Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Pediatr Gastroenterol Nutr ; 78(2): 261-271, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38374555

RESUMO

BACKGROUND: Infliximab (IFX) use is limited by loss of response often due to the development of anti-IFX antibodies and low drug levels. METHODS: We performed a single center prospective observational cohort study of pediatric and young adult subjects with inflammatory bowel disease (IBD) on IFX with over 3 years of follow-up. Infliximab levels (IFXL) and antibodies to infliximab (ATI) were measured throughout the study. Subjects were followed until IFX was discontinued. RESULTS: We enrolled 219 subjects with IBD (184: Crohn's disease; 33: Ulcerative colitis; and 2 Indeterminant colitis; 84 female, median age 14.4 years, 37% on concomitant immunomodulator). Nine hundred and nineteen serum samples (mean 4.2 ± 2.1 per patient) were tested for IFXL and ATI. During the study, 31 (14%) subjects discontinued IFX. Sixty patients had ATI. Twenty-two of those 60 patients with ATI discontinued IFX; 14 of 31 patients who discontinued IFX had detectable ATI at study onset. The combination of ATI and IFXL < 5 µg/mL at study entry was associated with the highest risk of drug discontinuation (hazard ratios [HR] ATI 4.27 [p < 0.001] and IFXL < 5 µg/mL [HR]: 3.2 p = 0.001). Patients with IFXL 5-10 µg/mL had the lowest rate of discontinuation (6%). IFX dose escalation eliminated ATI in 21 of 60 subjects. CONCLUSIONS: ATI is a strong predictor of needing to stop IFX use and inversely correlates with IFXL. Detection of ATI during therapeutic drug monitoring postinduction but also periodically during maintenance therapy identifies individuals who may benefit from IFX dose escalation and/or the addition of an immunomodulator, as these interventions may reduce or eliminate ATI.


Assuntos
Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Adulto Jovem , Humanos , Criança , Feminino , Adolescente , Infliximab , Estudos Prospectivos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Anticorpos , Monitoramento de Medicamentos , Fatores Imunológicos/uso terapêutico , Fármacos Gastrointestinais
3.
Inflamm Bowel Dis ; 30(7): 1189-1206, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38280053

RESUMO

Monogenic causes of inflammatory bowel diseases (IBD) are increasingly being discovered. To date, much attention has been placed in those resulting from inborn errors of immunity. Therapeutic efforts have been largely focused on offering personalized immune modulation or curative bone marrow transplant for patients with IBD and underlying immune disorders. To date, less emphasis has been placed on monogenic causes of IBD that pertain to impairment of the intestinal epithelial barrier. Here, we provide a comprehensive review of monogenic causes of IBD that result in impaired intestinal epithelial barrier that are categorized into 6 important functions: (1) epithelial cell organization, (2) epithelial cell intrinsic functions, (3) epithelial cell apoptosis and necroptosis, (4) complement activation, (5) epithelial cell signaling, and (6) control of RNA degradation products. We illustrate how impairment of any of these categories can result in IBD. This work reviews the current understanding of the genes involved in maintaining the intestinal barrier, the inheritance patterns that result in dysfunction, features of IBD resulting from these disorders, and pertinent translational work in this field.


A comprehensive review of monogenic causes of IBD that result in impaired intestinal epithelial barrier is detailed, including genes involved in maintaining the intestinal barrier, features of IBD resulting from these disorders, and pertinent translational work in this field.


Assuntos
Doenças Inflamatórias Intestinais , Mucosa Intestinal , Humanos , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/etiologia , Mucosa Intestinal/patologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Apoptose , Animais , Transdução de Sinais , Ativação do Complemento/genética
4.
medRxiv ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38826236

RESUMO

Genetic testing has become an essential component in the diagnosis and management of a wide range of clinical conditions, from cancer to developmental disorders, especially in rare Mendelian diseases. Efforts to identify rare phenotype-associated variants have predominantly focused on protein-truncating variants, while the interpretation of missense variants presents a considerable challenge. Deep learning algorithms excel in various applications across biomedical tasks1,2, yet accurately distinguishing between pathogenic and benign genetic variants remains an elusive goal3-5. Specifically, even the most sophisticated models encounter difficulties in accurately assessing the pathogenicity of missense variants of uncertain significance (VUS). Our investigation of AlphaMissense (AM)5, the latest iteration of deep learning methods for predicting the potential functional impact of missense variants and assessing gene essentiality, reveals important limitations in its ability to identify pathogenic missense variants within a rare disease cohort. Indeed, AM struggles to accurately assess the pathogenicity of variants in intrinsically disordered regions (IDRs), leading to unreliable gene-level essentiality scores for certain genes containing IDRs. This limitation highlights the challenges in applying AM faces in the context of clinical genetics6.

5.
Cell Mol Gastroenterol Hepatol ; 18(2): 101350, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38704148

RESUMO

BACKGROUND & AIMS: Gut bacterial sphingolipids, primarily produced by Bacteroidetes, have dual roles as bacterial virulence factors and regulators of the host mucosal immune system, including regulatory T cells and invariant natural killer T cells. Patients with inflammatory bowel disease display altered sphingolipids profiles in fecal samples. However, how bacterial sphingolipids modulate mucosal homeostasis and regulate intestinal inflammation remains unclear. METHODS: We used dextran sodium sulfate (DSS)-induced colitis in mice monocolonized with Bacteroides fragilis strains expressing or lacking sphingolipids to assess the influence of bacterial sphingolipids on intestinal inflammation using transcriptional, protein, and cellular analyses. Colonic explant and organoid were used to study the function of bacterial sphingolipids. Host mucosal immune cells and cytokines were profiled and characterized using flow cytometry, enzyme-linked immunosorbent assay, and Western blot, and cytokine function in vivo was investigated by monoclonal antibody injection. RESULTS: B fragilis sphingolipids exacerbated intestinal inflammation. Mice monocolonized with B fragilis lacking sphingolipids exhibited less severe DSS-induced colitis. This amelioration of colitis was associated with increased production of interleukin (IL)-22 by ILC3. Mice colonized with B fragilis lacking sphingolipids following DSS treatment showed enhanced epithelial STAT3 activity, intestinal cell proliferation, and antimicrobial peptide production. Protection against DSS colitis associated with B fragilis lacking sphingolipids was reversed on IL22 blockade. Furthermore, bacterial sphingolipids restricted epithelial IL18 production following DSS treatment and interfered with IL22 production by a subset of ILC3 cells expressing both IL18R and major histocompatibility complex class II. CONCLUSIONS: B fragilis-derived sphingolipids exacerbate mucosal inflammation by impeding epithelial IL18 expression and concomitantly suppressing the production of IL22 by ILC3 cells.


Assuntos
Bacteroides fragilis , Colite , Sulfato de Dextrana , Interleucina 22 , Interleucinas , Esfingolipídeos , Animais , Esfingolipídeos/metabolismo , Interleucinas/metabolismo , Camundongos , Colite/imunologia , Colite/patologia , Colite/induzido quimicamente , Colite/microbiologia , Colite/metabolismo , Sulfato de Dextrana/toxicidade , Bacteroides fragilis/imunologia , Modelos Animais de Doenças , Humanos , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/metabolismo , Fator de Transcrição STAT3/metabolismo , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA