Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Chem Senses ; 482023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37539767

RESUMO

The sweet taste receptor (STR) is a G protein-coupled receptor (GPCR) responsible for mediating cellular responses to sweet stimuli. Early evidence suggests that elements of the STR signaling system are present beyond the tongue in metabolically active tissues, where it may act as an extraoral glucose sensor. This study aimed to delineate expression of the STR in extraoral tissues using publicly available RNA-sequencing repositories. Gene expression data was mined for all genes implicated in the structure and function of the STR, and control genes including highly expressed metabolic genes in relevant tissues, other GPCRs and effector G proteins with physiological roles in metabolism, and other GPCRs with expression exclusively outside the metabolic tissues. Since the physiological role of the STR in extraoral tissues is likely related to glucose sensing, expression was then examined in diseases related to glucose-sensing impairment such as type 2 diabetes. An aggregate co-expression network was then generated to precisely determine co-expression patterns among the STR genes in these tissues. We found that STR gene expression was negligible in human pancreatic and adipose tissues, and low in intestinal tissue. Genes encoding the STR did not show significant co-expression or connectivity with other functional genes in these tissues. In addition, STR expression was higher in mouse pancreatic and adipose tissues, and equivalent to human in intestinal tissue. Our results suggest that STR expression in mice is not representative of expression in humans, and the receptor is unlikely to be a promising extraoral target in human cardiometabolic disease.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Papilas Gustativas , Camundongos , Humanos , Animais , Paladar/fisiologia , Diabetes Mellitus Tipo 2/genética , Papilas Gustativas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Perfilação da Expressão Gênica , Glucose/metabolismo , Doenças Cardiovasculares/metabolismo
2.
J Mol Cell Cardiol ; 170: 47-59, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35644482

RESUMO

Primary cardiomyocytes are invaluable for understanding postnatal heart development. However, a universal method to obtain freshly purified cardiomyocytes without using different age-dependent isolation procedures and cell culture, is lacking. Here, we report the development of a standardised method that allows rapid isolation and purification of high-quality cardiomyocytes from individual neonatal through to adult C57BL/6J murine hearts. Langendorff retrograde perfusion, which is currently limited to adult hearts, was adapted for use in neonatal and infant hearts by developing an easier in situ aortic cannulation technique. Tissue digestion conditions were optimised to achieve efficient digestion of hearts of all ages in a comparable timeframe (<14 min). This resulted in a high yield (1.56-2.2 × 106 cells/heart) and viability (~70-100%) of cardiomyocytes post-isolation. An immunomagnetic cell separation step was then applied to yield highly purified cardiomyocytes (~95%) as confirmed by immunocytochemistry, flow cytometry, and qRT-PCR. For cell type-specific studies, cardiomyocyte DNA, RNA, and protein could be extracted in sufficient yields to conduct molecular experiments. We generated transcriptomic datasets for neonatal cardiomyocytes from individual hearts, for the first time, which revealed nine sex-specific genes (FDR < 0.05) encoded on the sex chromosomes. Finally, we also developed an in situ fixation protocol that preserved the native cytoarchitecture of cardiomyocytes (~94% rod-shaped post-isolation), and used it to evaluate cell morphology during cardiomyocyte maturation, as well as capture spindle-shaped neonatal cells undergoing cytokinesis. Together, these procedures allow molecular and morphological profiling of high-quality cardiomyocytes from individual hearts of any postnatal age.


Assuntos
Técnicas de Cultura de Células , Miócitos Cardíacos , Animais , Feminino , Citometria de Fluxo , Humanos , Masculino , Camundongos , Miócitos Cardíacos/metabolismo , RNA/metabolismo , Transcriptoma
3.
Heart Lung Circ ; 31(10): 1321-1332, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35961820

RESUMO

Despite significant advances in interventional and therapeutic approaches, cardiovascular disease (CVD) remains the leading cause of death and mortality. To lower this health burden, cardiovascular discovery scientists need to play an integral part in the solution. Successful clinical translation is achieved when built upon a strong foundational understanding of the disease mechanisms involved. Changes in the Australian funding landscape, to place greater emphasis on translation, however, have increased job insecurity for discovery science researchers and especially early-mid career researchers. To highlight the importance of discovery science in cardiovascular research, this review compiles six science stories in which fundamental discoveries, often involving Australian researchers, has led to or is advancing to clinical translation. These stories demonstrate the importance of the role of discovery scientists and the need for their work to be prioritised now and in the future. Australia needs to keep discovery scientists supported and fully engaged within the broader cardiovascular research ecosystem so they can help realise the next game-changing therapy or diagnostic approach that diminishes the burden of CVD on society.


Assuntos
Doenças Cardiovasculares , Ecossistema , Austrália/epidemiologia , Doenças Cardiovasculares/terapia , Humanos , Pesquisadores
4.
J Cell Physiol ; 236(12): 8160-8170, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34170016

RESUMO

Epidermal growth factor (EGF) receptors (ErbB1-ErbB4) promote cardiac development and growth, although the specific EGF ligands and receptor isoforms involved in growth/repair versus pathology remain undefined. We challenged ventricular cardiomyocytes with EGF-like ligands and observed that selective activation of ErbB4 (the receptor for neuregulin 1 [NRG1]), but not ErbB1 (the receptor for EGF, EGFR), stimulated hypertrophy. This lack of direct ErbB1-mediated hypertrophy occurred despite robust activation of extracellular-regulated kinase 1/2 (ERK) and protein kinase B. Hypertrophic responses to NRG1 were unaffected by the tyrosine kinase inhibitor (AG1478) at concentrations that are selective for ErbB1 over ErbB4. NRG1-induced cardiomyocyte enlargement was suppressed by small interfering RNA (siRNA) knockdown of ErbB4 and ErbB2, whereas ERK phosphorylation was only suppressed by ErbB4 siRNA. Four ErbB4 isoforms exist (JM-a/JM-b and CYT-1/CYT-2), generated by alternative splicing, and their expression declines postnatally and following cardiac hypertrophy. Silencing of all four isoforms in cardiomyocytes, using an ErbB4 siRNA, abrogated NRG1-induced hypertrophic promoter/reporter activity, which was rescued by coexpression of knockdown-resistant versions of the ErbB4 isoforms. Thus, ErbB4 confers cardiomyocyte hypertrophy to NRG1, and all four ErbB4 isoforms possess the capacity to mediate this effect.


Assuntos
Hipertrofia/metabolismo , Miócitos Cardíacos/metabolismo , Isoformas de Proteínas/metabolismo , Receptor ErbB-4/metabolismo , Processamento Alternativo/genética , Animais , Proliferação de Células/fisiologia , Humanos , Fosforilação/fisiologia , Receptor ErbB-3/genética , Receptor ErbB-3/metabolismo , Receptor ErbB-4/genética , Transdução de Sinais/fisiologia
5.
Am J Physiol Heart Circ Physiol ; 321(4): H807-H817, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34533400

RESUMO

Multiple mouse lines lacking the orphan G protein-coupled receptor, GPR37L1, have elicited disparate cardiovascular phenotypes. The first Gpr37l1 knockout mice study to be published reported a marked elevation in systolic blood pressure (SBP; ∼60 mmHg), revealing a potential therapeutic opportunity. The phenotype differed from our own independently generated knockout line, where male mice exhibited equivalent baseline blood pressure to wild type. Here, we attempted to reproduce the first study by characterizing the cardiovascular phenotype of both the original knockout and transgenic lines alongside a C57BL/6J control line, using the same method of blood pressure measurement. The present study supports the findings from our independently developed Gpr37l1 knockout line, finding that SBP and diastolic blood pressure (DBP) are not different in the original Gpr37l1 knockout male mice (SBP: 130.9 ± 5.3 mmHg; DBP: 90.7 ± 3.0 mmHg) compared with C57BL/6J mice (SBP: 123.1 ± 4.1 mmHg; DBP: 87.0 ± 2.7 mmHg). Instead, we attribute the apparent hypertension of the knockout line originally described to comparison with a seemingly hypotensive transgenic line (SBP 103.7 ± 5.0 mmHg; DBP 71.9 ± 3.7 mmHg). Additionally, we quantified myocardial GPR37L1 transcript in humans, which was suggested to be downregulated in cardiovascular disease. We found that GPR37L1 has very low native transcript levels in human myocardium and that expression is not different in tissue samples from patients with heart failure compared with sex-matched healthy control tissue. These findings indicate that cardiac GPR37L1 expression is unlikely to contribute to the pathophysiology of human heart failure.NEW & NOTEWORTHY This study characterizes systolic blood pressure (SBP) in a Gpr37l1 knockout mouse line, which was previously reported to have ∼60 mmHg higher SBP compared with a transgenic line. We observed only a ∼27 mmHg SBP difference between the lines. However, when compared with C57BL/6J mice, knockout mice showed no difference in SBP. We also investigated GPR37L1 mRNA abundance in human hearts and observed no difference between healthy and failing heart samples.


Assuntos
Pressão Sanguínea , Insuficiência Cardíaca/metabolismo , Hipertensão/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Adulto , Animais , Estudos de Casos e Controles , Feminino , Genótipo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/fisiopatologia , Humanos , Hipertensão/genética , Hipertensão/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Fenótipo , Receptores Acoplados a Proteínas G/genética , Especificidade da Espécie
6.
FASEB J ; 33(11): 12264-12276, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31415180

RESUMO

Fatty acid receptors have been recognized as important players in glycaemic control. This study is the first to describe a role for the medium-chain fatty acid (MCFA) receptor G-protein-coupled receptor (Gpr) 84 in skeletal muscle mitochondrial function and insulin secretion. We are able to show that Gpr84 is highly expressed in skeletal muscle and adipose tissue. Mice with global deletion of Gpr84 [Gpr84 knockout (KO)] exhibit a mild impairment in glucose tolerance when fed a MCFA-enriched diet. Studies in mice and pancreatic islets suggest that glucose intolerance is accompanied by a defect in insulin secretion. MCFA-fed KO mice also exhibit a significant impairment in the intrinsic respiratory capacity of their skeletal muscle mitochondria, but at the same time also exhibit a substantial increase in mitochondrial content. Changes in canonical pathways of mitochondrial biogenesis and turnover are unable to explain these mitochondrial differences. Our results show that Gpr84 plays a crucial role in regulating mitochondrial function and quality control.-Montgomery, M. K., Osborne, B., Brandon, A. E., O'Reilly, L., Fiveash, C. E., Brown, S. H. J., Wilkins, B. P., Samsudeen, A., Yu, J., Devanapalli, B., Hertzog, A., Tolun, A. A., Kavanagh, T., Cooper, A. A., Mitchell, T. W., Biden, T. J., Smith, N. J., Cooney, G. J., Turner, N. Regulation of mitochondrial metabolism in murine skeletal muscle by the medium-chain fatty acid receptor Gpr84.


Assuntos
Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , Animais , Composição Corporal , Glucose/metabolismo , Resistência à Insulina , Lipídeos/análise , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/química , Receptores Acoplados a Proteínas G/genética
7.
Nat Chem Biol ; 13(2): 235-242, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27992882

RESUMO

Understanding the pharmacological similarity of G protein-coupled receptors (GPCRs) is paramount for predicting ligand off-target effects, drug repurposing, and ligand discovery for orphan receptors. Phylogenetic relationships do not always correctly capture pharmacological similarity. Previous family-wide attempts to define pharmacological relationships were based on three-dimensional structures and/or known receptor-ligand pairings, both unavailable for orphan GPCRs. Here, we present GPCR-CoINPocket, a novel contact-informed neighboring pocket metric of GPCR binding-site similarity that is informed by patterns of ligand-residue interactions observed in crystallographically characterized GPCRs. GPCR-CoINPocket is applicable to receptors with unknown structure or ligands and accurately captures known pharmacological relationships between GPCRs, even those undetected by phylogeny. When applied to orphan receptor GPR37L1, GPCR-CoINPocket identified its pharmacological neighbors, and transfer of their pharmacology aided in discovery of the first surrogate ligands for this orphan with a 30% success rate. Although primarily designed for GPCRs, the method is easily transferable to other protein families.


Assuntos
Descoberta de Drogas , Ligantes , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Células HEK293 , Humanos , Estrutura Molecular
8.
Immunol Cell Biol ; 96(2): 128-136, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29363187

RESUMO

The G protein-coupled receptor 65 (GPR65) gene has been genetically associated with several autoimmune diseases, including multiple sclerosis (MS). GPR65 is predominantly expressed in lymphoid organs and is activated by extracellular protons. In this study, we tested whether GPR65 plays a functional role in demyelinating autoimmune disease. Using a murine model of MS, experimental autoimmune encephalomyelitis (EAE), we found that Gpr65-deficient mice develop exacerbated disease. CD4+ helper T cells are key drivers of EAE pathogenesis, however, Gpr65 deficiency in these cells did not contribute to the observed exacerbated disease. Instead, Gpr65 expression levels were found to be highest on invariant natural killer T (iNKT) cells. EAE severity in Gpr65-deficient mice was normalized in the absence of iNKT cells (CD1d-deficient mice), suggesting that GPR65 signals in iNKT cells are important for suppressing autoimmune disease. These findings provide functional support for the genetic association of GPR65 with MS and demonstrate GPR65 signals suppress autoimmune activity in EAE.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Encefalomielite Autoimune Experimental/imunologia , Células T Matadoras Naturais/imunologia , Transferência Adotiva , Animais , Modelos Animais de Doenças , Progressão da Doença , Encefalomielite Autoimune Experimental/patologia , Camundongos Endogâmicos C57BL , Glicoproteína Mielina-Oligodendrócito/imunologia , Fragmentos de Peptídeos/imunologia , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/metabolismo
11.
Biochem J ; 473(9): 1247-55, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26964897

RESUMO

Recently, it has been found that glucagon is able to activate the ß-catenin signalling pathway leading to increased cyclin D1 and c-Myc expression in liver. Therefore the main aim of the present study is to determine whether the effect of glucagon activating ß-catenin signalling leading to increased target gene expression is mediated through cAMP activation of PKA (protein kinase A). Primary rat hepatocytes were incubated with insulin, glucagon or adrenaline (epinephrine) and a range of inhibitors of PI3K (phosphoinositide 3-kinase), Wnt, mitochondrial uncoupler (niclosamide) or PKA inhibitors to dissect out the pathway leading to increased Ser(552) phosphorylation on ß-catenin following glucagon exposure. In primary rat hepatocytes, we found that short exposure to glucagon or adrenaline caused a rapid increase in Ser(552) phosphorylation on ß-catenin that leads to increased cyclin D1 and c-Myc expression. A range of PI3K and Wnt inhibitors were unable to block the effect of glucagon phosphorylating ß-catenin. Interestingly, both niclosamide and the PKA inhibitor H89 blocked the glucagon effect on ß-catenin signalling, leading to a reduction in target gene expression. Likewise, niclosamide inhibited cAMP levels and the direct addition of db-cAMP (dibutyryl-cAMP sodium salt) also resulted in Ser(552) phosphorylation of ß-catenin. We have identified a new pathway via glucagon signalling that leads to increased ß-catenin activity that can be reversed with the antihelminthic drug niclosamide, which has recently shown promise as a potential treatment of T2D (Type 2 diabetes). This novel finding could be useful in liver cancer treatment, particularly in the context of T2D with increased ß-catenin activity.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Glucagon/metabolismo , Hepatócitos/metabolismo , Niclosamida/farmacologia , Transdução de Sinais/efeitos dos fármacos , beta Catenina/metabolismo , Animais , Bucladesina/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ratos , Ratos Sprague-Dawley
12.
J Mol Cell Cardiol ; 94: 65-71, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27021517

RESUMO

Cardiac myosin binding protein-C (cMyBP-C) is a structural and regulatory component of cardiac thick filaments. It is observed in electron micrographs as seven to nine transverse stripes in the central portion of each half of the A band. Its C-terminus binds tightly to the myosin rod and contributes to thick filament structure, while the N-terminus can bind both myosin S2 and actin, influencing their structure and function. Mutations in the MYBPC3 gene (encoding cMyBP-C) are commonly associated with hypertrophic cardiomyopathy (HCM). In cardiac cells there exists a population of myosin heads in the super-relaxed (SRX) state, which are bound to the thick filament core with a highly inhibited ATPase activity. This report examines the role cMyBP-C plays in regulating the population of the SRX state of cardiac myosin by using an assay that measures single ATP turnover of myosin. We report a significant decrease in the proportion of myosin heads in the SRX state in homozygous cMyBP-C knockout mice, however heterozygous cMyBP-C knockout mice do not significantly differ from the wild type. A smaller, non-significant decrease is observed when thoracic aortic constriction is used to induce cardiac hypertrophy in mutation negative mice. These results support the proposal that cMyBP-C stabilises the thick filament and that the loss of cMyBP-C results in an untethering of myosin heads. This results in an increased myosin ATP turnover, further consolidating the relationship between thick filament structure and the myosin ATPase.


Assuntos
Miosinas Cardíacas/metabolismo , Proteínas de Transporte/genética , Miócitos Cardíacos/metabolismo , Animais , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/patologia , Cardiomiopatia Hipertrófica/fisiopatologia , Genótipo , Camundongos , Camundongos Knockout , Fosforilação , Sarcômeros/metabolismo
13.
Br J Pharmacol ; 181(14): 2091-2094, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38798136

RESUMO

LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.


Assuntos
Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/metabolismo , Humanos , Animais
14.
Res Sq ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38496447

RESUMO

Two APOBEC (apolipoprotein-B mRNA editing enzyme catalytic polypeptide-like) DNA cytosine deaminase enzymes (APOBEC3A and APOBEC3B) generate somatic mutations in cancer, driving tumour development and drug resistance. Here we used single cell RNA sequencing to study APOBEC3A and APOBEC3B expression in healthy and malignant mucosal epithelia, validating key observations with immunohistochemistry, spatial transcriptomics and functional experiments. Whereas APOBEC3B is expressed in keratinocytes entering mitosis, we show that APOBEC3A expression is confined largely to terminally differentiating cells and requires Grainyhead-like transcription factor 3 (GRHL3). Thus, in normal tissue, neither deaminase appears to be expressed at high levels during DNA replication, the cell cycle stage associated with APOBEC-mediated mutagenesis. In contrast, we show that in squamous cell carcinoma tissues, there is expansion of GRHL3 expression and activity to a subset of cells undergoing DNA replication and concomitant extension of APOBEC3A expression to proliferating cells. These findings indicate a mechanism for acquisition of APOBEC3A mutagenic activity in tumours.

15.
Pharmacol Rev ; 62(4): 701-25, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21079041

RESUMO

For many years seven transmembrane domain G protein-coupled receptors (GPCRs) were thought to exist and function exclusively as monomeric units. However, evidence both from native cells and heterologous expression systems has demonstrated that GPCRs can both traffic and signal within higher-order complexes. As for other protein-protein interactions, conformational changes in one polypeptide, including those resulting from binding of pharmacological ligands, have the capacity to alter the conformation and therefore the response of the interacting protein(s), a process known as allosterism. For GPCRs, allosterism across homo- or heteromers, whether dimers or higher-order oligomers, represents an additional topographical landscape that must now be considered pharmacologically. Such effects may offer the opportunity for novel therapeutic approaches. Allosterism at GPCR heteromers is particularly exciting in that it offers additional scope to provide receptor subtype selectivity and tissue specificity as well as fine-tuning of receptor signal strength. Herein, we introduce the concept of allosterism at both GPCR homomers and heteromers and discuss the various questions that must be addressed before significant advances can be made in drug discovery at these GPCR complexes.


Assuntos
Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/fisiologia , Sítio Alostérico , Animais , Descoberta de Drogas , Humanos , Ligantes , Conformação Proteica , Multimerização Proteica , Receptores Acoplados a Proteínas G/agonistas
16.
Br J Pharmacol ; 2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36772847

RESUMO

Primary cilia are non-motile antennae-like structures responsible for sensing environmental changes in most mammalian cells. Ciliary signalling is largely mediated by the Sonic Hedgehog (Shh) pathway, which acts as a master regulator of ciliary protein transit and is essential for normal embryonic development. One particularly important player in primary cilia is the orphan G protein-coupled receptor, GPR161. In this review, we introduce GPR161 in the context of Shh signalling and describe the unique features on its C-terminus such as PKA phosphorylation sites and an A-kinase anchoring protein motif, which may influence the function of the receptor, cAMP compartmentalisation and/or trafficking within primary cilia. We discuss the recent putative pairing of GPR161 and spexin-1, highlighting the additional steps needed before GPR161 could be considered 'deorphanised'. Finally, we speculate that the marked constitutive activity and unconventional regulation of GPR161 may indicate that the receptor may not require an endogenous ligand.

17.
J Diabetes Investig ; 14(4): 591-601, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36727569

RESUMO

INTRODUCTION: The quantification of intraepithelial corneal basal nerve parameters by in vivo confocal microscopy represents a promising modality to identify the earliest manifestations of diabetic peripheral neuropathy. However, its diagnostic accuracy is hampered by its dependence on neuron length, with minimal consideration for other parameters, including the origin of these nerves, the corneal stromal-epithelial nerve penetration sites. This study sought to utilize high-resolution images of murine corneal nerves to analyze comprehensively the morphological changes associated with type 2 diabetes progression. MATERIALS AND METHODS: ßIII-Tubulin immunostained corneas from prediabetic and type 2 diabetic mice and their respective controls were imaged by scanning confocal microscopy and analyzed automatically for nerve parameters. Additionally, the number and distribution of penetration sites was manually ascertained and the average length of the axons exiting them was computed. RESULTS: The earliest detectable changes included a significant increase in nerve density (6.06 ± 0.41% vs 8.98 ± 1.99%, P = 0.03) and branching (2867.8 ± 271.3/mm2 vs 4912.1 ± 1475.3/mm2 , P = 0.03), and in the number of penetration sites (258.80 ± 20.87 vs 422.60 ± 63.76, P = 0.0002) at 8 weeks of age. At 16 weeks, corneal innervation decreased, most notably in the periphery. The number of penetration sites remained significantly elevated relative to controls throughout the monitoring period. Similarly, prediabetic mice exhibited an increased number of penetration sites (242.2 ± 13.55 vs 305.6 ± 30.96, P = 0.003) without significant changes to the nerves. CONCLUSIONS: Our data suggest that diabetic peripheral neuropathy may be preceded by a phase of neuron growth rather than regression, and that the peripheral cornea is more sensitive than the center for detecting changes in innervation.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Neuropatias Diabéticas , Estado Pré-Diabético , Camundongos , Animais , Diabetes Mellitus Tipo 2/complicações , Estado Pré-Diabético/complicações , Diabetes Mellitus Experimental/complicações , Córnea/inervação
18.
Nat Commun ; 14(1): 6374, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821493

RESUMO

Organic Cation Transporter 1 (OCT1) plays a crucial role in hepatic metabolism by mediating the uptake of a range of metabolites and drugs. Genetic variations can alter the efficacy and safety of compounds transported by OCT1, such as those used for cardiovascular, oncological, and psychological indications. Despite its importance in drug pharmacokinetics, the substrate selectivity and underlying structural mechanisms of OCT1 remain poorly understood. Here, we present cryo-EM structures of full-length human OCT1 in the inward-open conformation, both ligand-free and drug-bound, indicating the basis for its broad substrate recognition. Comparison of our structures with those of outward-open OCTs provides molecular insight into the alternating access mechanism of OCTs. We observe that hydrophobic gates stabilize the inward-facing conformation, whereas charge neutralization in the binding pocket facilitates the release of cationic substrates. These findings provide a framework for understanding the structural basis of the promiscuity of drug binding and substrate translocation in OCT1.


Assuntos
Proteínas de Transporte de Cátions Orgânicos , Transportador 1 de Cátions Orgânicos , Humanos , Transportador 1 de Cátions Orgânicos/genética , Transportador 1 de Cátions Orgânicos/química , Transportador 1 de Cátions Orgânicos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/química , Transporte Biológico , Transportador 2 de Cátion Orgânico/metabolismo
19.
J Biol Chem ; 286(12): 10628-40, 2011 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-21220428

RESUMO

Free fatty acid receptor 2 (FFA2; GPR43) is a G protein-coupled seven-transmembrane receptor for short-chain fatty acids (SCFAs) that is implicated in inflammatory and metabolic disorders. The SCFA propionate has close to optimal ligand efficiency for FFA2 and can hence be considered as highly potent given its size. Propionate, however, does not discriminate between FFA2 and the closely related receptor FFA3 (GPR41). To identify FFA2-selective ligands and understand the molecular basis for FFA2 selectivity, a targeted library of small carboxylic acids was examined using holistic, label-free dynamic mass redistribution technology for primary screening and the receptor-proximal G protein [(35)S]guanosine 5'-(3-O-thio)triphosphate activation, inositol phosphate, and cAMP accumulation assays for hit confirmation. Structure-activity relationship analysis allowed formulation of a general rule to predict selectivity for small carboxylic acids at the orthosteric binding site where ligands with substituted sp(3)-hybridized α-carbons preferentially activate FFA3, whereas ligands with sp(2)- or sp-hybridized α-carbons prefer FFA2. The orthosteric binding mode was verified by site-directed mutagenesis: replacement of orthosteric site arginine residues by alanine in FFA2 prevented ligand binding, and molecular modeling predicted the detailed mode of binding. Based on this, selective mutation of three residues to their non-conserved counterparts in FFA3 was sufficient to transfer FFA3 selectivity to FFA2. Thus, selective activation of FFA2 via the orthosteric site is achievable with rather small ligands, a finding with significant implications for the rational design of therapeutic compounds selectively targeting the SCFA receptors.


Assuntos
Propionatos/química , Receptores de Superfície Celular/agonistas , Receptores de Superfície Celular/química , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química , Sítios de Ligação , Células HEK293 , Humanos , Ligantes , Propionatos/metabolismo , Propionatos/farmacologia , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Relação Estrutura-Atividade
20.
Trends Endocrinol Metab ; 33(7): 481-492, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35550855

RESUMO

Atherosclerosis predisposes to myriad cardiovascular complications, including myocardial infarction and stroke. Statins have revolutionised cholesterol management but they do not work for all patients, particularly those with familial hypercholesterolaemia (FH). Genome-wide association studies have linked SNPs at orphan G protein-coupled receptor 146 (GPR146) to human atherosclerosis but how GPR146 influences serum cholesterol homeostasis was only recently described. Gpr146 deletion in mice reduces serum cholesterol and atherosclerotic plaque burden, confirming GPR146 as a potential therapeutic target for managing circulating cholesterol. Critically, this effect was independent of the low-density lipoprotein receptor. While still an orphan, the activation of GPR146 by serum suggests identification of its endogenous ligand is tantalisingly close. Herein, we discuss the evidence for GPR146 inhibition as a treatment for atherosclerosis.


Assuntos
Aterosclerose , Estudo de Associação Genômica Ampla , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Colesterol , Homeostase/genética , Humanos , Camundongos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA