Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Org Biomol Chem ; 22(18): 3652-3667, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38647161

RESUMO

Molecular probes and indicators are broadly employed for pH measurements in bulk media and at interfaces. The underlying physical principle of pH measurements of most of these probes is based on a change in the electronic structure that, for example, results in a shift of the emission peak of the fluorescence probes, changes in NMR chemical shifts due to the affected electronic shielding, or magnetic parameters of pH-sensitive nitroxides as measured by EPR. Here we explore another concept for measuring local protonation state of molecular tags based on changes in rotational dynamics of electron spin-bearing moieties that are readily detected by conventional continuous wave X-band EPR. Such changes are especially pronounced at biological interfaces, such as lipid bilayer membranes, due to the probe interactions with adjacent charges and polarizable dipoles. The concept was demonstrated by synthesizing a series of pH-sensitive nitroxides and spin-labelled phospholipids. EPR spectra of these newly synthesized nitroxides exhibit relatively small - about 0.5 G - changes in isotropic nitrogen hyperfine coupling constant upon reversible protonation. However, spin-labelled phospholipids incorporated into lipid bilayers demonstrated almost 6-fold change in rotational correlation time upon protonation, readily allowing for pKa determination from large changes in EPR spectra. The demonstrated concept of EPR-based pH measurements leads to a broader range of potential nitroxide structures that can serve as molecular pH sensors at the desired pH range and, thus, facilitates further development of spin-labelling EPR methods to study electrostatic phenomena at chemical and biological interfaces.

2.
J Am Chem Soc ; 140(45): 15190-15193, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30376630

RESUMO

Installation of olefins into molecules is a key transformation in organic synthesis. The recently discovered decarboxylation-assisted olefination in the biosynthesis of rhabduscin by a mononuclear non-heme iron enzyme ( P.IsnB) represents a novel approach in olefin construction. This method is commonly employed in natural product biosynthesis. Herein, we demonstrate that a ferryl intermediate is used for C-H activation at the benzylic position of the substrate. We further establish that P.IsnB reactivity can be switched from olefination to hydroxylation using electron-withdrawing groups appended on the phenyl moiety of the analogues. These experimental observations imply that a pathway involving an initial C-H activation followed by a benzylic carbocation species or by electron transfer coupled ß-scission is likely utilized to complete C═C bond formation.


Assuntos
Alcenos/metabolismo , Ferroproteínas não Heme/metabolismo , Alcenos/química , Biocatálise , Descarboxilação , Estrutura Molecular
3.
Nature ; 488(7409): 61-4, 2012 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-22859201

RESUMO

A Luttinger liquid is an interacting one-dimensional electronic system, quite distinct from the 'conventional' Fermi liquids formed by interacting electrons in two and three dimensions. Some of the most striking properties of Luttinger liquids are revealed in the process of electron tunnelling. For example, as a function of the applied bias voltage or temperature, the tunnelling current exhibits a non-trivial power-law suppression. (There is no such suppression in a conventional Fermi liquid.) Here, using a carbon nanotube connected to resistive leads, we create a system that emulates tunnelling in a Luttinger liquid, by controlling the interaction of the tunnelling electron with its environment. We further replace a single tunnelling barrier with a double-barrier, resonant-level structure and investigate resonant tunnelling between Luttinger liquids. At low temperatures, we observe perfect transparency of the resonant level embedded in the interacting environment, and the width of the resonance tends to zero. We argue that this behaviour results from many-body physics of interacting electrons, and signals the presence of a quantum phase transition. Given that many parameters, including the interaction strength, can be precisely controlled in our samples, this is an attractive model system for studying quantum critical phenomena in general, with wide-reaching implications for understanding quantum phase transitions in more complex systems, such as cold atoms and strongly correlated bulk materials.

4.
Biophys J ; 108(1): 5-9, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25564843

RESUMO

Anodic aluminum oxide substrates with macroscopically aligned homogeneous nanopores of 80 nm in diameter enable two-dimensional, solid-state nuclear magnetic resonance studies of lipid-induced conformational changes of uniformly (15)N-labeled Pf1 coat protein in native-like bilayers. The Pf1 helix tilt angles in bilayers composed of two different lipids are not entirely governed by the membrane thickness but could be rationalized by hydrophobic interactions of lysines at the bilayer interface. The anodic aluminum oxide alignment method is applicable to a broader repertoire of lipids versus bicelle bilayer mimetics currently employed in solid-state nuclear magnetic resonance of oriented samples, thus allowing for elucidation of the role played by lipids in shaping membrane proteins.


Assuntos
Óxido de Alumínio/química , Proteínas de Membrana/química , Nanotubos/química , Ressonância Magnética Nuclear Biomolecular/métodos , Dimiristoilfosfatidilcolina/química , Estudos de Viabilidade , Análise dos Mínimos Quadrados , Bicamadas Lipídicas/química , Microscopia Eletrônica de Varredura , Isótopos de Nitrogênio , Fosfatidilcolinas/química , Fosfatidilgliceróis/química , Isótopos de Fósforo , Estrutura Secundária de Proteína
5.
J Biol Chem ; 288(38): 26987-27001, 2013 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-23897835

RESUMO

In Escherichia coli and the majority of ß- and γ-proteobacteria, the fourth step of lipid A biosynthesis, i.e. cleavage of the pyrophosphate group of UDP-2,3-diacyl-GlcN, is carried out by LpxH. LpxH has been previously suggested to contain signature motifs found in the calcineurin-like phosphoesterase (CLP) family of metalloenzymes; however, it cleaves a pyrophosphate bond instead of a phosphoester bond, and its substrate contains nucleoside diphosphate moieties more common to the Nudix family rather than to the CLP family. Furthermore, the extent of biochemical data fails to demonstrate a significant level of metal activation in enzymatic assays, which is inconsistent with the behavior of a metalloenzyme. Here, we report cloning, purification, and detailed enzymatic characterization of Haemophilus influenzae LpxH (HiLpxH). HiLpxH shows over 600-fold stimulation of hydrolase activity in the presence of Mn(2+). EPR studies reveal the presence of a Mn(2+) cluster in LpxH. Finally, point mutants of residues in the conserved metal-binding motifs of the CLP family greatly inhibit HiLpxH activity, highlighting their importance in enzyme function. Contrary to previous analyses of LpxH, we find HiLpxH does not obey surface dilution kinetics. Overall, our work unambiguously establishes LpxH as a calcineurin-like phosphoesterase containing a Mn(2+) cluster coordinated by conserved residues. These results set the scene for further structural investigation of the enzyme and for design of novel antibiotics targeting lipid A biosynthesis.


Assuntos
Proteínas de Bactérias/química , Haemophilus influenzae/enzimologia , Lipídeo A/biossíntese , Manganês/química , Pirofosfatases/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Catálise , Clonagem Molecular , Expressão Gênica , Haemophilus influenzae/genética , Lipídeo A/química , Lipídeo A/metabolismo , Manganês/metabolismo , Pirofosfatases/genética , Pirofosfatases/isolamento & purificação , Pirofosfatases/metabolismo
6.
J Magn Reson ; 362: 107677, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631171

RESUMO

One of the most essential prerequisites for the development of pulse Dynamic Nuclear Polarization (DNP) is the ability to generate high-power coherent mm-wave pulses at the electron precession frequencies corresponding to the magnetic fields of modern high-resolution NMR spectrometers. As a major step towards achieving this goal, an Extended Interaction Klystron (EIK) pulse amplifier custom-built by the Communications and Power Industries, Inc. and producing up to 140 W at 197.8 GHz, was integrated with in-house built NMR/DNP/EPR spectrometer operating at 7 T magnetic field. The spectrometer employs a Thomas Keating, Ltd. quasioptical bridge to direct mm-waves into a homebuilt DNP probe incorporating photonic bandgap (PBG) resonators to further boost electronic B1e fields. Three-pulse electron spin echo nutation experiments were employed to characterize the B1e fields at the sample by operating the homodyne 198 GHz bridge in an induction mode. Room-temperature experiments with a single-crystal high-pressure, high-temperature (HPHT) diamond and a polystyrene film doped with BDPA radical yielded < 9 ns π/2 pulses at ca. 50 W specified EIK output at the corresponding resonance frequencies and the PBG resonator quality factor of Q≈300. DNP experiments carried out in a "gated" mode by supplying 20 µs mm-wave pulses every 1 ms yielded 13C solid-effect DNP with gains up to 20 for the polystyrene-BDPA sample at natural 13C abundance. For a single-crystal HPHT diamond, the gated DNP mode yielded almost the same 13C enhancement as a low-power continuous wave (CW) mode at 0.4 W, whereas no DNP effect was observed for the BDPA/polystyrene sample in the latter case. To illustrate the versatility of our upgraded DNP spectrometer, room-temperature Overhauser DNP enhancements of 7-14 for 31P NMR signal were demonstrated using a liquid droplet of 1 M tri-phenyl phosphine co-dissolved with 100 mM of BDPA in toluene­d8.

7.
Adv Sci (Weinh) ; : e2400230, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816934

RESUMO

Exposure of the eyes to blue light can induce the overproduction of reactive oxygen species (ROS) in the retina and retinal pigment epithelium (RPE) cells, potentially leading to pathological damage of age-related macular degeneration (AMD). While the melanin in RPE cells absorbs blue light and prevents ROS accumulation, the loss and dysfunction of RPE melanin due to age-related changes may contribute to photooxidation toxicity. Herein, a novel approach utilizing a polydopamine-replenishing strategy via a single-dose intravitreal (IVT) injection is presented to protect retinal cells against blue light-induced phototoxicity. To investigate the effects of overexposure to blue light on retinal cells, a blue light exposure Nrf2-deficient mouse model is created, which is susceptible to light-induced retinal lesions. After blue light irradiation, retina degeneration and an overproduction of ROS are observed. The polydopamine-replenishing strategy demonstrated effectiveness in maintaining retinal structural integrity and preventing retina degeneration by reducing ROS production in retinal cells and limiting the phototoxicity of blue light exposure. These findings highlight the potential of polydopamine as a simple and effective replenishment for providing photoprotection against high-energy blue light exposure.

8.
Vaccines (Basel) ; 12(4)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38675805

RESUMO

Chlamydia trachomatis (Ct) infections are the most common sexually transmitted infection (STI). Despite effective antibiotics for Ct, undetected infections or delayed treatment can lead to infertility, ectopic pregnancies, and chronic pelvic pain. Besides humans, chlamydia poses similar health challenges in animals such as C. suis (Cs) in pigs. Based on the similarities between humans and pigs, as well as their chlamydia species, we use pigs as a large biomedical animal model for chlamydia research. In this study, we used the pig model to develop a vaccine candidate against Ct. The vaccine candidate consists of TriAdj-adjuvanted chlamydial-protease-like activity factor (CPAF) protein. We tested two weekly administration options-twice intranasal (IN) followed by twice intramuscular (IM) and twice IM followed by twice IN. We assessed the humoral immune response in both serum using CPAF-specific IgG (including antibody avidity determination) and also in cervical and rectal swabs using CPAF-specific IgG and IgA ELISAs. The systemic T-cell response was analyzed following in vitro CPAF restimulation via IFN-γ and IL-17 ELISpots, as well as intracellular cytokine staining flow cytometry. Our data demonstrate that while the IN/IM vaccination mainly led to non-significant systemic immune responses, the vaccine candidate is highly immunogenic if administered IM/IN. This vaccination strategy induced high serum anti-CPAF IgG levels with strong avidity, as well as high IgA and IgG levels in vaginal and rectal swabs and in uterine horn flushes. In addition, this vaccination strategy prompted a pronounced cellular immune response. Besides inducing IL-17 production, the vaccine candidate induced a strong IFN-γ response with CD4 T cells. In IM/IN-vaccinated pigs, these cells also significantly downregulated their CCR7 expression, a sign of differentiation into peripheral-tissue-homing effector/memory cells. Conclusively, this study demonstrates the strong immunogenicity of the IM/IN-administered TriAdj-adjuvanted Ct CPAF vaccine candidate. Future studies will test the vaccine efficacy of this promising Ct vaccine candidate. In addition, this project demonstrates the suitability of the Cs pre-exposed outbred pig model for Ct vaccine development. Thereby, we aim to open the bottleneck of large animal models to facilitate the progression of Ct vaccine candidates into clinical trials.

9.
Exposome ; 4(1): osae001, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38344436

RESUMO

This paper explores the exposome concept and its role in elucidating the interplay between environmental exposures and human health. We introduce two key concepts critical for exposomics research. Firstly, we discuss the joint impact of genetics and environment on phenotypes, emphasizing the variance attributable to shared and nonshared environmental factors, underscoring the complexity of quantifying the exposome's influence on health outcomes. Secondly, we introduce the importance of advanced data-driven methods in large cohort studies for exposomic measurements. Here, we introduce the exposome-wide association study (ExWAS), an approach designed for systematic discovery of relationships between phenotypes and various exposures, identifying significant associations while controlling for multiple comparisons. We advocate for the standardized use of the term "exposome-wide association study, ExWAS," to facilitate clear communication and literature retrieval in this field. The paper aims to guide future health researchers in understanding and evaluating exposomic studies. Our discussion extends to emerging topics, such as FAIR Data Principles, biobanked healthcare datasets, and the functional exposome, outlining the future directions in exposomic research. This abstract provides a succinct overview of our comprehensive approach to understanding the complex dynamics of the exposome and its significant implications for human health.

10.
Biophys J ; 104(1): 106-16, 2013 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-23332063

RESUMO

Many biophysical processes such as insertion of proteins into membranes and membrane fusion are governed by bilayer electrostatic potential. At the time of this writing, the arsenal of biophysical methods for such measurements is limited to a few techniques. Here we describe a, to our knowledge, new spin-probe electron paramagnetic resonance (EPR) approach for assessing the electrostatic surface potential of lipid bilayers that is based on a recently synthesized EPR probe (IMTSL-PTE) containing a reversibly ionizable nitroxide tag attached to the lipids' polar headgroup. EPR spectra of the probe directly report on its ionization state and, therefore, on electrostatic potential through changes in nitroxide magnetic parameters and the degree of rotational averaging. Further, the lipid nature of the probe provides its full integration into lipid bilayers. Tethering the nitroxide moiety directly to the lipid polar headgroup defines the location of the measured potential with respect to the lipid bilayer interface. Electrostatic surface potentials measured by EPR of IMTSL-PTE show a remarkable (within ±2%) agreement with the Gouy-Chapman theory for anionic DMPG bilayers in fluid (48°C) phase at low electrolyte concentration (50 mM) and in gel (17°C) phase at 150-mM electrolyte concentration. This agreement begins to diminish for DMPG vesicles in gel phase (17°C) upon varying electrolyte concentration and fluid phase bilayers formed from DMPG/DMPC and POPG/POPC mixtures. Possible reasons for such deviations, as well as the proper choice of an electrostatically neutral reference interface, have been discussed. Described EPR method is expected to be fully applicable to more-complex models of cellular membranes.


Assuntos
Bicamadas Lipídicas/química , Lipídeos/química , Marcadores de Spin , Eletricidade Estática , Dimiristoilfosfatidilcolina/química , Eletrólitos/química , Espectroscopia de Ressonância de Spin Eletrônica , Concentração de Íons de Hidrogênio , Sondas Moleculares/química , Óxidos de Nitrogênio/química , Fosfatidilgliceróis/química , Propriedades de Superfície , Lipossomas Unilamelares/química
11.
Artigo em Inglês | MEDLINE | ID: mdl-37387792

RESUMO

High-temperature annealing is a promising but still mainly unexplored method for enhancing spin properties of negatively charged nitrogen-vacancy (NV) centers in diamond particles. After high-energy irradiation, the formation of NV centers in diamond particles is typically accomplished via annealing at temperatures in the range of 800-900 °C for 1-2 h to promote vacancy diffusion. Here, we investigate the effects of conventional annealing (900 °C for 2 h) against annealing at a much higher temperature of 1600 °C for the same annealing duration for particles ranging in size from 100 nm to 15 µm using electron paramagnetic resonance and optical characterization. At this high temperature, the vacancy-assisted diffusion of nitrogen can occur. Previously, the annealing of diamond particles at this temperature was performed over short time scales because of concerns of particle graphitization. Our results demonstrate that particles that survive this prolonged 1600 °C annealing show increased NV T1 and T2 electron spin relaxation times in 1 and 15 µm particles, due to the removal of fast relaxing spins. Additionally, this high-temperature annealing also boosts magnetically induced fluorescence contrast of NV centers for particle sizes ranging from 100 nm to 15 µm. At the same time, the content of NV centers is decreased fewfold and reaches a level of <0.5 ppm. The results provide guidance for future studies and the optimization of high-temperature annealing of fluorescent diamond particles for applications relying on the spin properties of NV centers in the host crystals.

12.
J Am Chem Soc ; 133(1): 35-41, 2011 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-21141957

RESUMO

Emerging applications of nanosized iron oxides in nanotechnology introduce vast quantities of nanomaterials into the human environment, thus raising some concerns. Here we report that the surface of γ-Fe(2)O(3) nanoparticles 20-40 nm in diameter mediates production of highly reactive hydroxyl radicals (OH(•)) under conditions of the biologically relevant superoxide-driven Fenton reaction. By conducting comparative spin-trapping EPR experiments, we show that the free radical production is attributed primarily to the catalytic reactions at the nanoparticles' surface rather than being caused by the dissolved metal ions released by the nanoparticles as previously thought. Moreover, the catalytic centers on the nanoparticle surface were found to be at least 50-fold more effective in OH(•) radical production than the dissolved Fe(3+) ions. Conventional surface modification methods such as passivating the nanoparticles' surface with up to 935 molecules of oleate or up to 18 molecules of bovine serum albumin per iron oxide core were found to be rather ineffective in suppressing production of the hydroxyl radicals. The experimental protocols developed in this study could be used as one of the approaches for developing analytical assays for assessing the free radical generating activity of a variety of nanomaterials that is potentially related to their biotoxicity.


Assuntos
Compostos Férricos/química , Compostos Férricos/toxicidade , Radical Hidroxila/química , Nanopartículas/química , Nanopartículas/toxicidade , Animais , Catálise , Bovinos , Sobrevivência Celular/efeitos dos fármacos , Espectroscopia de Ressonância de Spin Eletrônica , Células HeLa , Humanos , Peróxido de Hidrogênio/química , Ferro/química , Ácido Oleico/química , Soroalbumina Bovina/química , Propriedades de Superfície
13.
Inorg Chem ; 50(20): 10310-8, 2011 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-21905756

RESUMO

Single crystals of a new iron-containing oxide, Ba(4)KFe(3)O(9), were grown from a hydroxide melt, and the crystal structure was determined by single-crystal X-ray diffraction. This ferrite represents the first complex oxide containing isolated 6-membered rings of corner-sharing FeO(4) tetrahedra. Mössbauer measurements are indicative of two tetrahedral high-spin Fe(3+) coordination environments. The observed magnetic moment (~3.9 µ(B)) at 400 K is significantly lower than the calculated spin-only (~5.2 µ(B)) value, indicating the presence of strong antiferromagnetic interactions in the oxide. Our density functional theory calculations confirm the strong antiferromagnetic coupling between adjacent Fe(3+) sites within each 6-membered ring and estimate the nearest-neighbor spin-exchange integral as ~200 K; next-nearest-neighbor interactions are shown to be negligible. The lower than expected effective magnetic moment for Ba(4)KFe(3)O(9) calculated from χT data is explained as resulting from the occupation of lower-lying magnetic states in which more spins are paired. X-band (9.5 GHz) electron paramagnetic resonance (EPR) spectra of a powder sample consist of a single line at g ~ 2.01 that is characteristic of Fe(3+) ions in a tetrahedral environment, thus confirming the Mössbauer results. Further analysis of the EPR line shape reveals the presence of two types of Fe(6) magnetic species with an intensity ratio of ~1:9. Both species have Lorentzian line shapes and indistinguishable g factors but differ in their peak-to-peak line widths (δB(pp)). The line-width ratio δB(pp)(major)/δB(pp)(minor) ~ 3.6 correlates well with the ratio of the Weiss constants, θ(minor)/θ(major) ~ 4.


Assuntos
Compostos de Boro/química , Compostos Férricos/química , Compostos de Ferro/química , Óxidos/química , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Temperatura Alta , Fenômenos Magnéticos , Modelos Moleculares , Conformação Molecular , Teoria Quântica , Espectroscopia de Mossbauer
14.
J Magn Reson ; 323: 106893, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33418455

RESUMO

Polarization of nuclear spins via Dynamic Nuclear Polarization (DNP) relies on generating sufficiently high mm-wave B1e fields over the sample, which could be achieved by developing suitable resonance structures. Recently, we have introduced one-dimensional photonic band gap (1D PBG) resonators for DNP and reported on prototype devices operating at ca. 200 GHz electron resonance frequency. Here we systematically compare the performance of five (5) PBG resonators constructed from various alternating dielectric layers by monitoring the DNP effect on natural-abundance 13C spins in synthetic diamond microparticles embedded into a commercial polyester-based lapping film of just 3 mil (76 µm) thickness. An odd-numbered configuration of dielectric layers for 1D PBG resonator was introduced to achieve further B1e enhancements. Among the PBG configurations tested, combinations of high-ε perovskite LiTaO3 together with AlN as well as AlN with optical quartz wafers have resulted in ca. 40 to over 50- fold gains in the average mm-wave power over the sample vs. the mirror-only configuration. The results are rationalized in terms of the electromagnetic energy distribution inside the resonators obtained analytically and from COMSOL simulations. It was found that average of B1e2 over the sample strongly depends on the arrangement of the dielectric layers that are the closest to the sample, which favors odd-numbered PBG resonator configurations for their use in DNP.

15.
J Phys Chem B ; 125(1): 36-48, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33356277

RESUMO

The primary electron donor P700 of the photosystem I (PSI) is a heterodimer consisting of two chlorophyll molecules. A series of electron-transfer events immediately following the initial light excitation leads to a stabilization of the positive charge by its cation radical form, P700+•. The electronic structure of P700+• and, in particular, its asymmetry with respect to the two chlorophyll monomers is of fundamental interest and is not fully understood up to this date. Here, we apply multifrequency X- (9 GHz) and Q-band (35 GHz) hyperfine sublevel correlation (HYSCORE) spectroscopy to investigate the electron spin density distribution in the cation radical P700+• of PSI from a thermophilic cyanobacterium Thermosynechococcus elongatus. Six 14N and two 1H distinct nuclei have been resolved in the HYSCORE spectra and parameters of the corresponding nuclear hyperfine and quadrupolar hyperfine interactions were obtained by combining the analysis of HYSCORE spectral features with direct numerical simulations. Based on a close similarity of the nuclear quadrupole tensor parameters, all of the resolved 14N nuclei were assigned to six out of total eight available pyrrole ring nitrogen atoms (i.e., four in each of the chlorophylls), providing direct evidence of spin density delocalization over the both monomers in the heterodimer. Using the obtained experimental values of the 14N electron-nuclear hyperfine interaction parameters, the upper limit of the electron spin density asymmetry parameter is estimated as RA/Bupper = 7.7 ± 0.5, while a tentative assignment of 14N observed in the HYSCORE spectra yields RB/A = 3.1 ± 0.5.


Assuntos
Elétrons , Complexo de Proteína do Fotossistema I , Clorofila , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons , Eletrônica
16.
Chem Phys Lett ; 489(1-3): 121-126, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24932024

RESUMO

We used Surface Enhanced Raman Spectroscopy (SERS) to detect binding events between streptavidin and biotinylated lipid bilayers. The binding events took place at the surface between microfluidic channels and anodized aluminum oxide (AAO) with the latter serving as substrates. The bilayers were incorporated in the substrate pores. It was revealed that non-bound molecules were easily washed away and that large suspended cells (Salmonella enterica) are less likely to interfere with the monitoring process: when focusing to the lower surface of the channel, one may resolve mostly the bound molecules.

17.
J Phys Chem B ; 113(11): 3453-60, 2009 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-19235992

RESUMO

The synthesis and characterization of spin-labeled phospholipids (SLP)--derivatives of 1,2-dipalmitoyl-sn-glycero-3-phosphothioethanol (PTE)--with pH-reporting nitroxides that are covalently attached to the lipid's polar headgroup are being reported. Two lipids were synthesized by reactions of PTE with thiol-specific, pH-sensitive methanethiosulfonate spin labels methanethiosulfonic acid S-(1-oxyl-2,2,3,5,5-pentamethylimidazolidin-4-ylmethyl) ester (IMTSL) and S-4-(4-(dimethylamino)-2-ethyl-5,5-dimethyl-1-oxyl-2,5-dihydro-1H-imidazol-2-yl)benzyl methanethiosulfonate (IKMTSL). The pKa values of the IMTSL-PTE lipid measured by EPR titration in aqueous buffer/isopropyl alcohol solutions of various compositions were found to be essentially the same (pKa approximately 2.35), indicating that in mixed aqueous/organic solvents, the amphiphilic lipid molecules could be shielded from changing bulk conditions by a local shell of solvent molecules. To overcome this problem, the spin-labeled lipids were modeled by synthesizing IMTSL- and IKMTSL-2-mercaptoethanol adducts. These model compounds yielded the intrinsic pKa0's for IMTSL-PTE and IKMTSL-PTE in aqueous buffers as 3.33 +/- 0.03 and 5.98 +/- 0.03, respectively. A series of EPR titrations of IMTSL-PTE in mixed water/isopropyl alcohol solution allowed for calibrating the polarity-induced pKa shifts, deltapKapol, vs bulk solvent dielectric permittivity. These calibration data allowed for estimating the local dielectric constant, epsilon(eff), experienced by the reporter nitroxide of the IMTSL-PTE lipid incorporated into the nonionic Triton X-100 micelles as 60 +/- 5 and 57 +/- 5 at 23 and 48 degrees C, respectively. For micelles formed from an anionic surfactant sodium dodecyl sulfate (SDS) the electrostatic-induced pKa shift, deltapKael = 2.06 +/- 0.04 units of pH, was obtained by subtracting the polarity-induced contribution. This shift yields psi = -121 mV electric potential of the SDS micelle surface.


Assuntos
Fosfolipídeos/química , Marcadores de Spin , Eletroquímica , Espectroscopia de Ressonância de Spin Eletrônica , Concentração de Íons de Hidrogênio , Indicadores e Reagentes , Cinética , Mercaptoetanol/química , Micelas , Modelos Moleculares , Nitrogênio/química , Soluções , Água
18.
J Magn Reson ; 298: 115-126, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30544015

RESUMO

Over the past decades pulsed electron-electron double resonance (PELDOR), often called double electron-electron resonance (DEER), became one of the major spectroscopic tools for measurements of nanometer-scale distances and distance distributions in non-crystalline biological and chemical systems. The method is based on detecting the amplitude of the primary (3-pulse DEER) or refocused (4-pulse DEER) spin echo for the so-called "observer" spins when the other spins coupled to the former by a dipolar interaction are flipped by a "pump" pulse at another EPR frequency. While the timing of the pump pulse is varied in steps, the positions of the observer pulses are typically fixed. For such a detection scheme the total length of the observer pulse train and the electron spin memory time determine the amplitude of the detected echo signal. Usually, the distance range considerations in DEER experiments dictate the total length of the observer pulse train to exceed the phase memory time by a factor of few and this leads to a dramatic loss of the signal-to-noise ratio (SNR). While the acquisition of the DEER signal seems to be irrational under such conditions, it is currently the preferred way to conduct DEER because of an effective filtering out of all other unwanted interactions. Here we propose a novel albeit simple approach to improve DEER sensitivity and decrease data acquisition time by introducing the signal acquisition scheme based on RELaxation Optimized Acquisition (Length) Distribution (DEER-RELOAD). In DEER-RELOAD the dipolar phase evolution signal is acquired in multiple segments in which the observer pulses are fixed at the positions to optimize SNR just for that specific segment. The length of the segment is chosen to maximize the signal acquisition efficiency according the phase relaxation properties of the spin system. The total DEER trace is then obtained by "stitching" the multiple segments into a one continuous trace. The utility of the DEER-RELOAD acquisition scheme has been demonstrated on an example of the standard 4-pulse DEER sequence applied to two membrane protein complexes labeled with nitroxides. While theoretical gains from the DEER-RELOAD scheme increase with the number of stitched segments, in practice, even dividing the acquisition of the DEER trace into two segments may improve SNR by a factor of >3, as it has been demonstrated for one of these two membrane proteins.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Gramicidina/química , Rodopsina/química , Algoritmos , Leptospira , Modelos Químicos , Modelos Moleculares , Sensibilidade e Especificidade , Razão Sinal-Ruído , Marcadores de Spin
19.
ACS Macro Lett ; 8(11): 1522-1527, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-35651195

RESUMO

Sonication of gallium or gallium-based liquid metals in an aqueous solution of vinyl monomers leads to rapid free radical polymerization (FRP), without the need for conventional molecular initiators. Under ambient conditions, a passivating native oxide separates these metals from solution and renders the metal effectively inert. However, sonication generates liquid metal nanoparticles (LMNPs) of ∼100 nm diameter and thereby increases the surface area of the metal. The exposed metal initiates polymerization, which proceeds via a FRP mechanism and yields high molecular weight polymers that can form physical gels. Spin trapping EPR reveals the generation of free radicals. Time-of-flight secondary ion mass spectrometry measurements confirm direct polymer bonding to gallium, verifying the formation of surface-anchored polymer grafts. The grafted polymers can modify the interfacial properties, that is, the preference of the metal particles to disperse in aqueous versus organic phases. The polymer can also be degrafted and isolated from the particles using strong acid or base. The concept of physically disrupting passivated metal surfaces offers new routes for surface-initiated polymerization and has implications for surface modification, reduction reactions, and fabrication of mechanically responsive materials.

20.
Biochemistry ; 47(20): 5626-37, 2008 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-18426227

RESUMO

A first thiol-specific pH-sensitive nitroxide spin-label of the imidazolidine series, methanethiosulfonic acid S-(1-oxyl-2,2,3,5,5-pentamethylimidazolidin-4-ylmethyl) ester (IMTSL), has been synthesized and characterized. X-Band (9 GHz) and W-band (94 GHz) EPR spectral parameters of the new spin-label in its free form and covalently attached to an amino acid cysteine and a tripeptide glutathione were studied as a function of pH and solvent polarity. The pKa value of the protonatable tertiary amino group of the spin-label was found to be unaffected by other ionizable groups present in side chains of unstructured small peptides. The W-band EPR spectra were shown to allow for pKa determination from precise g-factor measurements. Is has been demonstrated that the high accuracy of pKa determination for pH-sensitive nitroxides could be achieved regardless of the frequency of measurements or the regime of spin exchange: fast at X-band and slow at W-band. IMTSL was found to react specifically with a model protein, iso-1-cytochrome c from the yeast Saccharomyces cerevisiae, giving EPR spectra very similar to those of the most commonly employed cysteine-specific label MTSL. CD data indicated no perturbations to the overall protein structure upon IMTSL labeling. It was found that for IMTSL, g iso correlates linearly with A iso, but the slopes are different for the neutral and charged forms of the nitroxide. This finding was attributed to the solvent effects on the spin density at the oxygen atom of the NO group and on the excitation energy of the oxygen lone-pair orbital.


Assuntos
Óxidos de Nitrogênio/química , Proteínas/química , Compostos de Sulfidrila/química , Calibragem , Espectroscopia de Ressonância de Spin Eletrônica , Concentração de Íons de Hidrogênio , Prótons , Sensibilidade e Especificidade , Eletricidade Estática , Titulometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA