Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(23): 10667-10673, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38016047

RESUMO

Ultranarrow bandwidth single-photon sources operating at room-temperature are of vital importance for viable optical quantum technologies at scale, including quantum key distribution, cloud-based quantum information processing networks, and quantum metrology. Here we show a room-temperature ultranarrow bandwidth single-photon source generating single-mode photons at a rate of 5 MHz based on an inorganic CsPbI3 perovskite quantum dot embedded in a tunable open-access optical microcavity. When coupled to an optical cavity mode, the quantum dot room-temperature emission becomes single-mode, and the spectrum narrows down to just ∼1 nm. The low numerical aperture of the optical cavities enables efficient collection of high-purity single-mode single-photon emission at room-temperature, offering promising performance for photonic and quantum technology applications. We measure 94% pure single-photon emission in a single-mode under pulsed and continuous-wave (CW) excitation.

2.
Opt Express ; 29(7): 10800-10810, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33820206

RESUMO

In this work, we use focused ion beam (FIB) milling to generate custom mirror shapes for quantum simulation in optical microcavities. In the paraxial limit, light in multimode optical microcavities follows an equation of motion which is equivalent to Schrödinger's equation, with the surface topography of the mirrors playing the role of the potential energy landscape. FIB milling allows us to engineer a wide variety of trapping potentials for microcavity light, through exquisite control over the mirror topography, including 2D box, 1D waveguide, and Mexican hat potentials. The 2D box potentials are sufficiently flat over tens of microns, that the optical modes of the cavity, found by solving Schrödinger's equation on the measured cavity topography, are standing-wave modes of the box, rather than localised to deviations. The predicted scattering loss due to surface roughness measured using atomic force microscopy is found to be 177 parts per million, which corresponds to a cavity finesse of 2.2 × 104 once other losses have been taken into account. Spectra from dye-filled microcavities formed using these features show thermalised light in flat 2D potentials close to dye resonance, and spectrally-resolved cavity modes at the predicted frequencies for elliptical potentials. These results also represent a first step towards realising superfluid light and quantum simulation in arbitrary-shaped optical microcavities using FIB milling.

3.
Phys Rev Lett ; 126(15): 150602, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33929251

RESUMO

Phase transitions, being the ultimate manifestation of collective behavior, are typically features of many-particle systems only. Here, we describe the experimental observation of collective behavior in small photonic condensates made up of only a few photons. Moreover, a wide range of both equilibrium and nonequilibrium regimes, including Bose-Einstein condensation or laserlike emission are identified. However, the small photon number and the presence of large relative fluctuations places major difficulties in identifying different phases and phase transitions. We overcome this limitation by employing unsupervised learning and fuzzy clustering algorithms to systematically construct the fuzzy phase diagram of our small photonic condensate. Our results thus demonstrate the rich and complex phase structure of even small collections of photons, making them an ideal platform to investigate equilibrium and nonequilibrium physics at the few particle level.

4.
Environ Microbiol ; 21(11): 4032-4045, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31330081

RESUMO

Ammonia-oxidizing archaea (AOA) of the phylum Thaumarchaeota are key players in nutrient cycling, yet large gaps remain in our understanding of their ecology and metabolism. Despite multiple lines of evidence pointing to a central role for copper-containing nitrite reductase (NirK) in AOA metabolism, the thaumarchaeal nirK gene is rarely studied in the environment. In this study, we examine the diversity of nirK in the marine pelagic environment, in light of previously described ecological patterns of pelagic thaumarchaeal populations. Phylogenetic analyses show that nirK better resolves diversification patterns of marine Thaumarchaeota, compared to the conventionally used marker gene amoA. Specifically, we demonstrate that the three major phylogenetic clusters of marine nirK correspond to the three 'ecotype' populations of pelagic Thaumarchaeota. In this context, we further examine the relative distributions of the three variant groups in metagenomes and metatranscriptomes representing two depth profiles in coastal Monterey Bay. Our results reveal that nirK effectively tracks the dynamics of thaumarchaeal ecotype populations, particularly finer-scale diversification patterns within major lineages. We also find evidence for multiple copies of nirK per genome in a fraction of thaumarchaeal cells in the water column, which must be taken into account when using it as a molecular marker.


Assuntos
Archaea/classificação , Archaea/genética , Baías/microbiologia , Metabolismo Energético/genética , Nitrito Redutases/genética , Amônia/metabolismo , Archaea/metabolismo , Ecótipo , Marcadores Genéticos/genética , Variação Genética/genética , Nitrito Redutases/metabolismo , Oxirredução , Filogenia
5.
Proc Natl Acad Sci U S A ; 112(17): 5443-8, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25775583

RESUMO

Planktonic microbial communities in the ocean are typically dominated by several cosmopolitan clades of Bacteria, Archaea, and Eukarya characterized by their ribosomal RNA gene phylogenies and genomic features. Although the environments these communities inhabit range from coastal to open ocean waters, how the biological dynamics vary between such disparate habitats is not well known. To gain insight into the differential activities of microbial populations inhabiting different oceanic provinces we compared the daily metatranscriptome profiles of related microbial populations inhabiting surface waters of both a coastal California upwelling region (CC) as well as the oligotrophic North Pacific Subtropical Gyre (NPSG). Transcriptional networks revealed that the dominant photoautotrophic microbes in each environment (Ostreococcus in CC, Prochlorococcus in NPSG) were central determinants of overall community transcriptome dynamics. Furthermore, heterotrophic bacterial clades common to both ecosystems (SAR11, SAR116, SAR86, SAR406, and Roseobacter) displayed conserved, genome-wide inter- and intrataxon transcriptional patterns and diel cycles. Populations of SAR11 and SAR86 clades in particular exhibited tightly coordinated transcriptional patterns in both coastal and pelagic ecosystems, suggesting that specific biological interactions between these groups are widespread in nature. Our results identify common diurnally oscillating behaviors among diverse planktonic microbial species regardless of habitat, suggesting that highly conserved temporally phased biotic interactions are ubiquitous among planktonic microbial communities worldwide.


Assuntos
Ecossistema , Consórcios Microbianos/fisiologia , Prochlorococcus/fisiologia , Roseobacter/fisiologia , Transcrição Gênica/fisiologia , Microbiologia da Água , Oceanos e Mares
6.
Nano Lett ; 17(9): 5521-5525, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28829137

RESUMO

Dibenzo[hi,st]ovalene (DBOV)-a quasi-zero-dimensional "nanographene"-displays strong, narrow, and well-defined optical-absorption transitions at room temperature. On placing a DBOV-doped polymer film into an optical microcavity, we demonstrate strong coupling of the 0 → 0' electronic transition to a confined cavity mode, with a coupling energy of 126 meV. Photoluminescence measurements indicate that the polariton population is distributed at energies approximately coincident with the emission of the DBOV, indicating a polariton population via an optical pumping mechanism.

7.
Small ; 13(38)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28809455

RESUMO

Photosynthetic organisms rely on a series of self-assembled nanostructures with tuned electronic energy levels in order to transport energy from where it is collected by photon absorption, to reaction centers where the energy is used to drive chemical reactions. In the photosynthetic bacteria Chlorobaculum tepidum, a member of the green sulfur bacteria family, light is absorbed by large antenna complexes called chlorosomes to create an exciton. The exciton is transferred to a protein baseplate attached to the chlorosome, before migrating through the Fenna-Matthews-Olson complex to the reaction center. Here, it is shown that by placing living Chlorobaculum tepidum bacteria within a photonic microcavity, the strong exciton-photon coupling regime between a confined cavity mode and exciton states of the chlorosome can be accessed, whereby a coherent exchange of energy between the bacteria and cavity mode results in the formation of polariton states. The polaritons have energy distinct from that of the exciton which can be tuned by modifying the energy of the optical modes of the microcavity. It is believed that this is the first demonstration of the modification of energy levels within living biological systems using a photonic structure.


Assuntos
Bactérias/metabolismo , Nanopartículas/química , Fótons , Fotossíntese , Bactérias/ultraestrutura , Imagem Óptica , Termodinâmica
8.
Nano Lett ; 16(11): 7137-7141, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27737546

RESUMO

Colloidal semiconductor nanoplatelets exhibit quantum size effects due to their thickness of only a few monolayers, together with strong optical band-edge transitions facilitated by large lateral extensions. In this article, we demonstrate room temperature strong coupling of the light and heavy hole exciton transitions of CdSe nanoplatelets with the photonic modes of an open planar microcavity. Vacuum Rabi splittings of 66 ± 1 meV and 58 ± 1 meV are observed for the heavy and light hole excitons, respectively, together with a polariton-mediated hybridization of both transitions. By measuring the concentration of platelets in the film, we compute the transition dipole moment of a nanoplatelet exciton to be µ = (575 ± 110) D. The large oscillator strength and fluorescence quantum yield of semiconductor nanoplatelets provide a perspective toward novel photonic devices by combining polaritonic and spinoptronic effects.

9.
Nanotechnology ; 27(27): 274003, 2016 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-27242174

RESUMO

The recent development of open-access optical microcavities opens up a number of intriguing possibilities in the realm of chemical sensing. We provide an overview of the different possible sensing modalities, with examples of refractive index sensing, optical absorption measurements, and optical tracking and trapping of nanoparticles. The extremely small mode volumes within an optical microcavity allow very small numbers of molecules to be probed: our current best detection limits for refractive index and absorption sensing are around 10(5) and 10(2) molecules, respectively, with scope for further improvements in the future.

10.
Environ Microbiol ; 17(10): 3692-707, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25522910

RESUMO

The cyanobacteria Prochlorococcus and Synechococcus are important marine primary producers. We explored their distributions and covariance along a physico-chemical gradient from coastal to open ocean waters in the Northeastern Pacific Ocean. An inter-annual pattern was delineated in the dynamic transition zone where upwelled and eastern boundary current waters mix, and two new Synechococcus clades, Eastern Pacific Clade (EPC) 1 and EPC2, were identified. By applying state-of-the-art phylogenetic analysis tools to bar-coded 16S amplicon datasets, we observed higher abundance of Prochlorococcus high-light I (HLI) and low-light I (LLI) in years when more oligotrophic water intruded farther inshore, while under stronger upwelling Synechococcus I and IV dominated. However, contributions of some cyanobacterial clades were proportionally relatively constant, e.g. Synechococcus EPC2. In addition to supporting observations that Prochlorococcus LLI thrive at higher irradiances than other LL taxa, the results suggest LLI tolerate lower temperatures than previously reported. The phylogenetic precision of our 16S rRNA gene analytical approach and depth of bar-coded sequencing also facilitated detection of clades at low abundance in unexpected places. These include Prochlorococcus at the coast and Cyanobium-related sequences offshore, although it remains unclear whether these came from resident or potentially advected cells. Our study enhances understanding of cyanobacterial distributions in an ecologically important eastern boundary system.


Assuntos
Prochlorococcus/genética , Água do Mar/microbiologia , Synechococcus/genética , Biodiversidade , Oceano Pacífico , Filogenia , Prochlorococcus/classificação , Prochlorococcus/isolamento & purificação , RNA Ribossômico 16S/genética , Synechococcus/classificação , Synechococcus/isolamento & purificação
11.
Opt Express ; 23(13): 17205-16, 2015 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-26191729

RESUMO

Open-access optical microcavities are emerging as an original tool for light-matter studies thanks to their intrinsic tunability and the direct access to the maximum of the electric field along with their small mode volume. In this article, we present recent developments in the fabrication of such devices demonstrating topographic control of the micromirrors at the nanometer scale as well as a high degree of reproducibility. Our method takes into account the template shape as well as the effect of the dielectric mirror growth. In addition, we present the optical characterization of these microcavities with effective radii of curvature down to 4.3 µm and mode volume of 16×(λ/2)(3). This work opens the possibility to fully engineer the photonic potential depending on the required properties.

12.
Microb Ecol ; 69(1): 13-24, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25038845

RESUMO

The primary objective of this study was to gain an understanding of how key microbial communities involved in nitrogen cycling in estuarine sediments vary over a 12-month period. Furthermore, we sought to determine whether changes in the size of these communities are related to, or indicative of, seasonal patterns in fixed nitrogen dynamics in Elkhorn Slough--a small, agriculturally impacted estuary with a direct connection to Monterey Bay. We assessed sediment and pore water characteristics, abundance of functional genes for nitrification (bacterial and archaeal amoA, encoding ammonia monooxygenase subunit A) and denitrification (nirS and nirK, encoding nitrite reductase), and measurements of potential nitrification and denitrification activities at six sites. No seasonality in the abundance of denitrifier or ammonia oxidizer genes was observed. A strong association between potential nitrification activity and the size of ammonia-oxidizing bacterial communities was observed across the estuary. In contrast, ammonia-oxidizing archaeal abundances remained relatively constant in space and time. Unlike many other estuaries, salinity does not appear to regulate the distribution of ammonia-oxidizing communities in Elkhorn Slough. Instead, their distributions appear to be governed over two different time scales. Long-term niche characteristics selected for the gross size of archaeal and bacterial ammonia-oxidizing communities, yet covariation in their abundances between monthly samples suggests that they respond in a similar manner to short-term changes in their environment. Abundances of denitrifier and ammonia oxidizer genes also covaried, but site-specific differences in this relationship suggest differing levels of interaction (or coupling) between nitrification and denitrification.


Assuntos
Amônia/metabolismo , Sedimentos Geológicos/microbiologia , Desnitrificação , Dados de Sequência Molecular , Oxirredutases/metabolismo
13.
Angew Chem Int Ed Engl ; 53(30): 7838-42, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24962739

RESUMO

A series of highly efficient semiconductor nanocrystal (NC) photocatalysts have been synthesized by growing wurtzite-ZnO tetrahedrons around pre-formed CdS, CdSe, and CdTe quantum dots (QDs). The resulting contact between two small but high-quality crystals creates novel CdX/ZnO heterostructured semiconductor nanocrystals (HSNCs) with extensive type-II nanojunctions that exhibit more efficient photocatalytic decomposition of aqueous organic molecules under UV irradiation. Catalytic testing and characterization indicate that catalytic activity increases as a result of a combination of both the intrinsic chemistry of the chalcogenide anions and the heterojunction structure. Atomic probe tomography (APT) is employed for the first time to probe the spatial characteristics of the nanojunction between cadmium chalcogenide and ZnO crystalline phases, which reveals various degrees of ion exchange between the two crystals to relax large lattice mismatches. In the most extreme case, total encapsulation of CdTe by ZnO as a result of interfacial alloying is observed, with the expected advantage of facilitating hole transport for enhanced exciton separation during catalysis.

14.
PLoS One ; 19(3): e0298913, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38457448

RESUMO

Foreign Direct Investment is theoretically expected to facilitate the transfer of knowledge from the home country to the host country, however, the empirical evidence on the subject is mixed. Some studies have shown that, on one hand, as competition grows, the incentive to innovate reduces with the decrease in monopoly rents (Schumpeterian effect). On the other hand, market competition can also boost investments in R&D activities incentivized by incremental profits (Escape-Competition effect). Therefore, this study aims to explore which of these two effects dominates in the selected group of countries. This study also identifies the moderators of the relationship between FDI stock and domestic innovation. It examines the role of absorptive capacity, quality of regulations, and property rights protection in the innovative activities of the host countries. Generalized Method of Moments is used to estimate the parameters of the multivariate regression equation. The analysis is based on panel data consisting of 49 countries over 14 years. The results show that FDI has a negative relationship with domestic innovation, indicating the presence of the Schumpeterian effect. The extensions of the main models show that FDI positively affects domestic innovation in countries with higher absorptive capacity, the superior quality of regulation, and stronger protection of property rights. This study shows that the positive relationship between FDI and domestic innovation is conditional on the ability to absorb knowledge and quality of governance in the recipient countries.


Assuntos
Desenvolvimento Econômico , Propriedade , Investimentos em Saúde , Internacionalidade , Dióxido de Carbono
15.
ACS Photonics ; 10(9): 3374-3383, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37743941

RESUMO

Effective light extraction from optically active solid-state spin centers inside high-index semiconductor host crystals is an important factor in integrating these pseudo-atomic centers in wider quantum systems. Here, we report increased fluorescent light collection efficiency from laser-written nitrogen-vacancy (NV) centers in bulk diamond facilitated by micro-transfer printed GaN solid immersion lenses. Both laser-writing of NV centers and transfer printing of micro-lens structures are compatible with high spatial resolution, enabling deterministic fabrication routes toward future scalable systems development. The micro-lenses are integrated in a noninvasive manner, as they are added on top of the unstructured diamond surface and bonded by van der Waals forces. For emitters at 5 µm depth, we find approximately 2× improvement of fluorescent light collection using an air objective with a numerical aperture of NA = 0.95 in good agreement with simulations. Similarly, the solid immersion lenses strongly enhance light collection when using an objective with NA = 0.5, significantly improving the signal-to-noise ratio of the NV center emission while maintaining the NV's quantum properties after integration.

16.
Lab Chip ; 22(18): 3499-3507, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35968777

RESUMO

We introduce a method for analyzing the physical properties of nanoparticles in fluids via the competition between viscous drag and optical forces in a microfluidic device with integrated optical microcavities. The optical microcavity acts as a combined optical trap and sensor, such that the time duration of individual particle detection events can be used as a measure of particle size via a parameter which represents the dielectric polarizability per unit radius. Characterization of polymer particles with diameters as small as 140 nm is reported, below that used in previous optical sorting approaches and in the size range of interest for nanomedicine. This technique could be applied in combination with other analytic techniques to provide a detailed physical characterization of particles in solution.


Assuntos
Dispositivos Lab-On-A-Chip , Nanopartículas , Pinças Ópticas , Tamanho da Partícula
17.
J Pers Assess ; 98(6): 660-2, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27391042
18.
Appl Environ Microbiol ; 76(8): 2517-23, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20190081

RESUMO

To evaluate the potential for organic nitrogen addition to stimulate the in situ growth of ammonia oxidizers during a field scale bioremediation trial, samples collected from the Eastern Snake River Plain Aquifer in Idaho before, during, and after the addition of molasses and urea were subjected to PCR analysis of ammonia monooxygenase subunit A (amoA) genes. Ammonia-oxidizing bacteria (AOB) and archaea (AOA) were present in all of the samples tested, with AOA amoA genes outnumbering AOB amoA genes in all of the samples. Following urea addition, nitrate levels rose and bacterial amoA copy numbers increased dramatically, suggesting that urea hydrolysis stimulated nitrification. Bacterial amoA diversity was limited to two Nitrosomonas phylotypes, whereas archaeal amoA analyses revealed 20 distinct operational taxonomic units, including several that were markedly different from all previously reported sequences. Results from this study demonstrate the likelihood of stimulating ammonia-oxidizing communities during field scale manipulation of groundwater conditions to promote urea hydrolysis.


Assuntos
Archaea/crescimento & desenvolvimento , Bactérias/crescimento & desenvolvimento , Microbiologia do Solo , Ureia/metabolismo , Microbiologia da Água , Amônia/metabolismo , Archaea/classificação , Archaea/genética , Archaea/metabolismo , Proteínas Arqueais/genética , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/genética , Análise por Conglomerados , Idaho , Melaço , Dados de Sequência Molecular , Nitratos/metabolismo , Oxirredução , Filogenia , Análise de Sequência de DNA
19.
Opt Lett ; 35(21): 3556-8, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21042348

RESUMO

Large arrays of uniform, precisely tunable, open-access optical microcavities with mode volumes as small as 2.2 µm(3) are reported. The cavities show clear Hermite-Gauss mode structure and display finesses up to 460, in addition to quality (Q) factors in excess of 10,000. The cavities are attractive for use in quantum optics applications, such as single atom detection and efficient single photon sources, and have potential to be extended for experiments in the strong coupling regime.

20.
Nanotechnology ; 21(18): 185202, 2010 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-20388972

RESUMO

We report advances in the growth, characterization and photovoltaic properties of SnS nanocrystals, with controlled < 10 nm size, and their inclusion into a lead chalcogenide solar cell. The SnS/PbS nanocrystalline film heterojunction is shown to display a type II band alignment, in which the direction of flow of the photocurrent depends on the order of the layers and not the relative work functions of the contacts. On placing the SnS layer next to the indium tin oxide (ITO) cathode we observe a dramatic increase in V(oc) to as much as 0.45 V. Our results suggest that SnS nanocrystal films can be used in multi-junction solar cells, that a SnS/PbS heterojunction on its own shows photovoltaic behaviour, and that a SnS layer in an ITO/SnS/PbS/Al device is acting to suppress the flow of an electron injection current.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA