Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Virol J ; 20(1): 287, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049810

RESUMO

BACKGROUND: Human papillomaviruses (HPVs) induce a subset of head and neck squamous cell carcinomas (HNSCC) and anogenital cancers, particularly cervical cancer (CC). The major viral proteins that contribute to tumorigenesis are the E6 and E7 oncoproteins, whose expression is usually enhanced after the integration of viral DNA into the host genome. Recently, an alternative tumorigenesis pathway has been suggested in approximately half of HNSCC and CC cases associated with HPV infection. This pathway is characterized by extrachromosomal HPV persistence and increased expression of the viral E2, E4, and E5 genes. The E6, E7, E5, and E2 proteins have been shown to modify the expression of numerous cellular immune-related genes. The antitumor immune response is a critical factor in the prognosis of HPV-driven cancers, and its characterization may contribute to the prediction and personalization of the increasingly used cancer immunotherapy. METHODS: We analyzed the immune characteristics of HPV-dependent tumors and their association with carcinogenesis types. Transcriptomic HNSCC and CC datasets from The Cancer Genome Atlas were used for this analysis. RESULTS: Clustering with immune-related genes resulted in two clusters of HPV16-positive squamous cell carcinomas in both tumor types: cluster 1 had higher activation of immune responses, including stimulation of the antigen processing and presentation pathway, which was associated with higher immune cell infiltration and better overall survival, and cluster 2 was characterized by keratinization. In CC, the distribution of tumor samples into clusters 1 and 2 did not depend on the level of E2/E5 expression, but in HNSCC, most E2/E5-high tumors were localized in cluster 1 and E2/E5-low tumors in cluster 2. Further analysis did not reveal any association between the E2/E5 levels and the expression of immune-related genes. CONCLUSIONS: Our results suggest that while the detection of immune responses associated with preserved expression of genes encoding components of antigen processing and presentation machinery in HPV-driven tumors may be markers of better prognosis and an important factor in therapy selection, the type of carcinogenesis does not seem to play a decisive role in the induction of antitumor immunity.


Assuntos
Neoplasias de Cabeça e Pescoço , Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Papillomavirus Humano , Carcinoma de Células Escamosas de Cabeça e Pescoço/complicações , Infecções por Papillomavirus/complicações , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Proteínas E7 de Papillomavirus/genética , Carcinogênese/genética , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/complicações
2.
Int J Mol Sci ; 21(5)2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155707

RESUMO

Programmed cell death protein 1 (PD-1)/PD-1 ligand 1 (PD-L1) blockade is a promising therapy for various cancer types, but most patients are still resistant. Therefore, a larger number of predictive biomarkers is necessary. In this study, we assessed whether a loss-of-function mutation of the interferon (IFN)-γ receptor 1 (IFNGR1) in tumor cells can interfere with anti-PD-L1 therapy. For this purpose, we used the mouse oncogenic TC-1 cell line expressing PD-L1 and major histocompatibility complex class I (MHC-I) molecules and its TC-1/A9 clone with reversibly downregulated PD-L1 and MHC-I expression. Using the CRISPR/Cas9 system, we generated cells with deactivated IFNGR1 (TC-1/dIfngr1 and TC-1/A9/dIfngr1). In tumors, IFNGR1 deactivation did not lead to PD-L1 or MHC-I reduction on tumor cells. From potential inducers, mainly IFN-α and IFN-ß enhanced PD-L1 and MHC-I expression on TC-1/dIfngr1 and TC-1/A9/dIfngr1 cells in vitro. Neutralization of the IFN-α/IFN-ß receptor confirmed the effect of these cytokines in vivo. Combined immunotherapy with PD-L1 blockade and DNA vaccination showed that IFNGR1 deactivation did not reduce tumor sensitivity to anti-PD-L1. Thus, the impairment of IFN-γ signaling may not be sufficient for PD-L1 and MHC-I reduction on tumor cells and resistance to PD-L1 blockade, and thus should not be used as a single predictive marker for anti-PD-1/PD-L1 cancer therapy.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Linhagem Celular Transformada/efeitos dos fármacos , Interferon gama/antagonistas & inibidores , Neoplasias Experimentais/tratamento farmacológico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Animais , Linhagem Celular Transformada/imunologia , Linhagem Celular Transformada/metabolismo , Linhagem Celular Transformada/patologia , Feminino , Imunoterapia , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Células Tumorais Cultivadas
3.
Molecules ; 24(6)2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30897743

RESUMO

Liquid crystals (LCs) are among the most prominent materials of the current information age, mainly due to their well-known application in liquid crystal displays (LCDs). Their unique electro-optical properties stem from their ability to form organised structures (mesophases) on the transition from solid state to isotropic liquid. Molecules of LCs in a mesophase still maintain the anisotropy of solid crystals, while simultaneously exhibiting the fluidity of liquids, which gives the system the ability to react immediately to external stimuli such as electric or magnetic fields, light, mechanical stress, pressure and, of course, temperature. For the proper function of LC-based devices, not only chemical, but also optical purity of materials is strongly desirable, since any impurity could be detrimental to the self-assembly of the molecules. Therefore, in this study we aimed to verify synthetic methods published in the literature, which are used nowadays to prepare chiral building blocks based on lactic acid, for their enantioselectivity. Moreover, we have focused on the development of an analytical chiral separation method for target liquid crystalline materials. Using a chiral polysaccharide-based column operated in liquid chromatography mode, we show that not all published methods of LC synthesis are enantioselective, which could lead to significant differences in the properties of the resulting materials. We show that high-performance liquid chromatography with UV detection and supercritical fluid chromatography with UV and mass spectrometry detection enable full control over the chemical and optical purity of the target LCs and the corresponding chiral building blocks. For the first time, we utilise supercritical fluid chromatography with mass detection for the direct chiral analysis of liquid crystalline materials and impurities formed during the synthesis.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Cromatografia com Fluido Supercrítico/métodos , Ácido Láctico/química , Cristais Líquidos , Espectrometria de Massas , Estereoisomerismo
4.
Int J Mol Sci ; 19(11)2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30469401

RESUMO

Combined immunotherapy constitutes a novel, advanced strategy in cancer treatment. In this study, we investigated immunotherapy in the mouse TC-1/A9 model of human papillomavirus type 16 (HPV16)-associated tumors characterized by major histocompatibility complex class I (MHC-I) downregulation. We found that the induction of a significant anti-tumor response required a combination of DNA vaccination with the administration of an adjuvant, either the synthetic oligodeoxynucleotide ODN1826, carrying immunostimulatory CpG motifs, or α-galactosylceramide (α-GalCer). The most profound anti-tumor effect was achieved when these adjuvants were applied in a mix with a one-week delay relative to DNA immunization. Combined immunotherapy induced tumor infiltration with various subsets of immune cells contributing to tumor regression, of which cluster of differentiation (CD) 8⁺ T cells were the predominant subpopulation. In contrast, the numbers of tumor-associated macrophages (TAMs) were not markedly increased after immunotherapy but in vivo and in vitro results showed that they could be repolarized to an anti-tumor M1 phenotype. A blockade of T cell immunoglobulin and mucin-domain containing-3 (Tim-3) immune checkpoint had a negligible effect on anti-tumor immunity and TAMs repolarization. Our results demonstrate a benefit of combined immunotherapy comprising the activation of both adaptive and innate immunity in the treatment of tumors with reduced MHC-I expression.


Assuntos
Antígenos de Histocompatibilidade Classe I/imunologia , Imunoterapia/métodos , Neoplasias Experimentais/terapia , Adjuvantes Imunológicos/uso terapêutico , Animais , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Regulação para Baixo , Feminino , Galactosilceramidas/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Oligodesoxirribonucleotídeos/imunologia
5.
Int J Mol Sci ; 18(6)2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28635644

RESUMO

The therapy of different advanced-stage malignancies with monoclonal antibodies blocking programmed cell death protein 1 (PD-1)/PD-1 ligand 1 (PD-L1) signaling has had an impressive long-lasting effect in a portion of patients, but in most cases, this therapy was not successful, or a secondary resistance developed. To enhance its efficacy in treated patients, predictive biomarkers are searched for and various combination treatments are intensively investigated. As the downregulation of major histocompatibility complex (MHC) class I molecules is one of the most frequent mechanisms of tumor escape from the host's immunity, it should be considered in PD-1/PD-L1 checkpoint inhibition. The potential for the use of a PD-1/PD-L1 blockade in the treatment of tumors with aberrant MHC class I expression is discussed, and some strategies of combination therapy are suggested.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antígeno B7-H1/antagonistas & inibidores , Regulação para Baixo , Antígenos de Histocompatibilidade Classe I/genética , Neoplasias/terapia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Animais , Antígeno B7-H1/imunologia , Genes MHC Classe I , Humanos , Imunoterapia/métodos , Neoplasias/genética , Neoplasias/imunologia , Receptor de Morte Celular Programada 1/imunologia
6.
J Cancer ; 15(5): 1138-1152, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38356711

RESUMO

Background: Overexpression of aspartate ß-hydroxylase (ASPH) in human tumors contributes to their progression by stimulating cell proliferation, migration, and invasion. Several signaling pathways affected by ASPH have been identified, but the high number of potential targets of ASPH hydroxylation suggests that additional mechanisms may be involved. This study was performed to reveal new targets of ASPH signaling. Methods: The effect of ASPH on the oncogenicity of three mouse tumor cell lines was tested using proliferation assays, transwell assays, and spheroid invasion assays after inhibition of ASPH with the small molecule inhibitor MO-I-1151. ASPH was also deactivated with the CRISPR/Cas9 system. A transcriptomic analysis was then performed with bulk RNA sequencing and differential gene expression was evaluated. Expression data were verified by quantitative PCR and immunoblotting. Results: Inhibition or abrogation of ASPH reduced proliferation of the cell lines and their migration and invasiveness. Among the genes with differential expression in more than one cell line, two members of the lymphocyte antigen 6 (Ly6) family, Ly6a and Ly6c1, were found. Their downregulation was confirmed at the protein level by immunoblotting, which also showed their reduction after ASPH inhibition in other mouse cell lines. Reduced production of the Ly6D and Ly6K proteins was shown after ASPH inhibition in human tumor cell lines. Conclusions: Since increased expression of Ly6 genes is associated with the development and progression of both mouse and human tumors, these results suggest a novel mechanism of ASPH oncogenicity and support the utility of ASPH as a target for cancer therapy.

7.
J Cancer ; 15(11): 3466-3480, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38817852

RESUMO

Background: Cancer development involves alterations in key cellular pathways, with aspartate ß-hydroxylase (ASPH) emerging as an important player in tumorigenesis. ASPH is upregulated in various cancer types, where it promotes cancer progression mainly by regulating the Notch1 and SRC pathways. Methods: This study explored the responses of various human cervical, pharyngeal, and breast tumor cell lines to second- and third-generation ASPH inhibitors (MO-I-1151 and MO-I-1182) using proliferation, migration, and invasion assays; western blotting; and cell cycle analysis. Results: ASPH inhibition significantly reduced cell proliferation, migration, and invasion and disrupted both the canonical and noncanonical Notch1 pathways. The noncanonical pathway was particularly mediated by AKT signaling. Cell cycle analysis revealed a marked reduction in cyclin D1 expression, further confirming the inhibitory effect of ASPH inhibitors on cell proliferation. Additional analysis revealed G0/G1 arrest and restricted progression into S phase, highlighting the regulatory impact of ASPH inhibitors on the cell cycle. Furthermore, ASPH inhibition induced distinctive alterations in nuclear morphology. The high heterogeneity in the responses of individual tumor cell lines to ASPH inhibitors, both quantitatively and qualitatively, underscores the complex network of mechanisms that are regulated by ASPH and influence the efficacy of ASPH inhibition. The effects of ASPH inhibitors on Notch1 pathway activity, cyclin D1 expression, and nuclear morphology contribute to the understanding of the multifaceted effects of these inhibitors on cancer cell behavior. Conclusion: This study not only suggests that ASPH inhibitors are effective against tumor cell progression, in part through the induction of cell cycle arrest, but also highlights the diverse and heterogeneous effects of these inhibitors on the behavior of tumor cells of different origins.

8.
Infect Agent Cancer ; 19(1): 26, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858774

RESUMO

BACKGROUND: A proportion of head and neck carcinomas (HNSCCs) are induced by high-risk human papillomaviruses (HPVs) and are associated with better patient outcomes compared to patients with HNSCCs related to tobacco and alcohol abuse. In the microenvironment of solid tumors, including HNSCCs, oxygen levels are often reduced, and a hypoxic state is induced. This can lead to a poor treatment response and a worse patient prognosis. One of the hypoxia-responsive genes is aspartate-ß-hydroxylase (ASPH), whose activity promotes the growth, invasiveness, and metastasis of many types of solid tumors. METHODS: In our study, HNSCC samples were analyzed for the expression of ASPH and selected endogenous hypoxia markers by real-time PCR and/or multiplex fluorescence immunohistochemistry. RESULTS: Except for the EPAS1 gene, which had higher mRNA expression in the HPV-negative group of HNSCC (p < 0.05), we found no other differences in the expression of the tested genes that were related to HPV status. On the contrary, a statistically significantly higher number of cells producing ASPH (p < 0.0001), HIF1A (p < 0.0001), GLUT1 (p < 0.0001), and MMP13 (p < 0.05) proteins were detected in the HPV-positive tumor group than in the HPV-negative sample group. All the evaluated markers, except for MMP9/13, were more abundant in the tumor parenchyma than in the tumor stroma. The Cox proportional hazard models showed that increased numbers of cells with GLUT1 and HIF1A protein expression were positive prognostic markers for overall and disease-specific survival in patients independent of HPV tumor status. CONCLUSION: The study examined HNSCC samples and found that elevated ASPH and hypoxia marker proteins, typically associated with poor prognosis, may actually indicate active HPV infection, the strongest prognostic factor in HNSCC patients. In cases where HPV status is uncertain, increased expression of HIF1A and GLUT1 can serve as positive prognostic factors.

9.
Infect Dis (Lond) ; : 1-19, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805304

RESUMO

BACKGROUND: SARS-CoV-2, which causes COVID-19, has killed more than 7 million people worldwide. Understanding the development of postinfectious and postvaccination immune responses is necessary for effective treatment and the introduction of appropriate antipandemic measures. OBJECTIVES: We analysed humoral and cell-mediated anti-SARS-CoV-2 immune responses to spike (S), nucleocapsid (N), membrane (M), and open reading frame (O) proteins in individuals collected up to 1.5 years after COVID-19 onset and evaluated immune memory. METHODS: Peripheral blood mononuclear cells and serum were collected from patients after COVID-19. Sampling was performed in two rounds: 3-6 months after infection and after another year. Most of the patients were vaccinated between samplings. SARS-CoV-2-seronegative donors served as controls. ELISpot assays were used to detect SARS-CoV-2-specific T and B cells using peptide pools (S, NMO) or recombinant proteins (rS, rN), respectively. A CEF peptide pool consisting of selected viral epitopes was applied to assess the antiviral T-cell response. SARS-CoV-2-specific antibodies were detected via ELISA and a surrogate virus neutralisation assay. RESULTS: We confirmed that SARS-CoV-2 infection induces the establishment of long-term memory IgG+ B cells and memory T cells. We also found that vaccination enhanced the levels of anti-S memory B and T cells. Multivariate comparison also revealed the benefit of repeated vaccination. Interestingly, the T-cell response to CEF was lower in patients than in controls. CONCLUSION: This study supports the importance of repeated vaccination for enhancing immunity and suggests a possible long-term perturbation of the overall antiviral immune response caused by SARS-CoV-2 infection.

10.
ACS Nano ; 16(8): 11833-11841, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35867644

RESUMO

Nanoparticles serving as a multifunctional and multiaddressable dopant to modify the properties of liquid crystalline matrices are developed by combining cobalt ferrite nanocrystals with organic ligands featuring a robust photosensitive unit and a source of chirality from the natural pool. These nanoparticles provide a stable nanocomposite when dispersed in achiral liquid crystals, giving rise to chiral supramolecular structures that can respond to UV-light illumination, and, at the same time, the formed nanocomposite possesses strong magnetic response. We report on a nanocomposite that shows three additional functionalities (chirality and responsiveness to UV light and magnetic field) upon the introduction of a single dopant into achiral liquid crystals.

11.
Cancer Immunol Immunother ; 60(12): 1655-68, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22033582

RESUMO

Treatment with imatinib mesylate and other tyrosine kinase inhibitors (TKI) revolutionized the therapy of chronic myeloid leukemia (CML). However, it alone does not cure this disease. Moreover, some patients develop resistance or adverse effects to this therapy. As successful treatment of a portion of CML patients by hematopoietic stem cell transplantation (HSCT) suggests the importance of immune mechanisms in the elimination of leukemic cells, including leukemia stem cells, TKI administration or HSCT might be combined with vaccination to cure CML patients. However, antigens implicated in the immune responses have not yet been sufficiently identified. Therefore, in this report, we compiled and characterized a list of 165 antigens associated with CML (CML-Ag165) and analyzed the expression of the corresponding genes in CML phases, subpopulations of leukemic cells, and CML-derived cell lines using available datasets from microarray transcriptional-profiling studies. From the CML-Ag165 list, we selected antigens most suitable for vaccine development and evaluated their appropriate characteristics.


Assuntos
Antígenos de Neoplasias/imunologia , Vacinas Anticâncer , Leucemia Mielogênica Crônica BCR-ABL Positiva/imunologia , Humanos , Análise de Sequência com Séries de Oligonucleotídeos
12.
Clin Dev Immunol ; 2011: 176759, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22028727

RESUMO

DNA vaccines showed great promise in preclinical models of infectious and malignant diseases, but their potency was insufficient in clinical trials and is needed to be improved. In this study, we tested systemic administration of two conventional adjuvants, synthetic oligodeoxynucleotide carrying immunostimulatory CpG motifs (CpG-ODN) and levamisole (LMS), and evaluated their effect on immune reactions induced by DNA vaccines delivered by a gene gun. DNA vaccination was directed either against the E7 oncoprotein of human papillomavirus type 16 or against the BCR-ABL1 oncoprotein characteristic for chronic myeloid leukemia. High doses of both adjuvants reduced activation of mouse splenic CD8(+) T lymphocytes, but the overall antitumor effect was enhanced in both tumor models. High-dose CpG-ODN exhibited a superior adjuvant effect in comparison with any combination of CpG-ODN with LMS. In summary, our results demonstrate the benefit of combined therapy with gene-gun-delivered antitumor DNA vaccines and systemic administration of CpG-ODN or LMS.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Vacinas Anticâncer , Levamisol/administração & dosagem , Neoplasias Experimentais/imunologia , Oligodesoxirribonucleotídeos/administração & dosagem , Animais , Biolística , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/imunologia , Proteínas de Fusão bcr-abl/metabolismo , Humanos , Imunidade/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/imunologia , Proteínas E7 de Papillomavirus/metabolismo , Vacinas de DNA
13.
Cancers (Basel) ; 13(8)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923750

RESUMO

Cluster of differentiation (CD) 80 is mainly expressed in immune cells but can also be found in several types of cancer cells. This molecule may either activate or inhibit immune reactions. Here, we determined the immunosuppressive role of CD80 in the tumor microenvironment by CRISPR/Cas9-mediated deactivation of the corresponding gene in the mouse oncogenic TC-1 cell line. The tumor cells with deactivated CD80 (TC-1/dCD80-1) were more immunogenic than parental cells and induced tumors that gained sensitivity to cytotoxic T-lymphocyte antigen 4 (CTLA-4) blockade, as compared with the TC-1 cells. In vivo depletion experiments showed that the deactivation of CD80 switched the pro-tumorigenic effect of macrophages observed in TC-1-induced tumors into an anti-tumorigenic effect in TC-1/dCD80-1 tumors and induced the pro-tumorigenic activity of CD4+ cells. Moreover, the frequency of lymphoid and myeloid cells and the CTLA-4 expression by T helper (Th)17 cells were increased in TC-1/dCD80-1- compared with that in the TC-1-induced tumors. CTLA-4 blockade downregulated the frequencies of most immune cell types and upregulated the frequency of M2 macrophages in the TC-1 tumors, while it increased the frequency of lymphoid cells in TC-1/dCD80-1-induced tumors. Furthermore, the anti-CTLA-4 therapy enhanced the frequency of CD8+ T cells as well as CD4+ T cells, especially for a Th1 subset. Regulatory T cells (Treg) formed the most abundant CD4+ T cell subset in untreated tumors. The anti-CTLA-4 treatment downregulated the frequency of Treg cells with limited immunosuppressive potential in the TC-1 tumors, whereas it enriched this type of Treg cells and decreased the Treg cells with high immunosuppressive potential in TC-1/dCD80-1-induced tumors. The immunosuppressive role of tumor-cell-expressed CD80 should be considered in research into biomarkers for the prediction of cancer patients' sensitivity to immune checkpoint inhibitors and for the development of a tumor-cell-specific CD80 blockade.

14.
Cancers (Basel) ; 13(12)2021 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-34205330

RESUMO

Tumor-associated macrophages (TAMs) plentifully infiltrate the tumor microenvironment (TME), but their role in anti-tumor immunity is controversial. Depending on the acquired polarization, they can either support tumor growth or participate in the elimination of neoplastic cells. In this study, we analyzed the TME by RNA-seq and flow cytometry and examined TAMs after ex vivo activation. Tumors with normal and either reversibly or irreversibly decreased expression of major histocompatibility complex class I (MHC-I) molecules were induced with TC-1, TC-1/A9, and TC-1/dB2m cells, respectively. We found that combined immunotherapy (IT), composed of DNA immunization and the CpG oligodeoxynucleotide (ODN) ODN1826, evoked immune reactions in the TME of TC-1- and TC-1/A9-induced tumors, while the TME of TC-1/dB2m tumors was mostly immunologically unresponsive. TAMs infiltrated both tumor types with MHC-I downregulation, but only TAMs from TC-1/A9 tumors acquired the M1 phenotype upon IT and were cytotoxic in in vitro assay. The anti-tumor effect of combined IT was markedly enhanced by a blockade of the colony-stimulating factor-1 receptor (CSF-1R), but only against TC-1/A9 tumors. Overall, TAMs from tumors with irreversible MHC-I downregulation were resistant to the stimulation of cytotoxic activity. These data suggest the dissimilarity of TAMs from different tumor types, which should be considered when utilizing TAMs in cancer IT.

15.
Diagnostics (Basel) ; 11(4)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807310

RESUMO

Head and neck squamous cell carcinomas (HNSCC) can be induced by smoking or alcohol consumption, but a growing part of cases relate to a persistent high-risk papillomavirus (HPV) infection. Viral etiology has a beneficial impact on the prognosis, which may be explained by a specific immune response. Tumor associated macrophages (TAMs) represent the main immune population of the tumor microenvironment with a controversial influence on the prognosis. In this study, the level, phenotype, and spatial distribution of TAMs were evaluated, and the expression of TAM-associated markers was compared in HPV positive (HPV+) and HPV negative (HPV-) tumors. Seventy-three formalin and embedded in paraffin (FFPE) tumor specimens were examined using multispectral immunohistochemistry for the detection of TAM subpopulations in the tumor parenchyma and stroma. Moreover, the mRNA expression of TAM markers was evaluated using RT-qPCR. Results were compared with respect to tumor etiology, and the prognostic significance was evaluated. In HPV- tumors, we observed more pro-tumorigenic M2 in the stroma and a non-macrophage arginase 1 (ARG1)-expressing population in both compartments. Moreover, higher mRNA expression of M2 markers-cluster of differentiation 163 (CD163), ARG1, and prostaglandin-endoperoxide synthase 2 (PTGS2)-was detected in HPV- patients, and of M1 marker nitric oxide synthase 2 (NOS2) in HPV+ group. The expression of ARG1 mRNA was revealed as a negative prognostic factor for overall survival of HNSCC patients.

16.
J Exp Clin Cancer Res ; 39(1): 163, 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811566

RESUMO

As metastasis is a major cause of death in cancer patients, new anti-metastatic strategies are needed to improve cancer therapy outcomes. Numerous pathways have been shown to contribute to migration and invasion of malignant tumors. Aspartate ß-hydroxylase (ASPH) is a key player in the malignant transformation of solid tumors by enhancing cell proliferation, migration, and invasion. ASPH also promotes tumor growth by stimulation of angiogenesis and immunosuppression. These effects are mainly achieved via the activation of Notch and SRC signaling pathways. ASPH expression is upregulated by growth factors and hypoxia in different human tumors and its inactivation may have broad clinical impact. Therefore, small molecule inhibitors of ASPH enzymatic activity have been developed and their anti-metastatic effect confirmed in preclinical mouse models. ASPH can also be targeted by monoclonal antibodies and has also been used as a tumor-associated antigen to induce both cluster of differentiation (CD) 8+ and CD4+ T cells in mice. The PAN-301-1 vaccine against ASPH has already been tested in a phase 1 clinical trial in patients with prostate cancer. In summary, ASPH is a promising target for anti-tumor and anti-metastatic therapy based on inactivation of catalytic activity and/or immunotherapy.


Assuntos
Antineoplásicos/uso terapêutico , Proteínas de Ligação ao Cálcio/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Proteínas de Membrana/antagonistas & inibidores , Oxigenases de Função Mista/antagonistas & inibidores , Terapia de Alvo Molecular , Proteínas Musculares/antagonistas & inibidores , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Prognóstico
17.
Oncol Rep ; 42(6): 2826-2835, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31638243

RESUMO

In the majority of human tumors, downregulation of major histocompatibility complex class I (MHC­I) expression contributes to the escape from the host immune system and resistance to immunotherapy. Relevant animal models are therefore needed to enhance the efficacy of cancer immunotherapy. As loss of ß­2 microglobulin expression results in irreversible downregulation of surface MHC­I molecules in various human tumors, the ß­2 microglobulin gene (B2m) was deactivated in a mouse oncogenic TC­1 cell line and a TC­1/dB2m cell line that was negative for surface MHC­I expression was derived. Following stimulation with interferon γ, MHC­I heavy chains, particularly the H­2Db molecules, were found to be expressed at low levels on the cell surface, but without ß­2 microglobulin. B2m deactivation in TC­1/dB2m cells led to reduced proliferation and tumor growth. These cells were insensitive to DNA vaccination and only weakly responsive to combined immunotherapy with a DNA vaccine and the ODN1826 adjuvant. In vivo depletion demonstrated that NK1.1+ cells were involved in both reduced tumor growth and an antitumor effect of immunotherapy. The number of immune cells infiltrating TC­1/dB2m­induced tumors was comparable with that in tumors developing from TC­1/A9 cells characterized by reversible MHC­I downregulation. However, the composition of the cell infiltrate was different and, most importantly, infiltration with immune cells was not increased in TC­1/dB2m tumors after immunotherapy. Therefore, the TC­1/dB2m cell line represents a clinically relevant tumor model that may be used for enhancement of cancer immunotherapy.


Assuntos
Linhagem Celular Tumoral/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Neoplasias/imunologia , Animais , Regulação Neoplásica da Expressão Gênica/genética , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Imunoterapia , Interferon gama/imunologia , Camundongos , Neoplasias/genética , Neoplasias/patologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/patologia , Microglobulina beta-2/genética , Microglobulina beta-2/imunologia
18.
J Immunol Res ; 2019: 6705949, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30886872

RESUMO

Monitoring immune responses to solid cancers may be a better prognostic tool than conventional staging criteria, and it can also serve as an important criterion for the selection of individualized therapy. Multiparametric phenotyping by mass cytometry extended possibilities for immunoprofiling. However, careful optimization of each step of such method is necessary for obtaining reliable results. Also, with respect to procedure length and costs, sample preparation, staining, and storage should be optimized. Here, we designed a panel of 31 antibodies which allows for identification of several subpopulations of lymphoid and myeloid cells in a solid tumor and peripheral blood simultaneously. For sample preparation, disaggregation of tumor tissue with two different collagenases combined with DNase I was compared, and removal of dead or tumor cells by magnetic separation was evaluated. Two possible procedures of barcoding for single-tube staining of several samples were examined. While the palladium-based barcoding affected the stability of several antigens, the staining with two differently labeled CD45 antibodies was suitable for cells isolated from a patient's blood and tumor. The storage of samples in the intercalation solution for up to two weeks did not influence results of the analysis, which allowed the measurement of samples collected within this interval on the same day. This procedure optimized on samples from patients with head and neck squamous cell carcinoma enabled identification of various immune cells including rare subpopulations.


Assuntos
Imunofenotipagem/métodos , Linfócitos/fisiologia , Células Mieloides/fisiologia , Neoplasias/imunologia , Anticorpos Monoclonais/metabolismo , Separação Celular , Colagenases/metabolismo , Código de Barras de DNA Taxonômico , Desoxirribonuclease I/metabolismo , Citometria de Fluxo , Humanos , Antígenos Comuns de Leucócito/imunologia , Neoplasias/diagnóstico , Paládio/metabolismo , Análise de Célula Única
19.
Int J Oncol ; 33(1): 93-101, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18575754

RESUMO

Therapeutic DNA vaccines against oncogenic infection with human papillomavirus type 16 (HPV16) are mostly targeted against viral oncoproteins E7 and E6. To adapt the E7 oncoprotein for DNA immunization, we have previously reduced its oncogenicity by modification of the Rb-binding site and enhanced immunogenicity of the modified E7GGG gene by the fusion with the 5'-terminus of the gene encoding E. coli beta-glucuronidase (GUS). In this study, we attempted to improve immunogenicity of the GUS-based anti-E7 vaccines by increasing the steady-state level of fusion proteins. We fused deletion mutants of E7GGG and codon-optimized E7GGG with the 5'-terminus of GUS and unaltered E7GGG with the 3'-terminus of GUS. Furthermore, we mutated the initiation codon of the GUS gene in the E7GGG.GUS construct, as GUS alone was produced from this fusion gene. We found that only the fusion of E7GGG with the 3'-terminus of GUS (GUS.E7GGG) and deletion mutants of E7GGG with the 5'-terminus of GUS increased the steady-state level of fusion proteins in transfected human 293T cells. Analysis of immune reactions induced in mice by vaccination via a gene gun showed that the increased steady-state level of fusion proteins resulted in augmented production of E7-specific antibodies, but did not enhance cell-mediated anti-tumor immunity. Finally, we joined the signal sequence of the adenoviral E3 protein with GUS.E7GGG. This modification led to the predominant localization of the fusion protein in the endoplasmic reticulum and enhancement of CD8+ T-cell response, while antibody production was reduced. In conclusion, we found modifications of the E7GGG.GUS fusion gene that augmented either humoral or cell-mediated immune responses.


Assuntos
Anticorpos Antivirais/sangue , Glucuronidase/genética , Papillomavirus Humano 16/imunologia , Proteínas Oncogênicas Virais/imunologia , Vacinas contra Papillomavirus/imunologia , Linfócitos T Citotóxicos/imunologia , Vacinas de DNA/imunologia , Animais , Feminino , Glucuronidase/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Proteínas Oncogênicas Virais/genética , Proteínas E7 de Papillomavirus , Proteínas Recombinantes de Fusão/imunologia
20.
Oncol Rep ; 37(1): 547-554, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27840977

RESUMO

As the extent of centrosome abnormalities in chronic myeloid leukemia (CML) correlates with disease stage and karyotype alterations, abnormal expression of genes encoding centrosomal proteins may be an early prognostic marker of disease progression. In the present study, we showed that in comparison with healthy controls, the expression of four centrosomal genes (AURKA, HMMR, PLK1 and ESPL1) in the peripheral blood of CML patients was significantly enhanced at diagnosis and decreased to the basal level in most patients treated with imatinib mesylate for three months. In the remaining patients (17%), this decrease was delayed and was associated with worse overall survival. The detection of antibodies in sera showed that patients with higher overall antibody production had superior outcomes in terms of achieving major molecular response and failure-free survival. These data suggest that the dynamics of the response of centrosomal genes should be considered as a risk factor and immunity against centrosomal proteins may contribute to treatment response.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/imunologia , Imunidade Humoral , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/imunologia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Centrossomo/imunologia , Centrossomo/metabolismo , Feminino , Regulação Leucêmica da Expressão Gênica , Humanos , Imunidade Humoral/genética , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA