RESUMO
MLL/KMT2A amplifications and translocations are prevalent in infant, adult, and therapy-induced leukemia. However, the molecular contributor(s) to these alterations are unclear. Here, we demonstrate that histone H3 lysine 9 mono- and di-methylation (H3K9me1/2) balance at the MLL/KMT2A locus regulates these amplifications and rearrangements. This balance is controlled by the crosstalk between lysine demethylase KDM3B and methyltransferase G9a/EHMT2. KDM3B depletion increases H3K9me1/2 levels and reduces CTCF occupancy at the MLL/KMT2A locus, in turn promoting amplification and rearrangements. Depleting CTCF is also sufficient to generate these focal alterations. Furthermore, the chemotherapy doxorubicin (Dox), which associates with therapy-induced leukemia and promotes MLL/KMT2A amplifications and rearrangements, suppresses KDM3B and CTCF protein levels. KDM3B and CTCF overexpression rescues Dox-induced MLL/KMT2A alterations. G9a inhibition in human cells or mice also suppresses MLL/KMT2A events accompanying Dox treatment. Therefore, MLL/KMT2A amplifications and rearrangements are controlled by epigenetic regulators that are tractable drug targets, which has clinical implications.
Assuntos
Epigênese Genética , Proteína de Leucina Linfoide-Mieloide , Adulto , Animais , Humanos , Lactente , Camundongos , Doxorrubicina/farmacologia , Rearranjo Gênico , Antígenos de Histocompatibilidade , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Leucemia/metabolismo , Lisina/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Translocação GenéticaRESUMO
Metabolic reprogramming is a common feature of many human cancers, including acute myeloid leukemia (AML). However, the upstream regulators that promote AML metabolic reprogramming and the benefits conferred to leukemia cells by these metabolic changes remain largely unknown. We report that the transcription factor ATF3 coordinates serine and nucleotide metabolism to maintain cell cycling, survival, and the differentiation blockade in AML. Analysis of mouse and human AML models demonstrate that ATF3 directly activates the transcription of genes encoding key enzymatic regulators of serine synthesis, one-carbon metabolism, and de novo purine and pyrimidine synthesis. Total steady-state polar metabolite and heavy isotope tracing analyses show that ATF3 inhibition reduces de novo serine synthesis, impedes the incorporation of serine-derived carbons into newly synthesized purines, and disrupts pyrimidine metabolism. Importantly, exogenous nucleotide supplementation mitigates the anti-leukemia effects of ATF3 inhibition. Together, these findings reveal the dependence of AML on ATF3-regulated serine and nucleotide metabolism.
Assuntos
Fator 3 Ativador da Transcrição/metabolismo , Ciclo Celular , Leucemia Mieloide Aguda/metabolismo , Proteínas de Neoplasias/metabolismo , Nucleotídeos/metabolismo , Serina/metabolismo , Fator 3 Ativador da Transcrição/genética , Linhagem Celular Tumoral , Humanos , Leucemia Mieloide Aguda/genética , Proteínas de Neoplasias/genética , Nucleotídeos/genética , Serina/genéticaRESUMO
Leukemia cells accumulate DNA damage, but altered DNA repair mechanisms protect them from apoptosis. We showed here that formaldehyde generated by serine/1-carbon cycle metabolism contributed to the accumulation of toxic DNA-protein crosslinks (DPCs) in leukemia cells, especially in driver clones harboring oncogenic tyrosine kinases (OTKs: FLT3(internal tandem duplication [ITD]), JAK2(V617F), BCR-ABL1). To counteract this effect, OTKs enhanced the expression of DNA polymerase theta (POLθ) via ERK1/2 serine/threonine kinase-dependent inhibition of c-CBL E3 ligase-mediated ubiquitination of POLθ and its proteasomal degradation. Overexpression of POLθ in OTK-positive cells resulted in the efficient repair of DPC-containing DNA double-strand breaks by POLθ-mediated end-joining. The transforming activities of OTKs and other leukemia-inducing oncogenes, especially of those causing the inhibition of BRCA1/2-mediated homologous recombination with and without concomitant inhibition of DNA-PK-dependent nonhomologous end-joining, was abrogated in Polq-/- murine bone marrow cells. Genetic and pharmacological targeting of POLθ polymerase and helicase activities revealed that both activities are promising targets in leukemia cells. Moreover, OTK inhibitors or DPC-inducing drug etoposide enhanced the antileukemia effect of POLθ inhibitor in vitro and in vivo. In conclusion, we demonstrated that POLθ plays an essential role in protecting leukemia cells from metabolically induced toxic DNA lesions triggered by formaldehyde, and it can be targeted to achieve a therapeutic effect.
Assuntos
Proteína BRCA1 , Dano ao DNA , Leucemia , Animais , Camundongos , Proteína BRCA2 , DNA/metabolismo , Leucemia/enzimologia , Leucemia/genética , DNA Polimerase tetaRESUMO
DNA repair proteins became the popular targets in research on cancer treatment. In our studies we hypothesized that inhibition of DNA polymerase theta (Polθ) and its combination with Poly (ADP-ribose) polymerase 1 (PARP1) or RAD52 inhibition and the alkylating drug temozolomide (TMZ) has an anticancer effect on glioblastoma cells (GBM21), whereas it has a low impact on normal human astrocytes (NHA). The effect of the compounds was assessed by analysis of cell viability, apoptosis, proliferation, DNA damage and cell cycle distribution, as well as gene expression. The main results show that Polθ inhibition causes a significant decrease in glioblastoma cell viability. It induces apoptosis, which is accompanied by a reduction in cell proliferation and DNA damage. Moreover, the effect was stronger when dual inhibition of Polθ with PARP1 or RAD52 was applied, and it is further enhanced by addition of TMZ. The impact on normal cells is much lower, especially when considering cell viability and DNA damage. In conclusion, we would like to highlight that Polθ inhibition used in combination with PARP1 or RAD52 inhibition has great potential to kill glioblastoma cells, and shows a synthetic lethal effect, while sparing normal astrocytes.
Assuntos
Sobrevivência Celular , Glioblastoma , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases , Proteína Rad52 de Recombinação e Reparo de DNA , Temozolomida , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Glioblastoma/metabolismo , Glioblastoma/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Linhagem Celular Tumoral , Temozolomida/farmacologia , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , DNA Polimerase teta , Apoptose/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , DNA Polimerase Dirigida por DNA/metabolismo , DNA Polimerase Dirigida por DNA/genética , Mutações Sintéticas Letais/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismoRESUMO
Despite much of the past 2 years being engulfed by the devastating consequences of the SAR-CoV-2 pandemic, significant progress, even breathtaking, occurred in the field of chronic myeloid malignancies. Some of this was show-cased at the 15th Post-American Society of Hematology (ASH) and the 25th John Goldman workshops on myeloproliferative neoplasms (MPN) held on 9th-10th December 2020 and 7th-10th October 2021, respectively. The inaugural Post-ASH MPN workshop was set out in 2006 by John Goldman (deceased) and Tariq Mughal to answer emerging translational hematology and therapeutics of patients with these malignancies. Rather than present a resume of the discussions, this perspective focuses on some of the pivotal translational hematology and therapeutic insights in these diseases.
Assuntos
COVID-19 , Doença Enxerto-Hospedeiro , Hematologia , Transtornos Mieloproliferativos , Células-Tronco Hematopoéticas , Humanos , Transtornos Mieloproliferativos/tratamento farmacológicoRESUMO
DNA polymerase theta (Polθ)-mediated end joining (TMEJ) is, along with homologous recombination (HR) and non-homologous end-joining (NHEJ), one of the most important mechanisms repairing potentially lethal DNA double-strand breaks (DSBs). Polθ is becoming a new target in cancer research because it demonstrates numerous synthetically lethal interactions with other DNA repair mechanisms, e.g., those involving PARP1, BRCA1/2, DNA-PK, ATR. Inhibition of Polθ could be achieved with different methods, such as RNA interference (RNAi), CRISPR/Cas9 technology, or using small molecule inhibitors. In the context of this topic, RNAi and CRISPR/Cas9 are still more often applied in the research itself rather than clinical usage, different than small molecule inhibitors. Several Polθ inhibitors have been already generated, and two of them, novobiocin (NVB) and ART812 derivative, are being tested in clinical trials against HR-deficient tumors. In this review, we describe the significance of Polθ and the Polθ-mediated TMEJ pathway. In addition, we summarize the current state of knowledge about Polθ inhibitors and emphasize the promising role of Polθ as a therapeutic target.
Assuntos
Reparo do DNA , Neoplasias , Inibidores da Síntese de Ácido Nucleico , Humanos , DNA/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Recombinação Homóloga , Neoplasias/tratamento farmacológico , Neoplasias/genética , Inibidores da Síntese de Ácido Nucleico/farmacologia , DNA Polimerase tetaRESUMO
Mutations in FMS-like tyrosine kinase 3 (FLT3), such as internal tandem duplications (ITDs), can be found in up to 23% of patients with acute myeloid leukemia (AML) and confer a poor prognosis. Current treatment options for FLT3(ITD)-positive AMLs include genotoxic therapy and FLT3 inhibitors (FLT3i's), which are rarely curative. PARP1 inhibitors (PARP1i's) have been successfully applied to induce synthetic lethality in tumors harboring BRCA1/2 mutations and displaying homologous recombination (HR) deficiency. We show here that inhibition of FLT3(ITD) activity by the FLT3i AC220 caused downregulation of DNA repair proteins BRCA1, BRCA2, PALB2, RAD51, and LIG4, resulting in inhibition of 2 major DNA double-strand break (DSB) repair pathways, HR, and nonhomologous end-joining. PARP1i, olaparib, and BMN673 caused accumulation of lethal DSBs and cell death in AC220-treated FLT3(ITD)-positive leukemia cells, thus mimicking synthetic lethality. Moreover, the combination of FLT3i and PARP1i eliminated FLT3(ITD)-positive quiescent and proliferating leukemia stem cells, as well as leukemic progenitors, from human and mouse leukemia samples. Notably, the combination of AC220 and BMN673 significantly delayed disease onset and effectively reduced leukemia-initiating cells in an FLT3(ITD)-positive primary AML xenograft mouse model. In conclusion, we postulate that FLT3i-induced deficiencies in DSB repair pathways sensitize FLT3(ITD)-positive AML cells to synthetic lethality triggered by PARP1i's. Therefore, FLT3(ITD) could be used as a precision medicine marker for identifying AML patients that may benefit from a therapeutic regimen combining FLT3 and PARP1i's.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Reparo do DNA/efeitos dos fármacos , Leucemia Mieloide Aguda , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Tirosina Quinase 3 Semelhante a fms/metabolismo , Animais , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Benzotiazóis/farmacologia , Linhagem Celular Tumoral , DNA Ligase Dependente de ATP/genética , DNA Ligase Dependente de ATP/metabolismo , Proteína do Grupo de Complementação N da Anemia de Fanconi/genética , Proteína do Grupo de Complementação N da Anemia de Fanconi/metabolismo , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos , Mutação , Compostos de Fenilureia/farmacologia , Ftalazinas/farmacologia , Piperazinas/farmacologia , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Tirosina Quinase 3 Semelhante a fms/genéticaRESUMO
The successful use of PARP1 inhibitors like olaparib (Loparza®) in the treatment of BRCA1/2- deficient breast cancer has provided clinical proof of concept for applying personalized medicine based on synthetic lethality to the treatment of cancer. Unfortunately, all marketed PARP1 inhibitors act by competing with the cofactor NAD+ and resistance is already developing to this anti-cancer mechanism. Allosteric PARP1 inhibitors could provide a means of overcoming this resistance. A high throughput screen performed by Tulin et al. identified 5F02 as an allosteric PARP inhibitor that acts by preventing the enzymatic activation of PARP1 by histone H4. 5F02 demonstrated anti-cancer activity in several cancer cell lines and was more potent than olaparib and synergistic with olaparib in these assays. In the present study we explored the structure-activity relationship of 5F02 by preparing analogs that possessed structural variation in four regions of the chemical scaffold. Our efforts led to lead molecule 7, which demonstrated potent anti-clonogenic activity against BRCA-deficient NALM6 leukemia cells in culture and a therapeutic index for the BRCA-deficient cells over their BRCA-proficient isogenic counterparts.
RESUMO
Myeloproliferative neoplasms (MPNs) often carry JAK2(V617F), MPL(W515L), or CALR(del52) mutations. Current treatment options for MPNs include cytoreduction by hydroxyurea and JAK1/2 inhibition by ruxolitinib, both of which are not curative. We show here that cell lines expressing JAK2(V617F), MPL(W515L), or CALR(del52) accumulated reactive oxygen species-induced DNA double-strand breaks (DSBs) and were modestly sensitive to poly-ADP-ribose polymerase (PARP) inhibitors olaparib and BMN673. At the same time, primary MPN cell samples from individual patients displayed a high degree of variability in sensitivity to these drugs. Ruxolitinib inhibited 2 major DSB repair mechanisms, BRCA-mediated homologous recombination and DNA-dependent protein kinase-mediated nonhomologous end-joining, and, when combined with olaparib, caused abundant accumulation of toxic DSBs resulting in enhanced elimination of MPN primary cells, including the disease-initiating cells from the majority of patients. Moreover, the combination of BMN673, ruxolitinib, and hydroxyurea was highly effective in vivo against JAK2(V617F)+ murine MPN-like disease and also against JAK2(V617F)+, CALR(del52)+, and MPL(W515L)+ primary MPN xenografts. In conclusion, we postulate that ruxolitinib-induced deficiencies in DSB repair pathways sensitized MPN cells to synthetic lethality triggered by PARP inhibitors.
Assuntos
Reparo do DNA/efeitos dos fármacos , Transtornos Mieloproliferativos/tratamento farmacológico , Neoplasias/tratamento farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Pirazóis/farmacologia , Animais , Calreticulina/genética , Linhagem Celular , Sinergismo Farmacológico , Xenoenxertos , Humanos , Janus Quinase 2/genética , Camundongos , Transtornos Mieloproliferativos/genética , Neoplasias/genética , Nitrilas , Ftalazinas/farmacologia , Piperazinas/farmacologia , Pirimidinas , Receptores de Trombopoetina/genética , Células Tumorais CultivadasRESUMO
Philadelphia negative (Ph-neg) myeloproliferative neoplasms (MPN) are a heterogenous group of clonal stem cell disorders. Approved treatment options include hydroxyurea, anagrelide, and ruxolitinib, which are not curative. The concept of synthetic lethality may become an additional therapeutic strategy in these diseases. In our study, we show that DNA repair is altered in classical Ph-neg MPN, as analyzed by gene expression analysis of 11 genes involved in the homologous recombination repair pathway (HRR), the non-homologous end-joining pathway (NHEJ), and the single-strand break repair pathway (SSB). Altogether, peripheral blood-derived cells from 57 patients with classical Ph-neg MPN and 13 healthy controls were analyzed. LIG3 as an essential part of the SSB was significantly lower expressed compared to controls in all three entities (essential thrombocythemia (ET), polycythemia vera (PV), and myelofibrosis (MF)). In addition, while genes of other DNA-repair pathways showed-possibly compensatory-increased expression in ET (HRR, NHEJ) and PV (NHEJ), MF samples displayed downregulation of all genes involved in NHEJ. With regard to the JAK2 mutational status (analyzed in ET and MF only), no upregulation of the HRR was detected. Though further studies are needed, based on these findings, we conclude that synthetic lethality may become a promising strategy in treating patients with Ph-neg MPN.
Assuntos
Reparo do DNA , DNA de Neoplasias , Neoplasias Hematológicas , Transtornos Mieloproliferativos , Proteínas de Neoplasias , Transcrição Gênica , Adulto , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Feminino , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Transtornos Mieloproliferativos/patologia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Cromossomo FiladélfiaRESUMO
Leukemias expressing constitutively activated mutants of ABL1 tyrosine kinase (BCR-ABL1, TEL-ABL1, NUP214-ABL1) usually contain at least 1 normal ABL1 allele. Because oncogenic and normal ABL1 kinases may exert opposite effects on cell behavior, we examined the role of normal ABL1 in leukemias induced by oncogenic ABL1 kinases. BCR-ABL1-Abl1(-/-) cells generated highly aggressive chronic myeloid leukemia (CML)-blast phase-like disease in mice compared with less malignant CML-chronic phase-like disease from BCR-ABL1-Abl1(+/+) cells. Additionally, loss of ABL1 stimulated proliferation and expansion of BCR-ABL1 murine leukemia stem cells, arrested myeloid differentiation, inhibited genotoxic stress-induced apoptosis, and facilitated accumulation of chromosomal aberrations. Conversely, allosteric stimulation of ABL1 kinase activity enhanced the antileukemia effect of ABL1 tyrosine kinase inhibitors (imatinib and ponatinib) in human and murine leukemias expressing BCR-ABL1, TEL-ABL1, and NUP214-ABL1. Therefore, we postulate that normal ABL1 kinase behaves like a tumor suppressor and therapeutic target in leukemias expressing oncogenic forms of the kinase.
Assuntos
Crise Blástica/genética , Genes Supressores de Tumor , Genes abl , Leucemia Experimental/genética , Leucemia Mieloide de Fase Crônica/genética , Proteínas Oncogênicas v-abl/fisiologia , Proteínas de Fusão Oncogênica/fisiologia , Proteínas Proto-Oncogênicas c-abl/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Crise Blástica/tratamento farmacológico , Crise Blástica/enzimologia , Crise Blástica/patologia , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Citostáticos/farmacologia , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Instabilidade Genômica , Humanos , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Leucemia Experimental/tratamento farmacológico , Leucemia Experimental/enzimologia , Leucemia Experimental/patologia , Leucemia Mieloide de Fase Crônica/tratamento farmacológico , Leucemia Mieloide de Fase Crônica/enzimologia , Leucemia Mieloide de Fase Crônica/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/fisiologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/enzimologia , Proteínas Oncogênicas v-abl/antagonistas & inibidores , Proteínas Oncogênicas v-abl/genética , Proteínas de Fusão Oncogênica/antagonistas & inibidores , Proteínas de Fusão Oncogênica/genética , Estresse Oxidativo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-abl/genética , Piridazinas/farmacologia , Piridazinas/uso terapêutico , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/genéticaRESUMO
RAD52 is a member of the homologous recombination (HR) pathway that is important for maintenance of genome integrity. While single RAD52 mutations show no significant phenotype in mammals, their combination with mutations in genes that cause hereditary breast cancer and ovarian cancer like BRCA1, BRCA2, PALB2 and RAD51C are lethal. Consequently, RAD52 may represent an important target for cancer therapy. In vitro, RAD52 has ssDNA annealing and DNA strand exchange activities. Here, to identify small molecule inhibitors of RAD52 we screened a 372,903-compound library using a fluorescence-quenching assay for ssDNA annealing activity of RAD52. The obtained 70 putative inhibitors were further characterized using biochemical and cell-based assays. As a result, we identified compounds that specifically inhibit the biochemical activities of RAD52, suppress growth of BRCA1- and BRCA2-deficient cells and inhibit RAD52-dependent single-strand annealing (SSA) in human cells. We will use these compounds for development of novel cancer therapy and as a probe to study mechanisms of DNA repair.
Assuntos
Antineoplásicos/farmacologia , Proteína BRCA1/genética , Proteína BRCA2/genética , Proteína Rad52 de Recombinação e Reparo de DNA/antagonistas & inibidores , Proteína BRCA1/metabolismo , Proteína BRCA2/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Dano ao DNA , Ensaios de Seleção de Medicamentos Antitumorais , Técnicas de Silenciamento de Genes , Ensaios de Triagem em Larga Escala , Humanos , Concentração Inibidora 50 , Ligação Proteica , Proteína Rad52 de Recombinação e Reparo de DNA/químicaRESUMO
BRCA1 (breast cancer 1 susceptibility protein) is one of main regulators of cellular genomic stability. It is responsible for proper segregation of chromatides to daughter cells during mitosis as well as DNA double strand breaks repair by homologous recombination (HR). Genetic alterations of BRCA1 gene are cancer predisposition markers. Mutations or epigenetic alterations have been noticed in breast, ovarian and prostate cancers, significantly increasing risk of cancer development. Such gene alterations are not connected with leukemias. Importantly, BRCA1 deficiency is a factor which makes patients susceptible for personalized therapy with PARP1 inhibitors, which is based on the phenomenon called synthetic lethality. In this review we present our discoveries of novel mechanism leading to BRCA1 deficiency in leukemia, which is not connected with BRCA1 gene mutations or epigenetic alterations, but with attenuated translation of BRCA1 protein linked to the cellular stress response and controlled by RNA binding proteins. Moreover, we found that some treatments or genetic alterations in leukemias might also result in BRCA1 deficits. Our studies provide evidence that PARP1 inhibitors should be considered as efficient treatment in BRCA1-deficient leukemias, leading to elimination of cancer cells, including stem and progenitor cells. Finally we propose a strategy to select leukemia patients which might be sensitive to therapy with PARP1 inhibitors.
Assuntos
Proteína BRCA1/biossíntese , Proteína BRCA1/deficiência , Leucemia/tratamento farmacológico , Leucemia/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Mutações Sintéticas Letais , Proteína BRCA1/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Humanos , Leucemia/patologiaRESUMO
Leonurus sibiricus L. is a traditional medicinal plant which occurs in southern Siberia, China, Korea, Japan, and Vietnam. The plant shows several pharmacological effects, but the most interesting is its anti-cancer activity. The aim of our study was to examine the induction of apoptosis in malignant glioma cells, the most aggressive primary brain tumors of the central nervous system, following treatment with transformed root (TR) or non-transformed root (NR) L. sibiricus extracts. Both the NR and TR extracts were found to have cytotoxic activity in the glioma primary cells. The human glioblastoma cell lines obtained from patients were confirmed to be tumorogenic by the following three markers: D10S1709, D10S1172, and D22S283. HPLC and MS analysis revealed the presence of polyphenolic compounds (chlorogenic acid, ferulic acid, caffeic acid, p-coumaric acid, ellagic acid, and verbascoside) in both sets of root extracts. In summary, our findings demonstrate that treatment of the glioma cells with NR and TR extracts resulted (a) in significant cell growth inhibition, (b) S- and G2/M-phase cell cycle arrest, and (c) apoptosis in a dose-dependent fashion by changing Bax/Bcl-2 ratio (about 4-fold increase) and p53 (5-fold increase) activation. These findings indicate that NR and TR extracts exhibit anti-cancer activity through the regulation of genes involved in apoptosis. This is the first report to demonstrate the cytotoxic effect of polyphenolic extracts from L. sibiricus roots against glioma cells, but further studies are required to understand the complete mechanism of its apoptosic activity.
Assuntos
Apoptose/efeitos dos fármacos , Glioma/tratamento farmacológico , Leonurus/química , Raízes de Plantas/química , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Carcinogênese/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Glioma/metabolismo , Humanos , Pessoa de Meia-Idade , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Polifenóis/química , Polifenóis/farmacologiaRESUMO
Genomic instability is a hallmark of chronic myeloid leukemia in chronic phase (CML-CP) resulting in BCR-ABL1 mutations encoding resistance to tyrosine kinase inhibitors (TKIs) and/or additional chromosomal aberrations leading to disease relapse and/or malignant progression. TKI-naive and TKI-treated leukemia stem cells (LSCs) and leukemia progenitor cells (LPCs) accumulate high levels of reactive oxygen species (ROS) and oxidative DNA damage. To determine the role of TKI-refractory LSCs in genomic instability, we used a murine model of CML-CP where ROS-induced oxidative DNA damage was elevated in LSCs, including quiescent LSCs, but not in LPCs. ROS-induced oxidative DNA damage in LSCs caused clinically relevant genomic instability in CML-CP-like mice, such as TKI-resistant BCR-ABL1 mutations (E255K, T315I, H396P), deletions in Ikzf1 and Trp53, and additions in Zfp423 and Idh1. Despite inhibition of BCR-ABL1 kinase, imatinib did not downregulate ROS and oxidative DNA damage in TKI-refractory LSCs to the levels detected in normal cells, and CML-CP-like mice treated with imatinib continued to accumulate clinically relevant genetic aberrations. Inhibition of class I p21-activated protein kinases by IPA3 downregulated ROS in TKI-naive and TKI-treated LSCs. Altogether, we postulate that genomic instability may originate in the most primitive TKI-refractory LSCs in TKI-naive and TKI-treated patients.
Assuntos
Antineoplásicos/uso terapêutico , Benzamidas/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Instabilidade Genômica , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Células-Tronco Neoplásicas/fisiologia , Piperazinas/uso terapêutico , Pirimidinas/uso terapêutico , Animais , Células Cultivadas , Dano ao DNA/efeitos dos fármacos , Instabilidade Genômica/efeitos dos fármacos , Instabilidade Genômica/fisiologia , Humanos , Mesilato de Imatinib , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Camundongos , Camundongos Transgênicos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Espécies Reativas de Oxigênio/metabolismoRESUMO
Homologous recombination repair (HRR) protects cells from the lethal effect of spontaneous and therapy-induced DNA double-stand breaks. HRR usually depends on BRCA1/2-RAD51, and RAD52-RAD51 serves as back-up. To target HRR in tumor cells, a phenomenon called "synthetic lethality" was applied, which relies on the addiction of cancer cells to a single DNA repair pathway, whereas normal cells operate 2 or more mechanisms. Using mutagenesis and a peptide aptamer approach, we pinpointed phenylalanine 79 in RAD52 DNA binding domain I (RAD52-phenylalanine 79 [F79]) as a valid target to induce synthetic lethality in BRCA1- and/or BRCA2-deficient leukemias and carcinomas without affecting normal cells and tissues. Targeting RAD52-F79 disrupts the RAD52-DNA interaction, resulting in the accumulation of toxic DNA double-stand breaks in malignant cells, but not in normal counterparts. In addition, abrogation of RAD52-DNA interaction enhanced the antileukemia effect of already-approved drugs. BRCA-deficient status predisposing to RAD52-dependent synthetic lethality could be predicted by genetic abnormalities such as oncogenes BCR-ABL1 and PML-RAR, mutations in BRCA1 and/or BRCA2 genes, and gene expression profiles identifying leukemias displaying low levels of BRCA1 and/or BRCA2. We believe this work may initiate a personalized therapeutic approach in numerous patients with tumors displaying encoded and functional BRCA deficiency.
Assuntos
Apoptose , Aptâmeros de Peptídeos/farmacologia , Perfilação da Expressão Gênica , Leucemia Linfocítica Crônica de Células B/patologia , Mutação/genética , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Recombinação Genética/genética , Animais , Aptâmeros de Peptídeos/química , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Western Blotting , Estudos de Casos e Controles , Diferenciação Celular , Proliferação de Células , Dano ao DNA/genética , Reparo do DNA/genética , Epigenômica , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/prevenção & controle , Camundongos , Camundongos SCID , Modelos Moleculares , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/prevenção & controle , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Fragmentos de Peptídeos , RNA Mensageiro/genética , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/antagonistas & inibidores , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Chronic myeloid leukemia (CML) cells express the active BCR-ABL1 protein, which has been targeted by imatinib in CML therapy, but resistance to this drug is an emerging problem. BCR-ABL1 induces endogenous oxidative stress promoting genomic instability and imatinib resistance. In the present work, we investigated the extent of oxidative stress, DNA damage, apoptosis and expression of apoptosis-related genes in BCR-ABL1 cells sensitive and resistant to imatinib. The resistance resulted either from the Y253H mutation in the BCR-ABL1 gene or incubation in increasing concentrations of imatinib (AR). UV irradiation at a dose rate of 0.12 J/(m2 · s) induced more DNA damage detected by the T4 pyrimidine dimers glycosylase and hOGG1, recognizing oxidative modifications to DNA bases in imatinib-resistant than -sensitive cells. The resistant cells displayed also higher susceptibility to UV-induced apoptosis. These cells had lower native mitochondrial membrane potential than imatinib-sensitive cells, but UV-irradiation reversed that relationship. We observed a significant lowering of the expression of the succinate dehydrogenase (SDHB) gene, encoding a component of the complex II of the mitochondrial respiratory chain, which is involved in apoptosis sensing. Although detailed mechanism of imatinib resistance in AR cells in unknown, we detected the presence of the Y253H mutation in a fraction of these cells. In conclusion, imatinib-resistant cells may display a different extent of genome instability than their imatinib-sensitive counterparts, which may follow their different reactions to both endogenous and exogenous DNA-damaging factors, including DNA repair and apoptosis.
Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos da radiação , Proteínas de Fusão bcr-abl/genética , Mesilato de Imatinib/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica/efeitos da radiação , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos da radiação , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Mutação Puntual , Células Tumorais Cultivadas , Raios UltravioletaRESUMO
Chronic myeloid leukemia in chronic phase (CML-CP) is induced by BCR-ABL1 oncogenic tyrosine kinase. Tyrosine kinase inhibitors eliminate the bulk of CML-CP cells, but fail to eradicate leukemia stem cells (LSCs) and leukemia progenitor cells (LPCs) displaying innate and acquired resistance, respectively. These cells may accumulate genomic instability, leading to disease relapse and/or malignant progression to a fatal blast phase. In the present study, we show that Rac2 GTPase alters mitochondrial membrane potential and electron flow through the mitochondrial respiratory chain complex III (MRC-cIII), thereby generating high levels of reactive oxygen species (ROS) in CML-CP LSCs and primitive LPCs. MRC-cIII-generated ROS promote oxidative DNA damage to trigger genomic instability, resulting in an accumulation of chromosomal aberrations and tyrosine kinase inhibitor-resistant BCR-ABL1 mutants. JAK2(V617F) and FLT3(ITD)-positive polycythemia vera cells and acute myeloid leukemia cells also produce ROS via MRC-cIII. In the present study, inhibition of Rac2 by genetic deletion or a small-molecule inhibitor and down-regulation of mitochondrial ROS by disruption of MRC-cIII, expression of mitochondria-targeted catalase, or addition of ROS-scavenging mitochondria-targeted peptide aptamer reduced genomic instability. We postulate that the Rac2-MRC-cIII pathway triggers ROS-mediated genomic instability in LSCs and primitive LPCs, which could be targeted to prevent the relapse and malignant progression of CML.
Assuntos
Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Instabilidade Genômica , Leucemia Mieloide de Fase Crônica/patologia , Proteínas de Neoplasias/fisiologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Proteínas rac de Ligação ao GTP/fisiologia , Animais , Catalase/metabolismo , Dano ao DNA , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Progressão da Doença , Transporte de Elétrons , Proteínas de Fusão bcr-abl/genética , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Potencial da Membrana Mitocondrial , Metacrilatos/farmacologia , Camundongos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Células-Tronco Neoplásicas/metabolismo , Policitemia Vera/metabolismo , Policitemia Vera/patologia , Proteínas Recombinantes de Fusão/antagonistas & inibidores , Proteínas Recombinantes de Fusão/fisiologia , Superóxido Dismutase/metabolismo , Tiazóis/farmacologia , Proteínas rac de Ligação ao GTP/antagonistas & inibidores , Proteínas rac de Ligação ao GTP/genética , Proteína RAC2 de Ligação ao GTPRESUMO
Nowadays, cancer and anticancer therapy are increasingly mentioned topics. Groups of researchers keep looking for a tool that will specifically and efficiently eliminate abnormal cells without any harm for the normal ones. Such method entails the reduction of therapy's side effects, thus also improving patient's recovery. Discovery of synthetic lethality has become a new hope to create effective, personalized therapy of cancer. Researchers noted that pairs of simultaneously mutated genes can lead to cell death, whereas each gene from that pair mutated individually does not result in cell lethality. Cancer cells accumulate numerous changes in their genetic material. By defining the pairs of genes interacting in cell pathways we are able to identify a potential anticancer therapy. It is believed that such a process has evolved to create cell resistance for a single gene mutation. Proper functioning of a pathway is not dependent on a single gene. Such a solution, however, also led to the evolution of multifactorial diseases such as cancer. Research techniques using iRNA, shRNA or small molecule libraries allow us to find genes that are connected in synthetic lethality interactions. Synthetic lethality may be applied not only as an anticancer therapy but also as a tool for identifying the functions of recently recognized genes. In addition, studying synthetic lethality broadens our understanding of the molecular mechanisms governing cancer cells, which should be helpful in designing highly effective personalized cancer therapies.
Assuntos
Antineoplásicos/uso terapêutico , Genes Letais , Neoplasias/genética , Neoplasias/terapia , RNA Interferente Pequeno/uso terapêutico , Bibliotecas de Moléculas Pequenas/uso terapêutico , Animais , Antineoplásicos/farmacologia , Sistemas de Liberação de Medicamentos , Descoberta de Drogas/tendências , Humanos , Mutação/efeitos dos fármacos , Prognóstico , RNA Interferente Pequeno/genéticaRESUMO
Leukemia, although most likely starts as a monoclonal genetic/epigenetic anomaly, is a polyclonal disease at manifestation. This polyclonal nature results from ongoing evolutionary changes in the genome/epigenome of leukemia cells to promote their survival and proliferation advantages. We discuss here how genetic and/or epigenetic aberrations alter intracellular microenvironment in individual leukemia clones and how extracellular microenvironment selects the best fitted clones. This dynamic polyclonal composition of leukemia makes designing an effective therapy a challenging task especially because individual leukemia clones often display substantial differences in response to treatment. Here, we discuss novel therapeutic approach employing single cell multiomics to identify and eradicate all individual clones in a patient.