S-RBD-specific class-switched MBC in 13 out of 14 participants, including 4 of the 5 participants with lowest plasma levels of anti-S-RBD IgG and neutralizing antibodies. Resting MBC (rMBC) made up the largest proportion of S-RBD-specific class-switched MBC in both cohorts. FCRL5, a marker of functional memory when expressed on rMBC, was dramatically upregulated on S-RBD-specific rMBC. These data indicate that most SARS-CoV-2-infected individuals develop S-RBD-specific, class-switched MBC that phenotypically resemble germinal center-derived B cells induced by effective vaccination against other pathogens, providing evidence for durable B cell-mediated immunity against SARS-CoV-2 after recovery from mild or severe COVID-19 disease.
RESUMO
UNLABELLED: Apolipoprotein C1 (ApoC1) is a component of multiple lipoproteins where it performs a variety of roles in lipid metabolism and transport. ApoC1 exists as both full-length and truncated isoforms. Truncation of ApoC1 has been postulated to result from the action of dipeptidyl peptidase-4 (DPP-4), the target of a new class of diabetes drugs that includes sitagliptin phosphate. In this study, we sought to determine if oral administration of sitagliptin altered the proportion of ApoC1 isoforms circulating in humans. Results indicated a dramatic change in ApoC1 truncation, consistent with a high level of DPP-4 inhibition by sitagliptin. FUNDING: University of Minnesota, Minneapolis, MN, USA.
Assuntos
Congressos como Assunto , Influenza Humana/epidemiologia , Publicações Periódicas como Assunto , Ribossomos/fisiologia , Ribossomos/ultraestrutura , Tetrahymena thermophila/fisiologia , Políticas Editoriais , Humanos , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Influenza Humana/virologia , Prêmio Nobel , Telomerase/metabolismo , Telômero/metabolismoRESUMO
Almost 700 scientists met in the historic city of Seville, September 17-20, 2007, to attend the 21st National Congress of the Spanish Society for Microbiology (SEM). The attendees--from Spain and other European and American countries--had an opportunity to share the newest discoveries in their fields of research and to learn of the progress being made in numerous areas of microbiology through 64 symposia lectures, 1 workshop, 50 oral communications, and more than 400 posters.